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Abstract The compressive nonlinearity of cochlear signal transduction, reflecting 
outer-hair-cell function, manifests as suppressive spectral interactions; e.g., two-
tone suppression. Moreover, for broadband sounds, there are multiple interactions 
between frequency components. These frequency-dependent nonlinearities are 
important for neural coding of complex sounds, such as speech. Acoustic-trauma-
induced outer-hair-cell damage is associated with loss of nonlinearity, which audi-
tory prostheses attempt to restore with, e.g., “multi-channel dynamic compression” 
algorithms.

Neurophysiological data on suppression in hearing-impaired (HI) mammals are 
limited. We present data on firing-rate suppression measured in auditory-nerve-fi-
ber responses in a chinchilla model of noise-induced hearing loss, and in normal-
hearing (NH) controls at equal sensation level. Hearing-impaired (HI) animals had 
elevated single-fiber excitatory thresholds (by ~ 20–40 dB), broadened frequency 
tuning, and reduced-magnitude distortion-product otoacoustic emissions; consis-
tent with mixed inner- and outer-hair-cell pathology. We characterized suppression 
using two approaches: adaptive tracking of two-tone-suppression threshold (62 NH, 
and 35 HI fibers), and Wiener-kernel analyses of responses to broadband noise (91 
NH, and 148 HI fibers). Suppression-threshold tuning curves showed sensitive low-
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side suppression for NH and HI animals. High-side suppression thresholds were 
elevated in HI animals, to the same extent as excitatory thresholds. We factored 
second-order Wiener-kernels into excitatory and suppressive sub-kernels to quanti-
fy the relative strength of suppression. We found a small decrease in suppression in 
HI fibers, which correlated with broadened tuning. These data will help guide novel 
amplification strategies, particularly for complex listening situations (e.g., speech 
in noise), in which current hearing aids struggle to restore intelligibility.

Keywords Auditory nerve · Suppression · Frequency-dependent nonlinearity · 
Chinchilla · Spike-triggered neural characterization · Wiener kernel · Singular-
value decomposition · Threshold tracking · Frequency tuning · Hearing impairment 
· Noise exposure · Acoustic trauma · Cochlear hearing loss · Auditory-brain-stem 
response · Otoacoustic emissions

1  Introduction

Frequency-dependent cochlear signal-transduction nonlinearities manifest as sup-
pressive interactions between acoustic-stimulus components (Sachs and Kiang 
1968; de Boer and Nuttall 2002; Versteegh and van der Heijden 2012, 2013). The 
underlying mechanism is thought to be saturation of outer-hair-cell receptor cur-
rents (Geisler et al. 1990; Cooper 1996). Despite the importance of suppression for 
neural coding of complex sounds (e.g., Sachs and Young 1980), relatively little is 
known about suppression in listeners with cochlear hearing loss (Schmiedt et al. 
1990; Miller et al. 1997; Hicks and Bacon 1999). Here we present preliminary data 
on firing-rate suppression, measured with tones, and with broadband noise, from 
ANFs in chinchillas ( Chinchilla laniger), following noise-induced hearing loss. 
Quantitative descriptions of suppression in the hearing-impaired auditory periphery 
will help guide novel amplification strategies, particularly for complex listening 
situations (e.g., speech in noise), in which current hearing aids struggle to improve 
speech intelligibility.

2  Methods

2.1  Animal Model

Animal procedures were under anesthesia, approved by Purdue University’s IA-
CUC, and followed NIH-issued guidance. Evoked-potential and DPOAE measures, 
and noise exposures, were with ketamine (40 mg/kg i.p.) and xylazine (4 mg/kg 
s.c.). Single-unit neurophysiology was done with sodium pentobarbital (boluses: 
5–10 mg/hr. i.v.).



287Suppression Measured from Chinchilla …

2.1.1  Noise Exposure & Hearing-Loss Characterization

Two groups of chinchillas are included: normal-hearing controls (NH), and hearing-
impaired (HI) animals with a stable, permanent, sensorineural hearing loss. Prior to 
noise exposure, we recorded auditory brainstem responses (ABRs) and distortion-
product otoacoustic emissions (DPOAEs) from the HI group, verifying “normal” 
baseline status.

ABRs were recorded in response to pure-tone bursts, at octave-spaced frequen-
cies between 0.5 and 16 kHz. Threshold was determined according to statistical 
criteria (Henry et al. 2011). DPOAE stimulus primaries ( f1 and f2) were presented 
with equal amplitude (75-dB SPL), and with a constant f2/f1 ratio of 1.2. f2 varied 
between 0.5 and 12 kHz, in 2-semitone steps.

Animals were exposed to either a 500-Hz-centered octave-band noise at 116-dB 
SPL for 2 h, or a 2-kHz-centered 50-Hz-wide noise at 114-115-dB SPL for 4 h. They 
were allowed to recover for 3–4 weeks before an acute single-unit experiment. At 
surgery, ABR and DPOAE measures were repeated prior to any additional interven-
tion (for NH animals, these were their only ABR and DPOAE measurements).

2.1.2  Single-Unit Neurophysiology

The auditory nerve was approached via a posterior-fossa craniotomy. ANFs were 
isolated using glass pipettes with 15–25 MΩ impedance. Spike times were recorded 
with 10-µs resolution. Stimulus presentation and data acquisition were controlled 
by MATLAB programs interfaced with hardware modules (TDT and National In-
struments). For HI animals, ANF characteristic frequency (CF) was determined by 
the high-side-slope method of Liberman (1984).

2.2  Stimuli

2.2.1  Adaptive-Tracking: Suppression-Threshold Tuning

This two-tone suppression (2TS) adaptive-tracking technique is based on Delgutte 
(1990). Stimuli were sequences of 60-ms duration supra-threshold tones at CF, with 
or without a second tone at the suppressor frequency (FS; Fig. 1). For each FS 
frequency-level combination, 10 repetitions of the two-interval sequence were pre-
sented. The decision to increase or decrease sound level was made based on the 
mean of the 2nd through 10th of these two-interval comparisons. The algorithm 
sought the lowest sound level of FS which reduced the response to the CF tone by 
20 spikes s−  1.
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2.2.2  Systems-Identification Approach

Using spike-triggered characterization, we probed suppressive influences on firing 
rate in response to broadband-noise stimulation (e.g., Lewis and van Dijk 2004; 
Schwartz et al. 2006). Our implementation is based on singular-value decomposi-
tion of the second-order Wiener kernel ( h2) in response to 16.5-kHz bandwidth, 15-
dB SL noise (Lewis et al. 2002a, 2002b; Recio-Spinoso et al. 2005). We collected 
~ 10–20 K spike times per fiber.

2.3  Analyses

2.3.1  Second-Order Wiener Kernels

For each fiber, h2 was computed from the second-order cross-correlation be-
tween the noise-stimulus waveform x( t) and N spike times. The spike-triggered 
cross correlation was sampled at 50 kHz, and with maximum time lag τ of 
10.2 ms ( m = 512 points) for CFs > 3 kHz, or 20.4 ms ( m = 1024 points) for CFs 
< 3 kHz. h2( τ1, τ2) is calculated as

where τ1 and τ2 are time lags, A the instantaneous noise power, N0 the mean firing 
rate in spikes s− 1, and 2 1 2( , )R τ τ  the second-order reverse-correlation function cal-
culated as
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Fig. 1  Schematized stimulus paradigm: adaptive tracking. (B) Black line, excitatory tuning curve; 
Red and blue dashed lines, high- and low-side suppression-threshold curves, respectively
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with ti the ith spike time and 2 1( )xxφ τ τ−  the stimulus autocorrelation matrix. So 
computed, h2 is an m-by-m matrix with units of spikes·s− 1·Pa− 2 (Recio-Spinoso 
et al. 2005). We used singular-value decomposition to parse h2 into excitatory ( h2ε) 
and suppressive ( h2σ) sub-kernels (Lewis et al. 2002a, 2002b; Lewis and van Dijk 
2004; Rust et al. 2005; Sneary and Lewis 2007).

2.3.2  Excitatory and Suppressive Sub-Kernels

Using the MATLAB function svd, h2s were decomposed as

where U, S and V are m-by-m matrices. The columns of U and rows of V are the left 
and right singular vectors, respectively. S is a diagonal matrix, the nonzero values 
of which are the weights of the corresponding-rank vectors. The decomposition can 
be rephrased as

where u j and v j  are column vector elements of U and V, respectively, and k j  is the 
signed weight calculated as

where sgn is the signum function, u jj ( )  is the jth element of the jth left singular vec-
tor, v jj ( ) is the jth element of the jth right singular vector, and sj is the jth element of 
the nonzero diagonal of S.

Positively and negatively weighted vectors are interpreted as excitatory and sup-
pressive influences, respectively (Rust et al. 2005; Schwartz et al. 2006; Sneary and 
Lewis 2007). However, mechanical suppression, adaptation, and refractory effects 
may all contribute to what we term “suppressive” influences.

To determine statistical significance of each weighted vector, we re-computed h2 
from 20 different spike:train randomizations, conserving the first-order inter-spike-
interval distribution. Based on this bootstrap distribution, weights were expressed 
as z-scores, and any vector with |z| > 3 and rank ≤ 20 was considered significant. We 
calculated a normalized excitatory-suppressive ratio as

for Nε significant excitatory vectors and Nσ significant suppressive vectors. This 
normalized ratio varies from 1 (only excitation, no suppression), through 0 (equal 
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excitation and suppression), to − 1 (only suppression and no excitation: in practice 
, 0Rε σ <  does not occur).

2.3.3  Spectro-Temporal Receptive Fields

Based on Lewis and van Dijk (2004), and Sneary and Lewis (2007), we estimated 
the spectro-temporal receptive field (STRF) from h2. These STRFs indicate the tim-
ing of spectral components of the broadband-noise stimulus driving either increases 
or decreases in spike rate. Moreover, the STRF calculated from the whole h2 kernel 
is the sum of excitatory and suppressive influences. Therefore, we also determined 
STRFs separately from h2ε and h2σ to assess the tuning of excitation and suppression 
(Sneary and Lewis 2007).

3  Results

3.1  Hearing-Loss Characterization

Noise exposure elevated ABR threshold, and reduced DPOAE magnitude, across 
the audiogram; indicating a mixed inner- and outer-hair-cell pathology (Fig. 2).
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Fig. 2  Audiometric characterization. a ABR thresholds. Thin lines, individual-animal data; sym-
bols, within-group least-squares-mean values; shading, S.E.M; green area, noise-exposure band. 
b Lower plot, DPOAE magnitude; Upper plot, probability of observing a DPOAE above the noise 
floor; thick lines, within-group least-squares means; shading, S.E.M
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3.2  Suppression Threshold

Two-tone-suppression tuning curves were obtained from 62 NH fibers, and 35 HI 
fibers (Fig. 3a and b). HI excitatory tuning curves show threshold elevation and 
broadened tuning (Fig. 3c). For NH fibers, high-side 2TS was always observed 
(Fig. 3a). However, in 6 of 35 HI fibers, we could not detect significant high-side 
2TS (Fig. 3b). These fibers have very broadened excitatory tuning (Fig. 3c). In HI 
fibers with detectable high-side 2TS, the dB difference between excitatory thresh-
old and suppressive threshold was not greater than observed in NH fibers (Fig. 3d). 
For many fibers high-side-2TS threshold was within 20 dB of on-CF excitatory 
threshold. Low-side 2TS-threshold estimates are surprisingly low (Fig. 3a and b). 
All fibers had low-side suppressive regions, regardless of hearing status, typically 
in the region of 0- to 20-dB SPL.
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3.3  Wiener-Kernel Estimates of Suppression

Figure 4 shows second-order Wiener-kernel and STRF analyses from the responses 
of a single medium-spontaneous-rate (< 18 spikes s− 1) ANF, with CF 4.2 kHz, re-
corded in a NH chinchilla. The h2 kernel is characterized by a series of parallel 
diagonal lines representing the non-linear interactions driving the ANF’s response 
to noise (Fig. 4a; Recio-Spinoso et al. 2005). The STRF derived from h2 shows sup-
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pressive regions flanking the main excitatory region along the frequency axis, with 
a high-to-low frequency glide (early-to-late) consistent with travelling-wave delay 
(Fig. 4b). Decomposing h2 into its excitatory and suppressive sub-kernels, we ob-
serve a broad area of suppressive tuning which overlaps with the excitatory tuning 
in time and frequency (Fig. 4d and f). There is also an “on-CF” component to the 
suppression, occurring before the excitation.

There is substantial variability in the relative contribution of suppression to ANF 
responses (Fig. 5a), similar to that observed with tone stimuli in the “fractional-
response” metric (e.g., Miller et al. 1997). There is a group of fibers (both NH and 
HI) across the CF axis, which show no significant suppression ( , 1Rε σ = ; Fig. 5a). 
These are mainly, but not exclusively, of the high-spontaneous-rate class (≥ 18 
spikes s− 1). HI fibers in the region of greatest damage (~ 2–5 kHz) tend to have 
reduced suppression. Plotting ,Rε σ  vs. CF-normalized 10-dB bandwidth, we find a 
significant correlation between broadened tuning and loss of suppression (Fig. 5b). 
Considering only CFs > 2 kHz in this linear regression increased the variance ex-
plained from 9.1 to 18.4 %.

4  Discussion

Using tones and broadband noise, we found significant changes in the pattern of 
suppression in the responses of ANFs following noise-induced hearing loss, likely 
reflecting outer-hair-cell disruption. Previous studies have examined the relation-
ship between ANF 2TS and chronic low-level noise exposure coupled with ageing 
in the Mongolian gerbil (Schmiedt et al. 1990; Schmiedt and Schultz 1992), and 
following an acute intense noise exposure in the cat (Miller et al. 1997). Ageing in 
a noisy environment was associated with a loss of 2TS. Schmiedt and colleagues 
often found complete absence of high-side 2TS, with sparing of low-side 2TS, even 
in cochlear regions with up to 60 % outer-hair-cell loss; suggesting potentially dif-
ferent mechanisms for low- and high-side suppression. Our 2TS data are in broad 
agreement with these earlier findings: HI chinchillas had elevated high-side 2TS 
thresholds, but retained sensitivity to low-side suppressors. Miller et al. (1997) re-
lated a reduction in 2TS in ANFs to changes in the representation of voiced vowel 
sounds. Weakened compressive nonlinearities contributed to a reduction in “syn-
chrony capture” by stimulus harmonics near vowel-formant peaks. These effects 
likely contribute to deficits in across-CF spatio-temporal coding of temporal-fine-
structure information in speech for HI listeners (e.g., Heinz et al. 2010).

Although the 2TS approach provides important insights on cochlear nonlineari-
ties, it is important to consider the effects of hearing impairment on cochlear nonlin-
earity in relation to broadband sounds. Our Wiener-kernel approach demonstrated 
reduced suppression in ANF responses from HI animals, which was correlated with 
a loss of frequency selectivity. These HI animals also exhibited reduced magnitude 
DPOAEs: additional evidence of reduced compressive nonlinearity. However, the 
analyses presented here (Fig. 5) only quantify the overall relative suppressive influ-
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ence on ANF responses. Using the STRFs derived from h2s, we aim to characterize 
the timing and frequency tuning of suppression in the HI auditory periphery in re-
sponse to broadband sounds. Moreover, these same techniques can be exploited to 
address potential changes in the balance between excitation and inhibition (“central 
gain change”) in brainstem nuclei following damage to the periphery. Such ap-
proaches have previously proved informative across sensory modalities (e.g., Rust 
et al. 2005), and will likely yield results with tangible translational value.
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