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Abstract  Humans have shared buildings with bats for thousands of years, prob-
ably as early as first humans built primitive huts. Indeed, many bat species can 
be defined as synanthropic, i.e., they have a strong ecological association with 
humans. Bats have been observed using buildings as roosting and foraging sites, 
temporary shelters, for reproduction and hibernation. A synanthropic lifestyle may 
result in direct fitness benefits owing to energetic advantages in warmer roosts, 
which may ultimately lead to more rapid gestation and faster development of juve-
niles, or by being less exposed to natural predators in urban environments. All 
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these benefits may allow bats to use buildings as stepping stones to exploit habi-
tats otherwise devoid of roosting structures and may even lead to the expansion of 
geographic ranges. Yet, the coexistence with humans also comes with some risks. 
Bats may be exposed to chemical pollutants, particularly preservation chemicals 
used on lumber or during pest control measures. Bats may also be at risk of direct 
persecution or they may die accidently if trapped within buildings. In general, 
eviction of bats from buildings should follow the general rule of avoidance–miti-
gation–compensation. When considering conservation measures for synanthropic 
bats, it is most important to assess the role of the building for different life stages 
of bats. Construction work at buildings should be conducted in a manner that 
minimizes disturbance of bats. Artificial roosts can replace lost roosts, yet bats 
will often not accept alternative roosts. Demographic changes in human popula-
tions may lead to the abandonment of buildings, for example, in rural areas and to 
increased conflicts in urban areas when old buildings are replaced by new build-
ings or when previously unoccupied space in buildings is renovated. We advocate 
maintenance and enhancement of roosts for synanthropic bats, in addition to out-
reach and education campaigns, to improve the tolerance of humans for synan-
thropic bats.

14.1 � Introduction

14.1.1 � What Is the Purpose of This Review?

Bats are nocturnal mammals that spend the daytime in dark places (Kunz 1982; 
Kunz and Lumsden 2003). Usually, they depend on natural roosting structures 
such as caves, crevices, foliage, branches, tree trunks, and hollows among many 
others. Bats most likely used buildings as roosts when humans started to build 
primitive huts thousands of years ago. Indeed, some bat species, such as the hairy 
split-faced bat, Nycteris macrotis, inhabit thatched huts in Africa that are likely 
similar to the earliest buildings of humans (Poché 1975).

In this chapter, we focus on bats that use man-made buildings that are coinhab-
ited by humans. We refer to these bats as synanthropic species, or species that are 
“ecologically associated with humans (Merriam-Webster’s dictionary). We do not 
use synanthropic species in the context of bats living in anthropogenically shaped 
landscapes; rather, this topic is covered in Chap. 2 (Reichel-Jung and Threlfall 
2015). Nonetheless, we address certain aspects of bats living in other man-made 
structures unoccupied or abandoned by humans.

Synanthropic bat species have benefited from the expansion of human popu-
lations, and some species have likely expanded their geographic distribution as 
humans moved into new habitats worldwide. Yet this close association has disad-
vantages when synanthropic bats are faced with threats from humans. Currently, 
about a quarter of all bat species are considered threatened or near threatened, and 
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one of the most prominent threats is loss of roost sites and disturbance at roosts 
(Mickleburgh et  al. 2002). Therefore, this chapter is timely, and we hope that it 
will contribute to the conservation of synanthropic bats.

14.1.2 � Relevant Natural History Features of Synanthropic 
Bats

Along the fast–slow continuum of life, bats are considered to be in the slow lane, 
even though most other mammals of similar size are in the fast lane (Barclay and 
Harder 2003; Bielby et al. 2007). Bats have low reproductive rates that are associated 
with exceptionally long life spans, a feature most obvious in insectivorous bats from 
temperate zones (Wilkinson and South 2002; Munshi-South and Wilkinson 2010). 
Long life spans may predispose bats to inhabit relatively permanent structures, such 
as in buildings, since some bat species are loyal to their roost over many years and 
form long-term social relationships with other colony members (Kerth et al. 2011).

Similar to other small mammals, bats exhibit relatively high mass-specific meta-
bolic rates (McNab 2002). Many bats are also heterothermic, reducing their body 
temperature and consequently metabolic rate, during periods of adverse conditions, 
such as low resource abundance (insects, fruits, or nectar), low ambient temperature, 
or high rainfall (Geiser 2004). Most notably, temperate zone bats employ extended 
torpor when they hibernate in winter. Apart from hibernation, almost all bats use tor-
por on a daily basis as an energy-saving strategy (Speakman and Thomas 2003; Willis 
et al. 2006). During daytime torpor, bats may use passive rewarming when ambient 
temperatures peak during the warmest part of the day (Turbill et al. 2003). The use 
of radiant heat created by the exposure of building exteriors to sunshine likely saves 
synanthropic bats significant amounts of energy since they do not depend on endog-
enous heat production in brown adipose tissue (Geiser and Drury 2003). This could 
be a selective advantage for bats using sun-exposed buildings instead of dark caves as 
daytime roosts or hibernacula (Lausen and Barclay 2006; Halsall et al. 2012).

14.1.3 � Which Bat Species Use Buildings?

The order Chiroptera comprises 19 living families, with at least one species 
in each family known to roost in buildings (Figs. 14.1 and 14.2), with the nota-
ble exceptions of Furipteridae, Mystacinidae, Myzopodidae, Natalidae, and 
Thyropteridae. Quite often, only local residents are aware of the occurrence of 
synanthropic bat species. The chapter on bats and urbanization (Reichel-Jung and 
Threlfall 2015) provides a meta-analytic perspective on bats living in urban land-
scapes. Many of the species included in their analysis also roost in buildings; thus, 
the general patterns derived from their study may also hold true for aspects of 
roost choice in synanthropic bats.
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14.1.4 � Human–Bat Conflict in Buildings and the Legal 
Protection of Synanthropic Bats

Buildings constructed specifically as human dwellings are usually well maintained 
and protected against opportunistic invasions by unwanted animals. Unfortunately, 
synanthropic bats are unwanted by most humans, which generate conflicts (Gareca 

Fig. 14.1   Example of synanthropic bats that use both natural roosts and buildings. The greater 
sac-winged bat, Saccopteryx bilineata, shown here in Costa Rica, forms colonies in the cavities 
formed by large buttress roots of canopy trees. In the absence of such trees, this species will roost 
on the exterior walls of buildings (or inside if the building is abandoned as shown in the right 
picture; © left picture Knörnschild M, right picture Voigt CC)

Fig. 14.2   Colony of Megaderma lyra under a tin roof of a building in India
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et  al. 2007). Accordingly, synanthropic bats are persecuted virtually worldwide, 
even if the legal framework may define this action as criminal. Documented cases of 
humans removing bats from buildings are apparent across the entire geographic range 
of synanthropic bats (e.g., Merzlikin 2002), but most cases remain unnoticed by law 
enforcement agencies even where bats are legally protected. Indeed, bats are legally 
protected in only a few countries. For example, bats are protected in countries of the 
European Union according to the Habitats Directive (Council Directive 92/43/EEC). 
Also, migratory bats are specifically protected in countries that have signed the United 
Nations convention on the “Conservation of Migratory Species of Wild Animals” 
(Lyster 1989). In some countries, conservationists have established action plans 
for threatened bat species, including suggestions for protecting synanthropic bats 
(Aguirre et al. 2010). However, these recommendations have not yet been converted 
into some form of legal framework. In African and Asian countries, bats are not pro-
tected under specific legislation. In summary, the level of protection of synanthropic 
bats by national or international legislation is highly variable and clearly deficient.

14.2 � How Do Bats Find and Use Buildings?

Since most bat species are not capable of constructing their own roosts (Kunz 
1982; Kunz and Lumsden 2003), they depend largely on preexisting roosting 
structures, either of natural or of artificial origin. Therefore, roost sites are likely a 
limited resource for bats (Kunz 1982; Kunz and Lumsden 2003), such that build-
ings may constitute an important substitute for natural roosts (Lisón et al. 2013). 
Buildings may resemble rocks or cavelike structures, which may attract bats into 
crevices or attics. Once one or a few bats establish a roost in a building, other bats 
may recognize the newly established roosts by olfactory or acoustic cues. The 
importance of nonsocial information such as visual and temperature-related cues 
and social sensory cues, e.g., conspecific echolocation calls, has recently been 
confirmed as important information for the common noctule bat, Nyctalus noct-
ula, to initiate roost exploration (Ruczyński et al. 2007). Presumably, noctule bats 
use the same set of cues for exploring buildings as temporary shelters or hibernac-
ula (Bihari 2004; Kozhurina and Gorbunova 2004; Szodoray-Parádi et  al. 2004; 
Cel’uch and Kaňuch 2005; Cel’uch et al. 2006; Bačkor et al. 2007).

14.2.1 � Buildings as Foraging Sites

Buildings are rarely used by bats as foraging sites, although abandoned buildings 
may develop into small urban ecosystems. For example, Aspetsberger et al. (2003) 
found that cockroaches (Blattodea: Blaberidae), sharing the space under the metal 
roof of a building with little free-tailed bats, Chaerephon pumilus, comprised more 
than 60 % of the diet of the bats. Yet, most observations of foraging at buildings 
are bats hunting insects around illuminated buildings. Artificial lighting is known 
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to attract insects, and consequently, bats may chase insects close to illuminated 
buildings (Rydell 1991, 1992; Rydell and Racey 1995; Pavey 1999; Rowse et al. 
2015).

14.2.2 � Buildings as Shelters During Foraging Bouts

Buildings provide structures that can be used by bats as a temporary shelter. For 
example, buildings are often used by bats as a shelter to digest food items gath-
ered during their most recent foraging bout (Ormsbee et al. 2007). This behavior 
has been observed in many species, including tropical carnivorous species such as 
the greater false vampire bat, Megaderma lyra, in India (Subbaraj and Balasingh 
1996), and the greater slit-faced bat, Nycteris grandis, in southern Africa (Fenton 
et al. 1990) as well as temperate insectivorous bats such as Leisler’s bat, Nyctalus 
leisleri, in Europe (Shiel et al. 1999), and the pallid bat, Antrozous pallidus, in the 
USA (Lewis 1994). In general, the temporary use of buildings by foraging bats 
may be the first step toward a more permanent occupation of buildings.

14.2.3 � Buildings as Maternity Roosts

Females of many synanthropic bats use buildings as maternity roosts. Sometimes 
adult males share the same roost, but often the sexes are segregated. According 
to our literature survey, at least 35 bat species form maternity colonies in build-
ings. Energetic advantages and reduced predation risk may be benefits for female 
bats that give birth and raise their young in buildings. Harbusch and Racey (2006) 
reported that the serotine bat, Eptesicus serotinus, selected old buildings with slate 
roofing for maternity roosts, largely because such buildings tend to have small 
holes and fissures allowing easy access. Also, such buildings offered suitable tem-
peratures of about 22 °C during gestation and lactation periods, a critical parame-
ter for the survival of offspring (Harbusch and Racey 2006). Further, many species 
that form maternity colonies in buildings show high levels of site fidelity and natal 
philopatry, with female young returning to the same roosts to reproduce when they 
mature (Harbusch and Racey 2006). This could initiate a tradition of using build-
ings instead of natural roosts in local bat populations.

14.2.4 � Buildings as Swarming Sites

Several European bats, such as common pipistrelle bats, Pipistrellus pipistrel-
lus, and parti-colored bats, Vespertilio murinus, swarm at large buildings dur-
ing autumn (Kanuch et  al. 2010; Šuba et  al. 2010). Usually, swarming occurs 



43314  Bats and Buildings: The Conservation …

after juveniles have fledged and as they start to disperse from their natal roost. 
In Marburg, Germany, common pipistrelles swarm between mid-August and late 
September not only at tall buildings, such as historic towers, castles, and churches, 
but also at large multistory buildings. Interestingly, bat researchers recorded 
almost exclusively juvenile bats during swarming events (Kanuch et  al. 2010; 
Šuba et al. 2010), and therefore, it was argued that swarming was related to roost 
exploration (Smit-Viergutz and Simon 2000). Yet, a social function of swarming 
behavior has also been suggested, for example, for Vespertio murinus (Kanuch 
et al. 2010; Šuba et al. 2010). To the best of our knowledge, swarming of bats at 
buildings has not been observed in countries outside of Europe.

14.2.5 � Buildings as Hibernacula

Many bat species are known to hibernate in buildings, presumably because building 
interiors rarely reach freezing temperatures, turning them into ideal hibernation sites 
for bats. For many of these species, natural hibernacula include not only caves, rock 
crevices, and rock screes, but also tree hollows. Michaelsen et al. (2013) reported that 
in Norway, hibernating bats prefer anthropogenic structures rather than natural sub-
ground hibernacula, but the reason for this preference was unknown. Bats, such as big 
brown bats, Eptesicus fuscus, hibernating in walls of heated buildings expose them-
selves to ambient temperatures of 2–5 °C which are created by the balance between 
warm interior temperatures from heated rooms and cold ambient temperatures from 
the outside (Whitaker and Gummer 1992). In addition, bats hibernating in buildings 
may also benefit from occasional passive rewarming, when being exposed to mild 
exterior temperatures. Nyctalus noctula usually forms maternity colonies in tree roosts, 
yet in Central and northern Europe, they frequently use prefabricated buildings, i.e., 
multistory buildings consisting of prefabricated concrete walls that are assembled at 
the construction site. Throughout continental Europe, large numbers of noctule bats 
hibernate in such buildings in crevices at about 5–10 m aboveground, sometimes form-
ing winter aggregations of a few thousand individuals (Zahn et al. 2000; Kozhurina 
and Gorbunova 2004; Cel’uch and Kaňuch 2005; Cel’uch et al. 2006). Bats in subtrop-
ical and tropical zones may also use buildings during adverse conditions and employ 
torpor, yet their biology is largely unknown and therefore in need of further studies.

14.3 � Benefits of a Synanthropic Lifestyle in Bats

14.3.1 � Increased Fitness of Bats Using Buildings

Bats would not use buildings as roosts without a proximate (ecological or physi-
ological) or ultimate (evolutionary) benefit. In the following, we will discuss three 
potential benefits for bats using buildings, which seem to be linked to increased 
fitness over the short or long term.



434 C.C. Voigt et al.

Reduced predation risk In general, bats face only a few predators compared 
to non-volant mammals of similar size (Sibly and Brown 2007). Yet some birds, 
mammals, and even invertebrates hunt bats on a regular basis (Gillette and 
Kimbrough 1970; Speakman 1991; Altringham 1996; Nyffeker and Knörnschild 
2013). Roosts in buildings could reduce the exposure of bats to predators if preda-
tors avoid anthropogenic environments. For example, snakes and giant centipedes 
hunt neotropical bats at the entrance of caves, and many of these species are less 
abundant or even absent in an urban environment (Molinari et al. 2005; Esbérard 
and Vrcibradic 2007). In North America, big brown bats, E. fuscus, seem to be 
less exposed to predators when roosting in buildings than in natural roosts (Lausen 
and Barclay 2006). However, clustered emergence of bats from roosts in buildings 
may point to antipredatory behavior in synanthropic bats in urban environments 
(Speakman et al. 1995; Duvergé et al. 2008; but see Irwin and Speakman 2003).

Energetic benefits Bats may survive periods of adverse weather conditions, 
such as heavy rain or low ambient temperatures, by roosting in a warm and dry 
building. The energetic benefits for bats roosting in buildings may manifest par-
ticularly during critical life history stages, such as reproduction and hibernation.

Buildings may provide conditions that are beneficial for reproducing female 
bats. For example, elevated ambient temperatures in attics seem to be ideal for 
pregnant and lactating bats. Angolan free-tailed bats, Mops condylurus, inhabit 
maternity roosts under corrugated steel roofs of houses that often exceed 40  °C 
during the day (Maloney et  al. 1999), enabling them to maintain ideal growth 
conditions throughout the reproductive period without expending a lot of energy 
(Vivier and van der Merwe 2007). Their use of hot roosts may even be linked to 
increased reproductive rates (Bronner et  al. 1999). Higher roost temperatures 
in attics seem to be also favorable for the development of juveniles of European 
greater mouse-eared bats, Myotis myotis. This species forms large clusters of 
individuals in natural cave roosts, presumably to benefit from huddling and shar-
ing of body heat (Dietz et  al. 2009). In buildings, however, greater mouse-eared 
bats usually form smaller colonies, and these smaller clusters may be energeti-
cally feasible only because Myotis myotis may benefit from exogenous instead of 
endogenous heat when roosting in warm attics (Zahn 1999). The use of different 
locations depending on reproductive state has been confirmed for other species as 
well, including Rafinesque’s big-eared bats, Corynorhinus rafinesquii (Roby et al. 
2011). Similar to attic-roosting Myotis myotis, thermal benefits have also been sug-
gested for Eptesicus fuscus. Pregnant big brown bats rarely entered torpor when 
roosting at favorable ambient conditions in buildings (Lausen and Barclay 2006). 
The avoidance of torpor may be advantageous for fetal development. For example, 
big brown bats gave birth earlier when roosting in buildings than when roosting in 
natural roosts. Furthermore, juveniles from buildings fledged one to two weeks ear-
lier than conspecifics born in natural roosts (Lausen and Barclay 2006). Similarly, 
building-dwelling bats gave birth earlier than their conspecifics roosting in foli-
age or trees (Kurta 2010). These temporal differences could translate to important 
advantages for building-roosting juveniles; for example, they have more time to 
explore new roosts and foraging sites and to prepare for the onset of hibernation.
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Hibernating bats may also benefit from thermal advantages in buildings. For 
example, thermoregulation of E. fuscus hibernating in buildings was more simi-
lar to that of tree-dwelling species than to that of cave-hibernating conspecifics 
(Halsall et  al. 2012). The authors argued that bats hibernating in buildings may 
benefit to a larger extent from passive rewarming (Halsall et al. 2012), which may 
lead to massive savings of crucial fat depots (Turbill et al. 2003; Geiser and Drury 
2003). This notion is also supported by the observation that some bats, such as 
Nyctalus noctula, choose crevices behind sun-exposed walls when hibernating in 
buildings (Bihari and Bakos 2001).

In addition to thermal benefits, synanthropic bats may also benefit by reducing 
their travel distance and thus time to foraging sites, resulting in substantial ener-
getic savings from reduced commuting distances (Knight and Jones 2009).

Presence of social or mating partners If buildings are selected as roost sites 
by a single bat, conspecifics may follow to benefit from social advantages (Kerth 
2008). These secondary social benefits for synanthropic bats are identical to those 
of conspecific roosting in natural roosts. Briefly, bats that form large colonies in 
buildings may be less exposed to predators because of the dilution effect. They 
may as well benefit from information transfer and by cooperation among members 
of the same social unit. Clustered emergence of bats from a roost may constitute 
an antipredator behavior (Speakman et  al. 1995), yet clustered emergence may 
be disrupted in large colonies due to bottleneck effects (Speakman et  al. 1999). 
Gillam et  al. (2011) found non-random patterns  when pit-tagged Eptesicus fus-
cus emerged from buildings, indicating that these bats may form social bonds that 
likely influence their foraging. Information transfer might also be involved dur-
ing swarming at buildings as observed in some temperate zone bats (Kanuch et al. 
2010; Šuba et al. 2010). Finally, bats may explore buildings in search of mating 
partners. For example, buildings are known to be used as mating roosts in a num-
ber of species, such as greater sac-winged bats, Saccopteryx bilineata (Bradbury 
and Emmons 1974; Bradbury and Vehrencamp 1976), greater mouse-eared bats, 
Myotis myotis (Dietz et al. 2009), spear-nosed bat, Phyllostomus hastatus (Santos 
et al. 2003), and free-tailed bats, such as Tadarida brasiliensis and Mops condylu-
rus (Vivier and van der Merwe 2001).

14.3.2 � Enhanced Access to Habitats by Using Buildings  
as Ecological Stepping Stones

Extending the aforementioned argument that bats may benefit from using build-
ings as shelters by shortening travel distances to foraging habitats, one could argue 
that bats may even be able to explore and exploit new habitats by using buildings 
as ecological stepping stones. For example, some uniform and homogenous agri-
cultural habitats, such as the former prairies of the Midwestern USA, are nearly 
void of roosting structures. Therefore, it is almost impossible for aerial-hawking 
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insectivorous bats to use these habitats, unless artificial roosting structures are 
available. Here, buildings may present pivotal resources for bats to survive in an 
otherwise hostile environment. Farm buildings, villages, and cities may create 
structurally complex islands used by bat colonies (Coleman and Barclay 2012a), 
and this could possibly lead to an increase in local species richness. Some synan-
thropic bats, such as Mops condylurus, are capable of using exceedingly hot roosts 
(40 °C) which allow them to colonize habitats that other bats with a lower toler-
ance toward high roost temperatures are not able to exploit (Maloney et al. 1999), 
suggesting that heat tolerance might be favorable for bats with a synanthropic 
lifestyle.

In forested areas, buildings may provide roosting structures for cave-roosting 
bats, i.e., for bats that do not use tree hollows or crevices. By using buildings as 
roosts, these bats may gain access to other habitats. For example, in a forest habitat 
in Central Europe, bats that typically do not occupy tree cavities, such as Eptesicus 
serotinus and Vespertilio murinus, will instead inhabit buildings. By doing this, 
they gain access to insect-rich forest habitats (Mazurska and Ruczyński 2008).

Buildings can also provide roosting sites for cave-roosting bats in urban 
areas. For example, Otomops martiensseni exploits buildings only in the city of 
Durban, South Africa, while elsewhere in its range it uses caves as roosts. Despite 
the reduced availability of food and intensive large-scale agricultural land use in 
the surrounding landscape, the species is quite common in Durban (Fenton et al. 
2002). Similarly, Moutou’s free-tailed bat, Mormopterus francoismoutoui, uses a 
variety of human structures (e.g., roof slats, window shutters) across the island of 
La Réunion, Mauritius, yet it was thought to be restricted to roosts in lava tubes 
and crevices along cliff faces before the colonization of the island by European 
settlers (~AD 1500; Goodman et al. 2008a). Seemingly, this species has profited 
from the large-scale changes that occurred on this island over the past centuries. In 
summary, buildings may present an important resource for synanthropic bats that 
could increase foraging ranges of individual bats as well as the diversity of local 
bat assemblages.

14.3.3 � Expansion of Geographic Ranges

The use of buildings as roosts may also lead to the expansion of a species’ geo-
graphic range (Kunz and Reynolds 2003). Some temperate bat species such as 
greater mouse-eared bats, Myotis myotis, and lesser and greater horseshoe bats, 
Rhinolophus hipposideros and Rhinolophus ferrumequinum, respectively, pre-
dominantly form maternity roosts in caves in southern Europe but occupy mostly 
attics of large buildings (e.g., churches and castles) in more northern regions of 
their geographic ranges where cave temperatures are too cold to host cave-roosting 
maternity colonies (Dietz et al. 2009). The notch-eared bat, Myotis emarginatus, 
also uses buildings as maternity roosts in the northernmost part of their range in 
Europe (Dekker et al. 2013). Frafjord (2007) observed a small nursery colony of 
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the northern bat, Eptesicus nilssonii, in the attic of a cabin at the northern extent 
of the species range. The roost was only occupied when human inhabitants heated 
the house for their own use, giving support to the idea that bats benefited from 
the warmer roost temperatures. The use of buildings as a driving force to reach 
more northern limits of their geographic ranges (in the Northern hemisphere) has 
been suggested for E. nilssonii and soprano pipistrelles, Pipistrellus pygmaeus, in 
Norway (Michaelsen et al. 2004), Pipistrellus pipistrellus, in Sweden (Ahlen et al. 
2004), and Eptesicus fuscus, in North America (McAlpine et al. 2002). Bats may 
also benefit from favorable thermal conditions in buildings at higher elevations 
and may thus go beyond their normal elevational range. For example, a maternity 
colony of the rare eastern small-footed myotis, Myotis leibii, was found roosting in 
a high-elevation cabin above the previously known elevational limits for this spe-
cies (O’Keefe and LaVoie 2011).

A similar argument can be made for hibernating bats in buildings. Strelkov 
(2002) made the point that the ability of some European bat species, such as 
Nyctalus noctula, to hibernate in buildings may have enabled them to overwinter 
in more northern regions than when using exclusively natural roosts. By doing so, 
Nyctalus noctula are closer to their breeding ranges when arousing from hiber-
nation in spring, which gives them an advantage in terms of time and energy in 
relation to conspecifics that migrate to more southern areas. This could lead to the 
expansion of this species’ geographic range northward.

14.4 � Negative Consequences of a Synanthropic Lifestyle  
in Bats

14.4.1 � Decreased Fitness Owing to Direct Threats

Humans The foremost direct threat for synanthropic bats are humans. The 
co-occupancy of buildings by bats and humans gives rise to various conflicts. 
Interestingly, many early papers that discuss bats in buildings deal largely with 
the eradication or control of bats roosting in buildings (e.g., Silver 1935; Daver 
1953; Kunz et al. 1977; Barclay 1980). These papers were gradually replaced by 
descriptive papers about the biology of synanthropic bats and eventually by those 
focusing on conservation topics. Nonetheless, eradication of bats from buildings 
is an eminent, yet mostly undocumented, problem, in all regions of the world. 
Unfortunately, there are no data available on the number of bats killed each year 
by closing entrances to daytime roosts in buildings, by destroying roosts, or by 
fumigating or poisoning bats. In many countries, bats are considered pests or ver-
min. Therefore, eradication of whole colonies is commonly practiced. In some 
African countries, synanthropic molossids are consumed by humans as a delicacy 
(Goodman et al. 2008b), and the bats’ distinct odor is regarded favorably from a 
culinary perspective (Allen et al. 1917), yet synanthropic bats as a form of bush-
meat is rather the exception (Mildenstein and Tanshi 2015).
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Buildings as traps Buildings may act as traps for bats, when bats that enter 
a building through open windows or structural gaps are unable to find the exit 
(Gaisler 1998). In Europe, Pipistrellus pipistrellus is most often trapped during 
autumn swarming (Pfalzer and Weber 2007; Kanuch et al. 2010). Bats may also be 
killed if they become trapped in wire mesh that is used to protect buildings from 
feral pigeons (König and Neumann 1996).

Predators Bats may also be killed by synanthropic predators. Some birds of 
prey, e.g., European kestrels and tawny and barn owls, specialize on bats that 
use buildings as roosts (Kovats et  al. 2008; Lesiński et  al. 2013; Mikula et  al. 
2013). Indeed, the high density of kestrels in Rome, Italy, is thought to be related 
to the abundance of feral pigeons, swifts, and bats (Salvati et  al. 1999). In the 
Neotropics, great kiskadees, Pitangus sulphuratus, have been observed hunt-
ing Myotis nigricans and Myotis albescens when bats emerged from a building 
(Fischer et al. 2010). African goshawks, Accipiter tachiro, have attacked molossid 
bats, Mops condylurus and Chaerephon pumilus, near their roosts in buildings 
(Fenton et al. 1994). Synanthropic bats that fall to the ground or fly close to the 
ground may be captured and killed by domestic cats (Bruijn 1990; Ancillotto et al. 
2013). Snakes and invertebrates have also been observed hunting bats in or at 
buildings (Esbérard and Vrcibradic 2007; Nyffeler and Knörnschild 2013).

In some cases, natural predators may have devastating effects on bats, in par-
ticular when they specialize on hunting emerging bats at the entrance of roosts. 
Synanthropic owls are especially efficient predators of bats in or around buildings. 
An effective protective measure is to install a small water hose above the entrance 
of a colony that is triggered by the presence of a perching predator (pers. commu-
nication K. Kugelschafter, Fig. 14.3). Since owls are puzzled by the sudden stream 
of water, they immediately leave the entrance without any harm done to the preda-
tor (pers. commun. K. Kugelschafter).

Pathogens Mühldorfer et  al. (2012) reported that one-third of bat deaths in 
Germany were due to bacterial infections. According to this study, viral infections 
were less important as a natural cause of death, even though rabies infections are 
documented in some populations of synanthropic bats (O’Shea et al. 2012; Racey 
et al. 2013). Yet it is unknown to what extent bats suffer from rabies and whether 
disease dynamics are exacerbated in synanthropic species because of their specific 
choice of buildings.

14.4.2 � Decreased Fitness Owing to Indirect Threats

Roosting in buildings, particularly in urban environments, may provide fitness 
benefits for bats. However, Coleman and Barclay (2012b) concluded that urban 
bats did not perform better in terms of body condition, reproductive rate, and num-
ber of weaned juveniles compared to rural bats. Indeed, bats seemed to perform 
best in the transition zone between urban and rural sites, and thus, the authors 
summarized that the process of urbanization may be universally detrimental to 
bats (Coleman and Barclay 2012b).
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Chemical pollutants Indirect threats for synanthropic bats are numerous, yet 
because of their subtle nature, it is more difficult to pinpoint indirect mortality 
risks. Chemical pollutants are likely an indirect threat for bats roosting in build-
ings (Mitchell-Jones et  al. 1989; Bayat et  al. 2014). Wood used in buildings is 
usually treated by chemicals such as chlorinated hydrocarbons to prevent rotting 
caused by fungi or insects. Bats roosting in buildings are in close contact with 
wooden structures and thus may be exposed to chemical preservatives such as 
lindane, pentachlorophenol, and pyrethroids (Racey and Swift 1986; Boyd and 
Myhill 1988; Mitchell-Jones et  al. 1989; Shore et  al. 1990, 1991; Bennet and 
Thies 2007). Most often, bats do not die immediately after contact with treated 
wood but instead suffer sublethal effects that cause, for example, immune suppres-
sion (Corrao et al. 1985; Clark and Shore 2001). Sometimes, bats are eradicated 
from buildings using poisons, and these poisons continue to persist so that bats 
may be exposed to toxic residues for extended periods after application. Poisoning 
is usually a gradual process that is exacerbated in temperate bats via the accumu-
lation of toxic compounds in fat tissue and seasonal mobilization of these com-
pounds during migration and hibernation (Mitchell-Jones et al. 1989; Bayat et al. 
2014). Since the introduction of alternative bat-friendly chemical treatments of 
wood in buildings, mortality caused by chlorinated hydrocarbons has decreased 
markedly (Bayat et al. 2014), yet from a global perspective, the problem of slow 
poisoning of synanthropic bats in buildings remains an issue.

Fig.  14.3   Method to repel owls from the entrance of bat colonies in Germany. Water flows 
from the overhead water hose when the perching owl (Strix aluco) interrupts a light beam at the 
entrance to a colony of greater mouse-eared bats (Myotis myotis) (copyright Kugelschafter K)
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Parasites Patterson et  al. (2007) found that bats inhabiting relatively perma-
nent roosts, such as caves and buildings, carry more ectoparasites than bats that 
roost in temporal structures, such as leaves or tree hollows. Buildings may pro-
vide ectoparasites, e.g., streblid flies, bed bugs (Cimex spp.), or reduviid bugs 
(Triatominae; Reduviidae), an ideal substrate for egg laying and larval develop-
ment. As female bats may be immunosuppressed during pregnancy, they may suf-
fer from heavy parasite infestation during reproduction (Christe et al. 2000; Pearce 
and O’Shea 2007). The combined effect of inflammation and immune challenge 
may then increase oxidative stress and consequently reduce longevity in house-
dwelling bats (Schneeberger et  al. 2013; Lilley et  al. 2014). Endoparasites are 
poorly studied in synanthropic bats. Leishmania braziliensis occurs in Brazilian 
house-dwelling bats, yet it is unknown whether roost choice and colony dynam-
ics are different from those of conspecifics roosting in natural roosts and whether 
building roosts may impose a higher risk of contracting these parasites (Shapiro 
et al. 2013).

14.5 � Consequences for Humans Sharing Buildings  
with Bats

14.5.1 � Benefits of Sharing a Building with Bats

There are several direct benefits for humans when sharing buildings with synan-
thropic bats. Bats provide essential ecological services (e.g., pest suppression, pol-
lination, seed dispersal) near houses, villages, and cities (Jones et  al. 2009; Kunz 
et  al. 2011; Ghanem and Voigt 2012). For example, synanthropic bats, such as 
molossids, feed on large quantities of insects that are vectors of human diseases, 
such as dengue, yellow fever, and chikungunya fever (Andrianaivoarivelo et  al. 
2006; Goodman et al. 2008b). In tropical and subtropical regions, bats are important 
seed and pollen dispersers. Orchards in house gardens may largely benefit from the 
cost-free ecosystem services provided by pollinating bats. Insectivorous bats have 
the ability to reduce insect herbivory in temperate forests (Böhm et al. 2011), tropi-
cal forests (Kalka et  al. 2008), and tropical agricultural fields (Williams-Guillén 
et al. 2008; Maas et al. 2013). Thus, the presence of synanthropic bats comes with 
large, yet mostly unacknowledged, benefits to humans. Lastly, bats are an integral 
component of our natural heritage, and thus, they have intrinsic value (Soulé 1985).

14.5.2 � Pathogen and Parasite Exposure

Viruses Bats inhabiting buildings may be reservoir hosts of viruses. For exam-
ple, North American Eptesicus fuscus and Eurasian Eptesicus serotinus are both 
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synanthropic species roosting in buildings, and they are known for their relatively 
high prevalence of rabies (Zorya 2002; O’Shea et  al. 2012; Racey et  al. 2013). 
In Dutch populations of Eptesicus serotinus, bats exhibited a 21  % seropreva-
lence for lyssavirus (Van der Poel et al. 2005), yet is unknown how many of these 
positive cases were infectious. In another Dutch study, 30 % of sampled bats that 
bit humans tested positive for European bat lyssaviruses (Takumi et  al. 2009). 
Other synanthropic bat species may carry lyssaviruses, such as the molossid bats 
Tadarida brasiliensis or Nyctinomops macrotis in North and South America, or 
vespertilionid bats such as Eptesicus furinalis in South America (Clark et al. 1996; 
Uieda 1998; Passos et al. 1998; de Almeida et al. 2011; Favi et al. 2012) or nyct-
erid bats such as Nycteris thebaica in Zimbabwe (Foggin 1988). In Kenya, SARS-
like coronaviruses (CoVs) were identified in a Chaerephon spp. (Tong et al. 2009), 
and in South Africa, bat-derived CoVs that are closely related to the MERS-CoV 
were found in Neoromicia capensis (Corman et al. 2014). Frequent roost switch-
ing of synanthropic bats may increase the transmission risk of the rabies virus 
to humans (Ellison et al. 2007), particularly when humans try to evict bats from 
houses (Streicker et al. 2013). In general, precautionary measures should be taken 
when handling synanthropic bats: (1) Do not touch or handle bats without gloved 
hands, and (2) in case of a bat bite, immediately proceed to the appropriate facility 
for post-exposure prophylactics. A more detailed treatment of bat-related diseases 
is provided in Chap. 10 (Schneeberger and Voigt 2016).

Bacteria Bacterial infections are one of the primary causes of natural death 
in temperate bats (Mühldorfer et  al. 2012), and many of the documented bacte-
rial strains are relevant to human health. For example, bats may act as a reser-
voir for Bartonella/Burkholderia bacteria, which can be transmitted to humans via 
bed bugs (Saenz et al. 2013). Bat ticks, specifically Argas vespertilionis, collected 
from a human-inhabited building were documented to carry Borrelia, Rickettisa, 
and Ehrlichia species (Socolovschi et  al. 2012). Staphylococcus nepalensis was 
detected in guano samples from mixed M. myotis and M. blythii summer roosts, 
and guano in or near buildings may pose a significant threat to human health 
(Vandzurova et al. 2013). To our knowledge, no direct infection of humans with 
bat-related bacterial strains has been described. Overall, synanthropic bats have 
the potential to transmit zoonotic diseases, yet as outlined by Mühldorfer et  al. 
(2011), there is no evidence, at least for temperate zone bats, that they pose a 
greater health risk to humans than other wildlife species.

Parasites Besides bat-specific ectoparasites, bats may also carry general-
ist ectoparasites that could infect humans as well. For example, bed bugs (Cimex 
spp.) could possibly switch between bat roosts and rooms inhabited by humans 
(Pearce and O’Shea 2007). Bat ticks have been suggested to cause inflamma-
tory responses in humans living in a building with bats in the attic (Labruna et al. 
2014). Ticks associated with bats, and known to bite humans, may also be carriers 
of bacteria or viruses that can cause disease in humans. For example, Carios kel-
leyi collected from residential and community buildings in Jackson County, Iowa, 
tested positive for Rickettsia (Loftis et al. 2005). In addition, some endoparasites 
are threats to human health, yet many depend on an invertebrate host as a vector 

http://dx.doi.org/10.1007/978-3-319-25220-9_10
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for transmission to humans. For example, in Brazil, Leishmania braziliensis occur 
in some synanthropic bat species that serve as a reservoir host for leishmaniasis 
but require sand flies as a vector (Shapiro et al. 2013).

Fungus Environments soiled with large accumulations of guano may harbor 
Histoplasma capsulatum, a fungal pathogen that causes histoplasmosis. When 
roosts in attics, roofs, and other rooms are not cleaned on a regular basis, guano 
accumulates creating a greater risk to humans (Bartlett et al. 1982; Martins et al. 
2000). Humans can develop histoplasmosis after inhaling the microscopic spores 
of H. capsulatum, often while participating in activities that disturb a heavily 
contaminated environment. While histoplasmosis is rarely fatal, infections in 
individuals with weakened immune systems can become severe (Martins et  al. 
2000), yet it is questionable that infections by H. capsulatum can be traced back 
to bats.

14.5.3 � Noise, Odor, Dust, and Activity

Although echolocation calls emitted by most bats in open space are not audible to 
humans, many social vocalizations of bats are noticeable because they are typi-
cally below the 20 kHz auditory threshold of humans. These vocalizations may 
be particularly evident at times of the year when pups use contact calls to attract 
their returning mothers. Such vocalizations combined with noises caused by ter-
restrial locomotion of bat inhabitants, e.g., molossid bats moving through small 
crevices below tin roofs, can be a nuisance for human inhabitants. In addition, 
humans sometimes complain about bat-related odors and dust (Razafindrakoto 
et al. 2011).

14.5.4 � Harmful Bats

Bat feces is suggested to have antigenic properties, causing skin rashes in suscep-
tible humans (Alonso et al. 1998), yet detailed studies are lacking. To our knowl-
edge, there is only one bat species worldwide that could be directly harmful to 
humans. The common vampire bat, Desmodus rotundus, consumes mammalian 
blood but is restricted to Latin America. Although this species feeds primarily on 
livestock animals, e.g., cattle (Delpietro et al. 1992; Voigt and Kelm 2006), vam-
pire bats may feed on sleeping humans not protected inside buildings (Schneider 
et  al. 2001; Carvalho-Costa et  al. 2012). Though vampire bats are not known to 
inhabit occupied buildings, in some areas of South America, these bats inhabit 
abandoned buildings next to occupied houses (Mialhe 2013). Besides the poten-
tial of contracting rabies via a bite, humans can suffer from inflammation, sec-
ondary infections, and blood loss. Overall, humans are not a regular victim for  
vampire bats.
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14.5.5 � Destruction of Buildings Caused by Bat Excreta

Bats may inhabit buildings over many years, or even centuries, and accumulated 
feces and urine may cause severe damage to buildings. For example, bat guano 
was the cause of damage to some buildings of the UNESCO World Heritage 
Centre—Angkor monuments in Cambodia. Apparently, salts in excretions of bats 
are eroding the sandstone of some ancient buildings (Hosono et al. 2006). In most 
cases, structural damage can be prevented by removing accumulations of guano. 
Plastic sheets can be placed over exposed structures to protect them and facilitate 
the removal of urine and guano; in addition, wooden boards placed directly under 
roosts may also be helpful in collecting bat excreta from roosts inside buildings.

14.6 � Conservation of Bats in Buildings: Avoidance, 
Mitigation, and Compensation

The protection of synanthropic bats and their roosts should occur in a tri-level 
hierarchical pattern. First, it should be determined whether bat roosts can be pre-
served, e.g., left untouched, even when construction work is carried out near the 
roost. Second, if construction work affects the roost, developers and architects 
should mitigate the impact on the bat colony (mitigation). Lastly, if bat roosts are 
going to be lost, when, for example, barns are converted into apartments (Briggs 
2004), appropriate compensation measures should be practiced in order to offer 
bats an alternative roost. Although this general approach may not be applicable in 
all countries, particularly when the legal framework is lacking, we will elaborate 
on it in the remainder of the chapter.

Conservation guidelines for bats in buildings have been formulated in vari-
ous countries, including those from the European Union (Table 14.1; Marnell and 
Prsetnik 2010). Conservation networks (Kingston et al. 2016, Chap. 16) could use 
these and our recommendations to develop further region-specific guidelines for 
the protection of local synanthropic bats.

14.6.1 � General Considerations for the Conservation of Bats 
in Buildings

Monitoring of colonies Monitoring of bat colonies, particularly maternity colo-
nies, in buildings needs to be conducted with appropriate care (Kunz and Reynolds 
2003). In some countries, it is legally forbidden to disturb bats in their roosts, par-
ticularly during the maternity period. Kunz and Reynolds (2003) suggested con-
ducting evening emergence counts at roost exits to monitor maternity colonies 
without disturbing bats.

http://dx.doi.org/10.1007/978-3-319-25220-9_16
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Life stages of bats For effective protection of synanthropic bats, it is crucial 
to understand the purpose of the buildings being used as roosts by bats. We have 
outlined several possibilities for why bats use buildings. Since bats may be par-
ticularly vulnerable during their reproductive period and during hibernation, roosts 
that are used by bats during these life stages are of prime concern for conservation 
efforts. The central recommendation for such roosts is to leave them untouched, 
unless gradual deterioration of the building may destroy the roost.

Human occupancy Usually, disturbance of synanthropic bats by humans 
is detrimental to colonies. For example, de Boer et  al. (2013) showed for the 
Netherlands that hibernacula in buildings were more suitable for bats when dis-
turbance by humans was low. However, it should be noted that some studies report 
that synanthropic bats tend to leave roosts when humans no longer use build-
ings, possibly because buildings are no longer heated (Frafjord 2007). In Poland, 
Sachanowicz and Wower (2013) found evidence that the gradual deterioration of 
buildings caused an impoverishment of species in the local assemblages of attic-
dwelling bats. Therefore, human occupancy of buildings may be a benefit in some 
circumstances and a disadvantage in others, depending on the species involved and 
the specific life stages.

Interior of roosts The size and spatial structure of building interiors affects the 
occupancy by synanthropic bats. For example, the availability of sufficient space 
and optimal microclimatic conditions seem to be beneficial for attic-dwelling 
bats, such as the endangered Townsend’s big-eared bat Corynorhinus townsendii 

Table  14.1   List of Web-based resources pertaining to the conservation of synanthropic bats 
(sorted alphabetically according to continent or country)

Country Web address

EU http://www.eurobats.org/sites/default/files/documents/publications/ 
publication_series/pubseries_no4_english_2nd_edition.pdf

France
Australia
Latin America

http://www.sfepm.org/chiropteres.htm
http://ausbats.org.au/#/bats-in-your-house/4569171536
http://www.relcomlatinoamerica.net/images/PDFs/PROTOCOLO.pdf

Germany http://www.nabu.de/tiereundpflanzen/saeugetiere/fledermaeuse/aktivwerden/ 
01506.html

Ireland http://www.batconservationireland.org

Italy http://biocenosi.dipbsf.uninsubria.it/chiroptera/

Netherlands http://www.vzz.nl

Russia http://zmmu.msu.ru/bats/popular/v_dome.htm

UK
UK
UK
UK

http://www.bats.org.uk/pages/bats_and_buildings.html
http://www.bedsbatgroup.org.uk/wordpress/?page_id=3429
http://jncc.defra.gov.uk/page-2861
http://www.naturalengland.org.uk/ourwork/regulation/wildlife/species/ 
bats.aspx

USA
USA

http://www.conservewildlifenj.org/protecting/projects/bat/buildings/
http://www.nature.nps.gov/biology/wns/assets/docs/2012BatsInBuildingsWeb
inarOdegard.pptx

http://www.eurobats.org/sites/default/files/documents/publications/publication_series/pubseries_no4_english_2nd_edition.pdf
http://www.eurobats.org/sites/default/files/documents/publications/publication_series/pubseries_no4_english_2nd_edition.pdf
http://www.sfepm.org/chiropteres.htm
http://ausbats.org.au/%23/bats-in-your-house/4569171536
http://www.relcomlatinoamerica.net/images/PDFs/PROTOCOLO.pdf
http://www.nabu.de/tiereundpflanzen/saeugetiere/fledermaeuse/aktivwerden/01506.html
http://www.nabu.de/tiereundpflanzen/saeugetiere/fledermaeuse/aktivwerden/01506.html
http://www.batconservationireland.org
http://biocenosi.dipbsf.uninsubria.it/chiroptera/
http://www.vzz.nl
http://zmmu.msu.ru/bats/popular/v_dome.htm
http://www.bats.org.uk/pages/bats_and_buildings.html
http://www.bedsbatgroup.org.uk/wordpress/%3fpage_id%3d3429
http://jncc.defra.gov.uk/page-2861
http://www.naturalengland.org.uk/ourwork/regulation/wildlife/species/bats.aspx
http://www.naturalengland.org.uk/ourwork/regulation/wildlife/species/bats.aspx
http://www.conservewildlifenj.org/protecting/projects/bat/buildings/
http://www.nature.nps.gov/biology/wns/assets/docs/2012BatsInBuildingsWebinarOdegard.pptx
http://www.nature.nps.gov/biology/wns/assets/docs/2012BatsInBuildingsWebinarOdegard.pptx
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(Betts 2010) and Rafinesque’s big-eared bat, Corynorhinus rafinesquii (Loeb 
and Zarnoch 2011). In addition to roost compartments, relatively higher ambi-
ent temperatures in roost interiors are also relevant for bats inhabiting buildings 
(Entwistle et  al. 1997). Eptesicus fuscus prefer old buildings with galvanized 
(tin) roofs that are also taller than surrounding buildings, most likely because of 
higher temperatures and wider temperature gradients in these buildings (Williams 
and Brittingham 1997). For some hibernating bats, the size and number of hiding 
places may contribute to the quality of hibernacula in buildings.

Exterior of roosts Synanthropic bats not only depend on suitable roosting 
interiors, but also depend on the quality of the surrounding environment, e.g., for 
foraging or drinking. Suitable roost entrances are critical for some bats, particu-
larly for fast-flying species with a low ability to maneuver (Neubaum et al. 2007). 
For example, Nyctalus noctula roosting in buildings preferred roosts that were 
located at the top floors (Bihari 2004; Cel’uch and Kaňuch 2005). Molossids, e.g., 
Chaerephon ansorgei, and vespertilionids, e.g., Neoromicia capensis, that inhabit 
crevices or narrow spaces under roofs are capable of landing and crawling through 
narrow roost entrances, whereas horseshoe bats, e.g., Rhinolophus clivosus, and 
slit-faced bats, e.g., Nycteris thebaica, require an opening large enough to fly 
through since they usually do not crawl (Monadjem et  al. 2010). Other species, 
such as Pipistrellus pipistrellus, are generalists with respect to their roost prefer-
ence, i.e., they do not prefer specific structural attributes of buildings (Jenkins et al. 
1998). It is also noteworthy that some species may require several roosts in sepa-
rate buildings to establish a stable colony, e.g., greater horseshoe bats, Rhinolophus 
ferrumequinum (Maltagliati et al. 2013), eastern pipistrelles, Pipistrellus subflavus 
(Whitaker 1998), and Eptesicus fuscus (Ellison et al. 2007; O’Shea et al. 2012).

Additional landscape elements, such as vegetation and water sources, have 
been suggested to promote bat populations in cities (Neubaum et al. 2007). Trees 
in the vicinity of roosts were beneficial for pipistrelle bats, Pipistrellus pipistrel-
lus, not only as foraging grounds but also as a protection against aerial preda-
tors, thus enabling bats to increase their nocturnal foraging activity substantially 
by emerging earlier from their roost (Jenkins et  al. 1998). Brown long-eared 
bats, Plecotus auritus, preferred buildings situated close to woodland and water 
(Entwistle et al. 1997; Moussy 2011).

Illumination of buildings at night by streetlamps reduces the quality of roosts 
for some bats. For example, European Rhinolophus ferrumequinum, Myotis 
emarginatus, and Myotis oxygnathus emerged later at sunset from roosts when 
buildings were illuminated. Also, body mass and forearm length were smaller in 
juveniles from illuminated buildings than in those from not illuminated. In the 
worst case, roosts are abandoned after direct lighting of the buildings in which the 
roost is located (Boldogh et al. 2007).

Eviction of bats from roost Eviction of bats from houses is practiced world-
wide, yet it is against the law in some countries. The corresponding authorities 
may grant concessions if there is no alternative to the exclusion of bats from 
roosts. Yet, in many countries, it is a legal requisite that appropriate measures are 
practiced to compensate for the loss of a roost. The permanent closure of roost 
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exits or the destruction of a roost should only be considered during times when 
bats are not using the roost, e.g., outside the reproduction or hibernation period. 
Otherwise, bats may be trapped and killed, which is against animal welfare. If 
roosts are destroyed or closed, bats may switch to alternative roosts (Neilson and 
Fenton 1994). After eviction of Eptesicus fuscus from buildings, females pro-
duced fewer offspring at alternative sites, even though foraging behavior remained 
constant (Brigham and Fenton 1986). Relocation of bats to nearby habitats usu-
ally fails because bats will return to their original roost in most cases. Lastly, 
the permanent eviction of bats from roosts may increase the frequency of roost 
switching. In the case of species with a high prevalence of rabies infections, it is 
predicted that the rabies transmission risk may increase due to more, and possi-
bly undirected, movements of evicted bats around buildings (e.g., Eptesicus fus-
cus, Streicker et  al. 2013). Therefore, roost closures might have unforeseen and 
unwanted side effects for public health.

14.6.2 � Avoiding or Mitigating Roost Losses in Buildings

Roosts are key resources for bats since many species are limited by roost availabil-
ity (Kunz 1982; Kunz and Lumsden 2003). Therefore, a prime conservation effort 
should be the protection of existing roosts and possibly the enhancement of their 
quality. If private or commercial development of buildings is an inevitable con-
flict with synanthropic bats, appropriate measures should be practiced, particularly 
when the species is endangered and/or protected.

Reduction of human disturbance Disturbance of bat roosts in buildings can 
lead to a variety of outcomes, ranging from direct effects when people disturb 
building roosts to indirect effects of noise and light pollution. Bats seem to adjust 
quickly to noise, yet as Rowse et al. (2015) point out, some species may be quite 
sensitive to artificial light. For example, Pipistrellus pipistrellus are quite toler-
ant to artificial light during foraging, but altered their emergence behavior when 
exposed to different light intensities at their daytime roost (Down et  al. 2003). 
Directing artificial light at roost entrances may have a negative impact on bats 
roosting in buildings (Boldogh et al. 2007). Adjusting the regime of artificial light 
near a colony and reducing the light spill from neighboring buildings or street-
lamps should be considered to improve the quality of roosts in buildings.

It is important to recognize that human visits to hibernacula of bats in buildings 
might cause bats to arouse from hibernation, a process that is energetically costly 
and causes bats to deplete their fat depots which increases the risk of starvation 
(Speakman and Thomas 2003). Therefore, it is necessary to cease visitations to 
known hibernacula to minimize impacts on hibernating bats.

The impact of disturbance caused by structural work in buildings, e.g., reno-
vation of roof structures or attics, can have severe consequences for synanthropic 
bats. Indeed, colonies will abandon roosts because of this disturbance. To mini-
mize these negative impacts, construction work should only take place during the 
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annual period when bats are not using the roost. For example, renovation of attics 
used by bats as maternity roosts should only occur after juveniles fledge or when 
colony members leave the roost to hibernate in another location. Minimizing dis-
turbance is also vital for protecting hibernacula, and construction work at these 
sites should not be conducted during the hibernation period.

Conservation of smaller-sized roosts Reduction of the size of bat roosts inside 
buildings might be acceptable if the only alternative is the complete loss of a roost. 
For example, attics or barns are sometimes converted to apartments or houses, respec-
tively. If bats are roosting in an attic or barn, a small part of it could be separated from 
the space used by humans and this smaller space could be designated for the exclusive 
use by bats. However, it should be noted that many bat species roosting in attics or 
barns prefer large and complex structures with some variation in microclimate condi-
tions. A decrease in size and structural complexity of the roost space may lead to the 
gradual decline in colony size and possibly complete loss. Therefore, a reduction in 
roost size may best be accompanied by the provision of new artificial roosts that are 
suitable for the specific bat species (Figs. 14.4 and 14.5; Kunz and Reynolds 2003).

Fig. 14.4   Artificial bat roost 
on the exterior of the Leibniz 
Institute for Zoo and Wildlife 
Research building in Berlin, 
Germany. Nyctalus noctula 
use the roost during autumn
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14.6.3 � Compensating for Lost Roosts

Sometimes it is inevitable that roosts in buildings are lost. The addition of arti-
ficial bat boxes near previously occupied buildings can successfully compen-
sate in some instances. For example, colonies of Pipistrellus pygmaeus and 
Plecotus auritus and various other species throughout Europe benefited from 
artificial roosts when the original roost was destroyed (Anonymous 2006; Beck 
and Schelbert 1999). Artificial bat roosts were also provided for and accepted 
by South American Molossus molossus when roosts in buildings were destroyed 
(Alberico et al. 2004). In North America, Eptesicus fuscus, and Myotis lucifugus, 
will occupy artificial bat boxes installed at buildings that formerly housed colonies 
(Brittingham and Williams 2000). For example, the Bat House Research Project in 
the Kruger National Park, South Africa, has recently provided new accommoda-
tion for bats in the Letaba Rest Camp in an effort to help identify the most effec-
tive way to remove bats from buildings within the park (http://www.krugerpark.
co.za/krugerpark-times-2-11-bat-accommodation-19864.html). Similar attempts to 
provide alternative roosting structures for synanthropic bats have been successful 
in the USA; for example, artificial roosts have been built on the campus of the 
University of Florida to host populations of Tadarida brasiliensis and other native 
bats (https://www.flmnh.ufl.edu/index.php/bats/home/).

These success stories should not imply that roosts in building are replace-
able by artificial structures and that bats will readily occupy artificial roosts. 
Sometimes, for unknown reasons, bats avoid artificial roosts in buildings com-
pletely. Therefore, protection of existing roosts should be considered prior to 
attempting the use of artificial roosts.

Fig. 14.5   Artificial bat roosts embedded into the external insulation layer of a renovated public 
building in Berlin, Germany: a row of artificial roosts within the top floor of a seven-story build-
ing; b detail of a single artificial roost (the horizontal exit is at the base). Such roosts are suit-
able as hibernation sites and stopover sites during migration for noctule bats, Noctula noctula, in 
Europe, yet they may not host as many individuals as buildings before renovation

http://www.krugerpark.co.za/krugerpark-times-2-11-bat-accommodation-19864.html
http://www.krugerpark.co.za/krugerpark-times-2-11-bat-accommodation-19864.html
https://www.flmnh.ufl.edu/index.php/bats/home/
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14.6.4 � Loss of Roosts Due to Demographic Changes  
in the Human Population

Demographic changes in human populations of many countries are turning rural 
areas into areas nearly devoid of humans. As a result, buildings are abandoned 
and, due to a lack of maintenance, deteriorate over time. Shortly after abandon-
ment, many synanthropic bat species benefit, likely due to the reduced disturbance 
by humans. Deserted buildings may provide new roosting structures for bats, e.g., 
for Hipposideros nicobarulae in Myanmar (Douangboupha et al. 2012). Yet in the 
long run, synanthropic bats may vanish from these sites when buildings deteriorate 
(Sachanowicz and Wower 2013). Another effect of demographic changes involves 
movement and thus concentration of people in urban areas. Following this, previ-
ously unused buildings, even in industrial areas, or unoccupied space under the 
roof of buildings are converted into houses or apartments to host the influx of peo-
ple in cities. This may cause losses of roosting opportunities for synanthropic bats. 
In China, like in many Asian countries, a vast number of old buildings are demol-
ished during the process of modernization and this reduces the density of roosts 
significantly for synanthropic bats (Zhang et al. 2009).

14.7 � Examples of Good Practice

14.7.1 � Example 1: The Outreach Program  
for the “Bat-Friendly House”

To conserve synanthropic bat species, education appears to be the prime method 
to protect bat roosts in buildings. Kingston (2016, Chaps. 17 and 18) address vari-
ous outreach approaches. Here, we focus on a specific German-based conserva-
tion program called “bat-friendly house.” Directed by a consortium of nonprofit 
organizations (spearheaded by the “Naturschutzbund” Germany) and federal and 
local authorities and bat conservationists, the program has created a “Bat-Friendly 
House” award for owners who protect bat colonies in their buildings. The major 
goal of this program is to support populations of synanthropic bats by maintaining 
or even enhancing their roosts and to involve local people in the protection of bats. 
Several hundred houses have been deemed bat-friendly in the federal states of 
Hessen, Schleswig-Holstein and Northrine-Westfalia and others in Germany. The 
award ceremony is usually accompanied by a press campaign to raise awareness 
about the conservation of bats that use building as their roosts. Similar programs 
have been initiated in other EU countries.

http://dx.doi.org/10.1007/978-3-319-25220-9_17
http://dx.doi.org/10.1007/978-3-319-25220-9_18
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14.7.2 � Example 2: Renovated Buildings Designated for Bat 
Conservation Purposes

There are many examples of buildings that were renovated successfully to miti-
gate the human–bat conflict or to protect endangered bats. The details of the vast 
majority of these cases have not been documented or published. Yet, it is encour-
aging to read about some of the examples on Web pages or in the gray literature of 
nongovernmental organizations (Table 14.1). The EUROBATS publication, avail-
able at www.eurobats.org, provides examples of successful projects throughout 
Europe. Many of these examples underline that the details of specific conservation 
efforts depend largely on the biology of the target bat species and on local cir-
cumstances, ranging from the building in question, the overall legal framework, 
and the funding agencies and the authorities and persons involved. We have sum-
marized some general features in the next section that might be relevant for many 
synanthropic bats, but we cannot provide a comprehensive overview of all pro-
jects. We have also refrained from repeating case studies that have already been 
described in detail at other places. Instead, we focus on a single example that we 
consider successful because it combines efficiently the practical aspects of pro-
tecting a building for an endangered bat species, preservation and enhancement 
of suitable habitats, and a community-based outreach program to facilitate the 
acceptance and thus continuation of the project beyond the funding period.

Protection of the last maternity colony of greater horseshoe bats, 
Rhinolophus ferrumequinum, in Germany According to surveys over the past 
decades, populations of greater horseshoe bats, Rhinolophus ferrumequinum, are 
on the decline throughout Europe (Ransome and Hutson 2000; Dietz et al. 2009; 
Spitzenberger et al. 2010). Although some parts of southern Germany were inhab-
ited previously by this species, today they are virtually absent from Germany 
except for a maternity colony found in 1992 in Hohenburg, a small village located 
in northeastern Bavaria adjacent to a large military training area. Because of its 
rarity, this species is categorized as “Threatened by Extinction” in the national red 
list of mammals for Germany.

The colony occupied a house and adjacent farm buildings that were built in the 
sixteenth century. Since the 1980s, the buildings have not been inhabited or used 
by humans (Fig. 14.6). Thus, the complex deteriorated and was nearly to the point 
of collapse when the colony was discovered. In 1992, there were 21 adults, yet it is 
unknown how large the colony had been before its discovery.

After initial monitoring of the bats in the colony and their feeding habits, it 
was decided in 2011 to apply for a grant from the European Union which sup-
ports biodiversity projects. Since the funding scheme required complementary 
funding sources, the applicants, namely the “Landesbund für Vogelschutz e.V.,” 
a German NGO devoted to protecting national biodiversity, contacted addi-
tional partners, such as “Bayerischer Naturschutzfonds,” “Bundesanstalt für 
Immobilienaufgaben,” and “Naturpark Hirschwald,” to reach the critical financial 
needs for achieving the conservation plan.

http://www.eurobats.org
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Based on an initial investment made by the German government in support of 
small and intermediate companies during the 2011 bank crisis, it was first decided 
to renovate the complex of buildings after bats left for hibernation in nearby caves. 
Developers were faced with the difficult task of renovating a building complex that 
was protected by law, while at the same time keeping the roosting requirements of 
greater horseshoe bats in mind. The majority of space inside the building complex 
was designated for the exclusive use by bats. The ground floor level of the main 
buildings was transformed into an education center and some office space for the 
project coordinator. The fact that several attics and rooms with variable microcli-
matic conditions were available to the colony likely contributed to the success of 
the project. This is consistent with observations of roost use by greater horseshoe 
bats elsewhere. For example, Maltagliati et  al. (2013) pointed out that the larg-
est nursery colony of Rhinolophus ferrumequinum in Italy uses several buildings. 
The Hohenburg house was carefully modified to include some further beneficial 
structures for bats. For example, workers built a so-called heat dome inside the 
attic where warm, upward moving air is trapped in a structure that is used by bats 
as a roosting site (Fig. 14.6b, c). Furthermore, they created a 1-m2 pool of water 
(3 cm depth) at which bats may drink. Finally, roost exits were constructed in a 
way that prevents predators, e.g., stone martens and domestic cats, from entering 
the building.

Second, it was understood that horseshoe bats would not survive if adjacent 
habitat structures degenerate by forest succession. Therefore, they designed a 
strategy to protect and indeed improve habitat structures for Rhinolophus ferrum-
equinum, a strategy that has proven successful for other synanthropic bats as well 

Fig. 14.6   Building complex that hosts the last maternity roost of the greater horseshoe bat, Rhi-
nolophus ferrumequinum, in Germany (a). Bats most often use the attic of the largest backyard 
building (b). The attic ceiling functions as a heat trap where warm, upward moving air is trapped; 
this is the preferred roosting area for the colony (c)
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(Murphy et al. 2012). Accordingly, a strategic plan was developed to protect forag-
ing habitats and enhance the quality of landscape elements. Efforts are currently 
underway to convert forests into so-called Hutewald, which is an extensive forest 
used by livestock as pasture that resembles a landscape park. Furthermore, nearby 
hibernacula in natural caves were protected by fences to minimize disturbance of 
roosting bats.

Finally, the project includes an outreach program in which local people are 
informed about the progress of the project and engaged in fulfilling the working 
plan. The education center is equipped with monitors to provide real-time views 
into the bat colony. Project workers explain the goals of the project and show vis-
itors the emergence of colony members at dusk. By using bat detectors and by 
direction observation, visitors learn firsthand about the biology of this fascinating 
species. Lastly, interested people might also visit the Web page of the project and 
observe bats using the Webcam (http://www.lbv.de/unsere-arbeit/life-natur-pro-
jekte/life-projekt-hufeisennase.html). Local hotels and restaurants in Hohenburg 
and adjacent villages have benefited from tourists and bat enthusiasts who come 
to this area for the single purpose of learning more about the Hohenburg colony of 
Rhinolophus ferrumequinum.

Since its discovery, the size of the colony has increased fourfold, numbering 94 
adult Rhinolophus ferrumequinum and 37 juveniles in 2013 (pers. comm. Rudolf 
Leitl). Currently, efforts are underway to provide appropriate roosting structures 
in buildings and protected hibernacula in the nearby area to offer a suite of habi-
tats for the expanding Hohenburg colony with the ultimate goal to establish further 
colonies in the larger region.

14.8 � Synthesis and Outlook

Synanthropic bats are, by definition, in close contact with humans. Although this 
contact bears some risks to both humans and bats, it also provides opportunities to 
promote bat conservation. Practical aspects regarding the conservation of synan-
thropic bats in buildings, such as how to construct a new roost or enhancement of 
an existing building roost, should be one part of conservation efforts. From our 
point of view, it is equally important to engage in outreach programs and com-
municate with building owners about the conservation value of synanthropic bats 
(see also Kingston et al. 2016). With respect to research directions, we identify the 
following questions that need to be addressed:

	 1.	 What sensory cues do bats use to explore buildings as potential night or day 
roosts?

	 2.	 What are the differences in microclimate between natural and building roost 
sites, particularly in tropical and subtropical regions?

	 3.	 Is use of building roosts a learned behavior? Do local populations establish a 
tradition of inhabiting buildings?

http://www.lbv.de/unsere-arbeit/life-natur-projekte/life-projekt-hufeisennase.html
http://www.lbv.de/unsere-arbeit/life-natur-projekte/life-projekt-hufeisennase.html
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	 4.	 Is swarming behavior unique to European bats?
	 5.	 Are there differences in the way bats use buildings between areas or conti-

nents where buildings have been in place for many centuries compared with 
areas where humans have only built houses recently.

	 6.	 Do tropical and subtropical bats also use buildings for extended periods of 
torpor, similar to hibernation of temperate zone bats?

	 7.	 What is the selective benefit for synanthropic bats inhabiting roosts in build-
ings compared with conspecifics inhabiting natural roosts? Why do some spe-
cies commonly hibernate in buildings and others do not (see also Rintoul and 
Brigham 2014)?

	 8.	 Do tropical and subtropical bats exhibit similar expansions of geographic 
ranges when thermal benefits of using buildings as roosts are not the predomi-
nant driving benefit?

	 9.	 Is it possible to estimate the monetary value of ecosystem services provided 
by synanthropic bats?

	10.	 To what extent have the geographic ranges of synanthropic bats changed in 
response to the coinhabitation of buildings?

Apart from these basic research questions, we need to engage in larger con-
servation efforts to protect synanthropic bats in developing countries, taking into 
account their ecological and economic value. Synanthropic bats face an uncertain 
future in many temperate countries due to political measures and specific pro-
grams to improve building standards, e.g., building modernization in the European 
Union that involves increased insulation of exterior walls has led to the large-scale 
eviction of synanthropic bats from buildings. We also see a strong incentive to 
coordinate conservation efforts to protect populations of synanthropic bats. Bats 
that live in the same buildings as humans could be ambassadors for the conserva-
tion of bats if other successful outcomes are replicated and publicized to a general 
audience. We conclude that synanthropic bats coinhabiting buildings with humans 
may provide good opportunities to teach humans in both urban and rural environ-
ments about wildlife species, particularly bats.
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Lesiński G, Kasprzyk K, Gryz J (2013) Bats taken by the tawny owl in relation to its roosting 
sites. North-west J Zool 8:247–251

Lewis SE (1994) Night roosting ecology of pallid bats (Antrozous pallidus) in Oregon. Am Midl 
Nat 132:219–226

http://dx.doi.org/10.1098/rspb.2010.2718
http://dx.doi.org/10.1098/rspb.2010.2718


458 C.C. Voigt et al.

Lilley TM, Stauffer J, Kanerva M, Eeva T (2014) Interspecific variation in redox status regulation 
and immune defense in five bat species: the role of ectoparasites. Oecologia 175:811–823

Lisón F, Palazón JA, Calvo JF (2013) Effectiveness of the natura 2000 network for the conserva-
tion of cave-dwelling bats in a Mediterranean region. Anim Conserv 16:528–537

Loeb SC, Zarnoch SJ (2011) Seasonal and multiannual roost use by Rafinesque’s big-eared bats 
in the coastal plain of South Carolina. Conserv Manage East Big-Eared Bats—US Forest 
Serv Gen Techn Rep SRS 145:111–121

Loftis AD, Gill JS, Schriefer ME, Levin ML, Eremeeva ME, Gilchrist MJR, Dasch GA (2005) 
Detection of Rickettsia, Borrelia, and Bartonella in Carios kelleyi (Acari: Argasidae). J Med 
Entomol 43:473–480

Lyster S (1989) The convention on the conservation of migratory species of wild animals (the 
“Bonn Convention”). Nat Resour J 29:979–1000

Maas B, Cough Y, Tscharntke T (2013) Bats and birds increase crop yield in tropical agroforestry 
landscapes. Ecol Lett 16:1480–1487

Maloney SK, Bronner G, Buffenstein R (1999) Thermoregulation in the Angolan free-tailed bat 
Mops condylurus: a small mammal that uses hot roosts. Physiol Zool 72:385–396

Maltagliati G, Agenlli P, Cannicci S (2013) Where and at what time? Multiple roost use and 
emergence time in greater horseshow bats (Rhinolophus ferrumequinum). Acta Chiropterol 
15:113–120

Marnell F, Prsetnik P (2010) Protection of overground roosts for bats. Eurobats Publication 
Series 4, pp 1–57

Martins P, Neves C, Lopes AA, Santos Q, Araújo NN, Pereira M (2000) Histoplasmosis pre-
senting as acute respiratory distress syndrome after exposure to bat feces in a home. Braz J 
Infect Dis 4:103–106

Mazurska K, Ruczynski I (2008) Bats select buildings in clearings in Bialowieza Primeval forest. 
Acta Chiropterol 10:331–338

McAlpine DF, Muldoon F, Forbes GJ, Wandeler AI, Makepeace S, Broders HG, Goltz JP (2002) 
Over-wintering and reproduction by the big brown bat, Eptesicus fuscus, in New Brunswick. 
Can Field Nat 116:645–647

McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell 
University Press, New York

Merzlikin IR (2002) On some causes of bat mortality in Sumy region (Northeastern Ukraine). 
Plecotus 113–115

Mialhe PJ (2013) Characterization of Desmodus rotundus (E. Goeffroy, 1810) (Chiroptera, 
Phyllostomidae) shelters in the municipality of Sao Pedro—SP. Braz J Biol 73:521–526

Michaelsen TC, Tore C, Grimstad KJ, Anonby JE (2004) Noen interessant funn av dagopphold-
ssted for flaggermus. Some interesting discoveries of day roosts for bats in Norway. Fauna 
(Oslo) 57:54–61

Michaelsen TC, Olsen O, Grimstad KJ (2013) Roosts used by bats in late autumn and winter at 
northern latitudes in Norway. Folia Zool 62:297–303

Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of 
bats. Oryx 36:18–34

Mikula P, Hromada M, Tryjanowski P (2013) Bats and swifts a food of the European kestrel 
(Falco tinnunculus) in a small town in Slovakia. Ornis Fennica 90:178–185

Mildenstein T, Tanshi I (2016) Direct exploitation of bats. In: Voigt CC, Kingston T (eds) Bats 
in the anthropocene: conservation of bats in a changing world. Springer International AG, 
Cham, pp 325–363

Mitchell-Jones AJ, Cooke AS, Boyd IL, Stebbings RE (1989) Bats and remedial timber treatment 
chemicals. Mammal Rev 18:93–110

Molinari J, Gutiérrez EE, Asecencão AA, Nassar JM, Arends A, Márquez RJ (2005) Predation 
by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. 
Carribean J Sci 41:340–346

Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of central and southern 
Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg



45914  Bats and Buildings: The Conservation …

Moussy C (2011) Selection of old stone buildings as summer day roost by the brown long-eared 
bat Plecotus auritus. Acta Chiropterol 13:101–111

Mühldorfer K, Speck S, Wibbelt G (2011) Diseases in free-ranging bats from Germany. BMC 
Vet Res 7:61

Mühldorfer K, Speck S, Kurth A, Lesnik R, Freuling C, Müller T, Kramer-Schadt S, Wibbelt G 
(2012) Diseases and causes of death in European bats: dynamics in disease susceptibility 
and infection rates. PLoS ONE 6:e29773

Munshi-South J, Wilkinson GS (2010) Bats and birds: exceptional longevity despite high meta-
bolic rates. Ageing Res Rev 9:12–19

Murphy SE, Greenaway F, Hill DA (2012) Patterns of habitat use by female brown long-eared 
bats presage negative impacts of woodland conservation management. J Zool (Lond) 
288:177–183

Neilson AL, Fenton MB (1994) Responses of little brown myotis to exclusion and to bat houses. 
Wildl Soc Bull 22:8–14

Neubaum DJ, Wilson JR, O’Shea TJ (2007) Urban maternity roost selection by big brown bats in 
Colorado. J Wildl Manage 71:728–736

Nyffeler M, Knörnschild M (2013) Bat predation by spiders. PLoS ONE 8:e58120
O’Keefe JM, LaVoie M (2011) Maternity colony of eastern small-footed myotis (Myotis leibii) in 

a historic building. Southeast Nat 10:381–383
O’Shea TJ, Neubaum DJ, Neubaum MA, Cryan PM, Ellison LE, Stanley TR, Rupprecht CE, 

Pape WH, Bowen RA (2012) Bat ecology and public health surveillance for rabies in an 
urbanizing region of Colorado. Urban Ecosyst 14:665–697

Ormsbee PC, Kiser J, Perlmeter SI (2007) The importance of night roosts to the ecology of forest 
bats. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests: conservation and management. 
John Hopkins University Press, Baltimore, pp 129–152

Passos EC, Carrieri ML, Dainovskas E, Camara M, Silva MMS (1998) Isolamento do virus rab-
ico em morcego insectivoro, Nyctinomops macrotis, no municipo de Diadema, SP (Brasil)—
Isolation of rabies virus in an insectivorous bat Nyctinomops macrotis, in southeastern 
Brazil. Rev Saude Publica 32:74–76

Patterson BD, Dick CW, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat 
flies (Diptera: Streblidae). J Trop Ecol 23:177–189

Pavey CR (1999) Foraging ecology of the two taxa of large-eared horseshoe bat, Rhinolophus 
philippinensis, on Cape York Peninsula. Australian Mammal 21:135–138

Pearce RD, O’Shea TJ (2007) Ectoparasites in an urban population of big brown bats (Eptesicus 
fuscus) in Colorado. J Parasitol 83:518–530

Pfalzer G, Weber C (2007) Invasionen der Zwergfledermaus (Pipistrellus pipistrellus) im 
Stadtgebiet von Kaiserslautern (BRD, Rheinland-Pfalz). Mass invasions of the common 
pipistrelle bat (Pipistrellus pipistrellus) in the city of Kaiserslautern (Germany, Rhineland-
Palatine). Fauna und Flora in Rheinland-Pfalz Beiheft 35:212–219

Poché RM (1975) The bats of National Park W, Niger, Africa. Mammalia 39:39–50
Racey P, Swift SM (1986) The residual effects of remedial timber treatments on bats. Biol 

Conserv 35:205–214
Racey PA, Hutson AM, Lina PHC (2013) Bat rabies, public health and European bat conserva-

tion. Zoonoses Public Health 60:58
Ransome R, Hutson AM (2000) Action plan for the conservation of the greater horseshoe bat 

in Europe (Rhinolophus ferrumequinum). Nature and environment 109, Council of Europe 
Publishing, Strasbourg

Razafindrakoto N, Harwll A, Jenkins R (2011) Bats roosting in public buildings: a preliminary 
assessment from Moramang, Eastern Madagascar. Madagascar Conserv Dev 5:85–88

Reichel-Jung K, Threlfall CG (2016) Urbanization and its effects on bats—a global meta-analy-
sis approach. In: Voigt CC, Kingston T (eds) Bats in the anthropocene: conservation of bats 
in a changing world. Springer International AG, Cham, pp 13–28

Rintoul JLP, Brigham RM (2014) The influence of reproductive condition and concurrent envi-
ronmental factors on torpor and foraging patterns in female big brown bats (Eptesicus fus-
cus). J Comp Physiol B 184:777–787



460 C.C. Voigt et al.

Roby PL, Gumbert MW, Sewell PL, Brewer SW (2011) Characteristics of roosts used by 
Rafinesque’s big-eared bat (Corynorhinus rafinesquii) on camp Mackall, North Carolina. 
Conserv Manage East Big-Eared Bats—US For Serv Gen Tech Rep SRS 145:101–110

Rowse EG, Lewanzik D, Stone EL, Harris S, Jones G (2016) Dark matters: the effects of artifi-
cial lighting on bats. In: Voigt CC, Kingston T (eds) Bats in the anthropocene: conservation 
of bats in a changing world. Springer International AG, Cham, pp 187–207
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