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Abstract. DALI is a practical system that exploits Linked Data to provide fede-
rated entity search and spatial exploration across hundreds of information 
sources containing Open and Enterprise data pertaining to cities, which are 
stored in tabular files or in their original enterprise systems. Our system is able 
to lift data into a meaningful linked structure with explicit semantics, and sup-
port novel contextual search and retrieval tasks by identifying related entities 
across models and data sources. We evaluate in two pilot scenarios. In the first, 
data-engineers bring together public and enterprise datasets about public safety. 
In the second, knowledge-engineers and domain-experts, build a view of health 
and social care providers for vulnerable populations. We show that our ap-
proach can re-use data assets and provides better results than pure text-based 
approaches in finding relevant information, as well as satisfying specific infor-
mation needs. 

1 Introduction 

Smart City applications rely on large amounts of data retrieved from sensors, social 
networks, or government authorities. Such information is often published in open data 
portals to promote transparency and enable innovation, as well as inviting a large 
community to explore how new insights can be derived from existing datasets and 
their combinations. For example, the NYC data platform [19] allows users to explore 
datasets through keyword search or by navigating through their catalogues.  

Cities need to exploit this valuable resource in combination with data from their 
existing enterprise systems. Open data is often published in the form of tabular data, 
with little or incomplete schema information, while enterprise applications typically 
rely on complex relational schemas. There is a clear need to make city-specific infor-
mation easy to consume and combine at low cost, but this proves a difficult task. To 
fulfill the potential of exploiting large volumes of data and obtain insights, in re-
sponse to complex information needs, the following challenges are to be tackled: 
- Data Discovery. How to discover datasets and facts for diffferent user tasks, given 
the complexity of the domain, extreme heterogeneity, diversity of the data, lack of a 
priori defined schemas, and poor semantic catalogues. 
- Data Integration. How can data be understood in order to uncover relationships, in 
face of a dynamic and open environment, the infeasibility of creating a single model 
to cover the entire domain and the poor scalability of N-to-N integration approaches.  
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- Data Exploitation. How to create actionable views to provide relevant insights 
across all data sources, for a broad set of tasks, with minimal user effort?    
In this ocean of data, Linked Data technologies can improve interoperability and dis-
coverability of datasets by reusing standard vocabularies, linking to external sources, 
as well as enabling richer querying [5][17]. In this paper, we present and evaluate 
DALI, a system that puts together existing semantic techniques to offer a lightweight 
and incremental information sharing approach, on top of heterogeneous enterprise city 
data and selected well-formed open data in tabular form, as well as an end-user appli-
cation, to search and consume city data online. Our contributions are:  
 Open Distributed Modeling. Organizations can expose structured and semi-
structured information based on their models (ontologies) of choice. The system in-
gests and integrates data in an incremental manner, lowering the entry cost by import-
ing datasets as they are, and mapping them to other sources as needed.  
 Web of Data Integration. By lifting data to existing models and exploiting overlap 
across ontologies, hidden links across entities are uncovered, in response to user 
searches or explorations in the context of an existing dataset. Also, using LOD URIs 
as target vocabularies enables to uniquely identify and organize topics and to access 
more information about them when needed, fully reusing the Web-wide wealth of 
resources. 
 Fit-for-Use. Search and exploration interfaces allow users to profit from the expres-
sive power of semantic standards, answering to complex information tasks, while 
hiding the complexity behind the data representation and services exposed. 
This paper is structured as follows. Two motivating scenarios, not currently addressed 
without the adoption of semantics, and our approach are presented in Section 2. The 
architecture and components for lifting, mining annotations and contextual retrieval 
across distributed sources are presented in Section 3. Experimental evaluation, discus-
sion and our position against related work are presented in Sections 4 and 5.  

2 Motivating Scenarios and Approach 

We present DALI in the context of two representative industry scenarios, driven by 
IBM solutions, that require tackling the discovery-integration-exploitation challenges 
discussed above. The first is to allow data-engineers using IBM Intelligent Operation 
Center (IOC) [11] enhance enterprise data with open data. The second is to support 
data-engineers build a Safety Net of health and social care providers and community 
services from public sources. This Safety Net can be used to support care workers 
finding services targeted to vulnerable populations in a city, and to create persona-
lized care plans based on patient needs, in the context of IBM Cúram [13]. 

Scenario 1. Enterprise data obtained from IBM IOC in Minneapolis, and stored in IBM 
DB2 relational tables, is enriched with relevant open city data, which comes in the form 
of spreadsheets made for consumption by humans. The enterprise data, pertaining to 
events in the city, describes, among others, a point in time, a location, and a type (e.g., 
police calls reporting different incidents, events in an stadium like a lost child or a spec-
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ties. These views can be exported in a JSON format to feed analytics and optimization 
algorithms to calculate the optimal services and plans, according to the combination 
of the various criteria and constrains on providers specified by the care team. Fig.1.A 
shows a screenshot on the imported views with the providers and attributes relevant to 
care for two needs of a given patient and her family. In this example, the selection of 
hospitals that care for dementia is based (among others not shown) on their average 
spending and total performance score, as stated across different Medicare datasets. 
The criteria for childcare providers are based on a cost range and max. number of 
participants. In Fig.1.B, one can see the combination of providers and their locations 
on the map, in the context of a planning component (that is beyond the scope of this 
paper).  

The first scenario motivated the development of the system, and it is used to show-
case examples in the rest of the paper. The second scenario shows that the system is 
not tailored to a particular use case. The resulting consolidated, multi-faceted, linked 
information is used to bootstrap search and exploration and expose it to users, moving 
from catalogue-based content management to searching and querying for entities and 
their relations across sources, aggregating information into customized views.  

We propose a data-centric approach that consists of 3 steps as explained next. 
Firstly, raw tabular data is ingested and semantically lifted. Secondly, the entities and 
relations are automatically annotated and aligned to well-known vocabularies and 
widely used Linked Open Data (LOD) resources. Thirdly, different spatial views and 
exploration paths are exposed according to dynamically chosen models, other related 
datasets, and interaction paradigms, such as keyword and faceted search. 

3 Architecture and Components 

We present a flexible architecture (Fig. 2), in which the following functionality and 
main contributions are exposed:  
1.  Distributed data ingestion and virtualization (Data Server). Enterprise relational 

data and tabular open data files are accessed and exposed as virtualized RDF via 
SPARQL end points. The distributed nature of RDF allows access to linked infor-
mation across silos and from different agencies. An initial semantic uplift is done at 
this point, to identify entities, labels, datatypes, and geo-temporal data. 

2.  Identification and semantic uplift of entities from open and enterprise data to an 
open set of specified ontologies (Application Server). External LOD sources and on-
tologies are used to annotate the data, providing meaning, context and links across 
sources and entities exposed from open data.  

3.  Contextual information retrieval (RESTful APIs). Efficiently retrieve entities 
based on space and semantics relatedness, given a user query or through explora-
tions of related entities within some geographic proximity. Functionality is exposed 
as RESTful APIs for easy developer consumption (no semantic knowledge re-
quired). 
The Data Server component abstracts from the infrastructure of each source, the 

information is accessed from distributed sources as RDF by exposing virtualized 
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SPARQL end points. The Application Server component then accesses the exposed 
SPARQL end points to extract semantic annotations (using the reference ontologies) 
and schema information. These annotations and schema are stored in a centralized 
context store based on Jena TDB, where different graphs are created and associated 
for each distributed source to keep provenance. The context store is indexed using 
LARQ [16] that enables to perform text searches on all labels, as part of SPARQL 
queries. 

This architecture allows for incremental integration. New datasets, reference ontol-
ogies (annotation sources) can be configured and added at any time. The system au-
tomatically lifts, exposes and annotates new datasets, or if new reference ontologies 
are added, the system aligns each data source with the new models, adding the new 
annotations in the context store. Multiple data repositories are maintained and queried 
in a federated manner using the REST services to exploit DALI semantic capabilities. 

 
Fig. 2. Architecture and component diagram 

For the prototypes and setup used in our experiments, for scenario 1 (public safety in 
Minneapolis), over a hundred datasets (from one customer’s DB2 enterprise database 
and open datasets) were automatically integrated, semantically annotated and linked 
in less than one hour, producing approximately 1 million virtualized data triples in 
two SPARQL end points (one for open data and one for customer data). For those 
datasets, almost 190.000 triples and annotations were extracted and stored in the cen-
tralized and indexed context store. For scenario 2 (NYC Safety Net) 34 datasets were 
ingested into one SPARQL end point, consisting on almost 114,440 data points 
(“rows” of data) and 3.5 million triples. However, any number of SPARQL end points 
can be configured, in order to meet potential scalability requirements. 

3.1 Distributed Data Ingestion and Virtual RDF (Data Server) 

The semantic layer enables de-coupling from the infrastructure of each source. While 
original enterprise data resides in the original relational systems and is accessed 
though virtual RDF, tabular files are automatically downloaded and linked to a rela-
tional database (currently PostgreSQL9.3). As stated in [26] having a semantic repre-
sentation on top of a relational one improves data quality without adding much over-
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head when converting CSV to a simple database schema. The datatypes are deter-
mined by examining the data: numbers, booleans, dates are converted into the correct 
format.  

We use –ontop-Quest[24] as a virtualization technology, although, due to our flexible 
architecture, we can set as many different types of SPARQL endpoints as needed (e.g., 
interfacing directly to other triple stores, or other virtualized Enterprise DBs). Mapping 
files (i.e. files specifying one-to-one mappings between database property values and 
known RDF properties) for the virtualization servers are generated by our system using 
a rule and pattern-based entity extraction mechanism to detect: (1) geographical enti-
ties (using WGS84[29] to create properties for certain header labels with cell values 
corresponding to decimals number between -90 and 90); (2) the column with names for 
instance labels (rdfs:label); (3) columns (properties) with contact information: emails, 
addresses, phone numbers (named using VCARD[28]); (4) temporal properties 
(named using OWLTime[21]). Often, temporal properties (dates, month, year) are not 
part of the table itself but they need to be inferred from the table titles (e.g., Crime Stats 
May 2013); and (5) object properties, those columns for which values are mapped to 
instance URIs instead of literals, as for datatype properties, that’s the case if the col-
umn is a foreign key, or for string (non-numeric) repeating values (below a threshold 
variance percentage) - e.g., city names. In addition to virtualization, this step includes 
geocoding of addresses. 

3.2 Entity Uplift and Linking to the Web of Data (Application Server) 

For each dataset in the virtualized RDF repositories, the schema information is ex-
tracted and stored it in the centralized Context Store: types, datatypes and object 
properties, and their set of possible instances, domains and ranges, together with enti-
ties’ labels, if known, for indexing purposes. While some of the properties could be 
mapped to the W3C vocabularies in the previous step, to create a richer representation 
the entities in the Context Store are annotated and linked to an open set of both gener-
al and domain specific ontologies (that may vary according to the application do-
main). We use index searches and string similarity metrics [2] on the localname or 
label to annotate classes and properties with URIs found in the external sources used 
as annotators, as well as to find owl:sameAs links across instances.  As such, we can 
detect synonyms and interpret acronyms (e.g., an instance named “PTSD” will be 
annotated with “Posttraumatic stress disorder”, a DBpedia [1] redirect of the former). 

Reusing well-known external sources to annotate the data adds significant value in 
terms of interoperability and discoverability, providing global meaning and common 
anchors across otherwise isolated data sources, without requiring the creation of a 
common model. In our scenarios, we use the Integrated Public Service Vocabulary 
(IPSV)[14], schema.org, WordNet[9] and DBpedia, which provides a wide domain 
coverage and geographical information. Specialist domain-knowledge models can 
also be used according to the use case. In particular for the Safety Net scenario we 
added the Social Care Taxonomy extracted from [27].  

The annotations obtained for class labels that correspond to the table titles, often 
indicate the topic of the dataset. They are used to populate the Dublin Core [6] prop-
erty dcterms:subject. Besides string similarity, the structure of the ontologies is used 
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to disambiguate and assign a confidence score to the candidate annotations. For ex-
ample, for the dataset class labeled Minneapolis Crime Data various dcterms:subject 
properties are added to link this term to the DBpedia terms Category:Crime_Data, 
dbp:Crime, and dbp:Minneapolis, as well as the IPSV term Crime, among others1. 
The annotations IPSV:Theft_and_burglary and dbp:Robbery, for a property in this 
dataset labeled Robbery, will have a high confidence score both as a good syntactic 
and semantic mappings, capturing how semantically close the URIs are in the original 
graph (the subject annotation IPSV:Crime is a broader term for the property annota-
tion IPSV:Theft_and_Burglary, similarly dbp:Crime relates to the property annotation 
dbp:Robbery through a common broader term dbp:Criminal_law). These annotations, 
linking the source URI and the annotation URI, and their assigned confidence scores 
are stored in an annotation graph in the Context Store.  

3.3 Contextual Access and Retrieval (RESTful APIs) 

User needs are (a) complex; often, they cannot be expressed in a single query and 
exploration mechanisms are needed; (b) not known in advance; and (c) comprising 
many factors and requiring related information coming from different domains. Con-
textual retrieval requires understanding space, time, identity and links between enti-
ties. Annotations are used to capture the meaning of content in our RDF stores, by 
making explicit how entities are connected. The linkage is based on inference along 
linguistic relations in thesauri, taxonomies (e.g., skos:broader/narrower in IPSV, 
hyper(hypo)nyms in WordNet) and any kind of semantic relationships, such DBpedia 
redirects, dcterms:subject, owl:sameAs, etc. In this sense, two disparate datasets about 
diverse topics, like Ambulance Call Outs and the Register of Fats and Oils Licenses 
may both be relevant in the context of a user correlating the location of ambulances 
call outs and hospitals, because the latter contains the locations of establishments for 
which a license has been granted, where establishments can be filtered by type (hos-
pitals, restaurants, etc.). User search and exploration needs while interacting with the 
data are captured and translated into structured queries. The retrieved information can 
be visualized on tables, maps, charts or as a ranked list of search results and saved 
into views, which can be exported in JSON or RDF. The following contextual APIs 
are exposed through REST services and integrated into a web based UI2. 

Catalogue-Based Dataset and Entity Explorations. Datasets can be explored 
according to the virtualized repositories where they belong (e.g., for Scenario 1 we 
have two repositories for customer data and open data) or by following any given 
reference taxonomical models. In both scenarios, the IPSV hierarchy is selected as the 
reference model for thematic catalogue exploration because of its wide coverage of 
city related topics, and a subset of DBpedia, namely all entities of type 
“PopulatedPlace” and their PartOf taxonomy, is selected as the geographical model. 
For the Safety Net scenario, the domain-specific Social Care Taxonomy is also used 
                                                           
1 IPSV and dbp correspond respectively to http://id.eds.org.uk/subject and http://dbpedia.org/resource/  
2 Videos showcasing DALI: 

https://www.youtube.com/playlist?list=PL0VD16H1q5INAARBVy4GtTSRLN4EWmcqF 
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to catalogue the data. Datasets are organized into a hierarchical view of subcategories 
in the reference model(s), allowing an easy and thematic browsing of the data. The 
alignment is done automatically when the entity representing the dataset type is 
annotated with the model (dcterms:subject). Thus a dataset may sit in more than one 
subcategory, if appropriate. To avoid users having to navigate through empty 
categories, only the part of the catalogue tree for which there are datasets is shown.  

In our Minneapolis scenario, the user can explore all datasets under the IPSV term 
“Safety” and subcategory “Emergencies” to find the Fire and Ambulance call outs 
dataset sit under the subcategory “Fire and rescue services”, the term its been anno-
tated with. The user can also view at a glance all known datasets under a given loca-
tion, e.g., all datasets for USA, state of Minnesota, Minneapolis city. The user can 
click on a dataset to display the tabular data (generated from their representation in 
RDF), explore the annotations, or plot spatial entities in a map. By clicking on any of 
these entities in the map the user can also explore its properties and attributes.  

Semantic Keyword Search and Structured Filtering. Full-text search based on 
LARQ is used to discover entities matching the keyword search. The domain 
knowledge ontologies and models, used to annotate the data, are also used to expand 
the query with lexically and semantically related words. For example, the Crime Data 
dataset is returned as a result for the keyword search Fire. This is because Fire is 
semantically related to Arson, a datatype property in the dataset. Fire is lexically 
annotated with, among others, the IPSV term for Fire IPSV:613 that is related to the 
term IPSV:612, also known as Arson, through the property SKOS:related. Datasets 
are ranked by number of matches (classes, properties and instances), weighted by the 
average syntactic score given to each match. If no matches are found for compound 
terms, they are recursively split into their constituents, e.g., hospital health centers 
would get datasets with results for both hospital and health centers. Each partial term 
is also semantically expanded and results are ranked considering also which part of 
the compound is matched (e.g., a match to health center is ranked higher than one to 
only centers). As per user request the matches can be plotted on the map and their 
provenance (semantic relatedness to the keyword) displayed. 

While keyword search is a popular paradigm to retrieve data, structured queries 
provide the expressivity to specify complex information needs. Keyword search can 
be combined with faceted and spatial explorations in an iterative process, where the 
user can enter keywords and further refine the query by applying faceted filtering on 
the results, or any other dataset of interest. For example, the search for Fire gives 
back several matches in the Police CAD dataset, namely various instance values of 
the object property Problem – Fire Assault, Assist Fire Personnel, etc. – for each 
retrieved police call entity.  The user can select to plot in the map only the entities 
related to Fire Assault, and overlay them with crime locations, from the Crime Data 
dataset, with more than a given number of arson crimes (specified by the user). In this 
case, Arson is a numerical datatype property and thus an equal/greater/lower than 
operator is suggested by the system to create the facet (different facets are suggested 
according to the datatypes –numerical/ boolean- and for object properties with a set of 
possible values). Users can also overlay spatial entities from any dataset in a map 
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using common constructs such a bounding boxes. This is implemented by executing 
an single SPARQL query to filter all entities URIs (and labels) with Wgs84:lat and 
Wgs84:lon values within the bounding box geo points. 

Related Dataset and Entity Search. As datasets are aligned with ontologies through 
annotations, these annotations can be used to identify other datasets closely related to a 
given one, based on topic (datasets share the same or linked topics), content (datasets 
with related properties or content, even in different topics) or entities in common (same 
entities described in different datasets). In our scenario, the user can look for all datasets 
related to the Crime Data dataset with statistics on different kinds of crime. The Police 
CAD dataset is obtained as it is annotated with semantically related topics 
(dcterms:subject property). The user can explore the relatedness graph showing how the 
two datasets are linked, e.g., through the IPSV term Crime and Law enforcement as 
shown in Fig. 3.A for the topic-based criteria. Also, these two datasets are content-based 
related because they have properties or entities sharing the same annotations, as shown 
in Fig. 3.B, the instance value Theft for the property Problem in Police CAD has an 
owl:sameAs link to the DBpedia term Category:Theft, which is a broader term of 
Category:Robbery, an annotation property in Crime Data. The relatedness graphs for 
each annotator source are obtained on demand through a SPARQL federated query to 
find if there is a path (directly) linking annotations from a given dataset to annotations in 
other datasets from the same background source (e.g., DBpedia). Properties extracted 
based on rules, such as LAT/LONG and contact details (as defined in schema.org) are 
not considered relevant to identify related datasets.  

Related datasets are ranked by summing the relevance weights for the relatedness 
graphs (pv) obtained for each criterion. The weight is calculated according to how sig-
nificant the entity-level matches are – i.e., for the content-based relatedness graph: how 
many annotations are matched (num_anns_common) out of the total for the input dataset 
(total_anns_input), as well as, considering the average confidence score (WSc) of each 
matched annotations to assign weighs to the different criteria when combined. The fol-
lowing formula, used to calculate the score (Sc) of a related dataset with respect to an 
input, responds to the intuition that datasets are more similar if they share more labels 
/annotations and share labels/annotations with large weights. The most relevant datasets 
have the highest score:  

4 Experiments 

In the first part, we perform a user study to evaluate the usability of the services ex-
posed by means of the user interface, through a set of tasks that require retrieving 
complex information to create the relevant views. For the second part, we are demon-
strating the effectiveness of the semantic search, whether adding related datasets has 
potential to improve search results, and the semantic cataloguing. We quantify the 
improvement on performance with respect to a non-semantic baseline. It is not our 
purpose to evaluate each step of the process or component independently, but to eva-

Sc _ dataset  Avg(WSc _ anns _ common)*num _ anns _ common
total _ anns _ inputpvi
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luate the relevancy of the results searched over distributed city data lifted into a 
knowledge graph, and in the context of a user-task.  

4.1 Contextual Exploration: Usability  

Evaluation Set-up. To evaluate performance in a more comprehensive manner, we 
have simulated a scenario, where evaluators are asked to use the system in order to an-
swer the given complex information needs (simulating the role of a knowledge engi-
neer). To test the ability of our system to retrieve this information, users are given a 
brief demo of the system and told they can use all the functionality available (Section 
3.3). We have asked 5 users (all IBM employees and IT experts but not knowledgeable 
about semantic standards or the datasets) to retrieve the answers to the tasks in Table 3, 
which may span across more than one dataset. Queries 1-5 are part of Scenario 1, while 
Queries 6-10 are part of Scenario 2. The questions were given by experts of the respec-
tive commercial products with extensive hands-on experience in the domain. The order 
of the queries presented to each user was randomized. We evaluate on:  

 Average number of tasks for which users found satisfactory answers vs. the ones for 
which they gave up or report a wrong result. 

 Time to get the answer. We started a timer once the user was given the question and 
stopped the timer when the user would give up or report an answer. 

 Which explorations and features were used to get the answers and the number of 
failed attempts. 

Results. The results are shown in Table 2. We counted the features the users used to 
answer each query: semantic search (SEM), catalogue exploration (CAT), displaying 
tabular data, matches or entity information (DIS), plotting entities in a map (MAP), 
selection and faceted filtering (FAC), drawing a bounding box to visualize all entities 
within (BOU), and looking for related datasets and relatedness graphs (REL). The 
queries that were answered faster are those for which only one dataset is required to 
find the answer (Q3 and Q10). All users were successful in all tasks, except for Q2, 
Q3 and Q9 for which three different users (one for each query) gave up. For Q2 users 
would often attempt to find the answers in the Police CAD dataset (one of them gave 
up when she could not find it there), while the answer is found by applying faceted 
filtering on the property robberies in the Crime dataset (also returned as a result from 
the keyword search robbery). In Q3, one user gave up before realizing he could apply 
more than one facet filter in the same dataset. For Q9 a user failed to find the read-
mission rates by heart attack property in Medicare Hospital Outcome of Care Meas-
ures, picking instead the general expected readmission rate specified in the Medicare 
Hospital Readmission Reduction dataset. Facet filtering can then be applied to get the 
entities with the minimum readmission rates value.  
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Table 1. Test questions with the minimum n° of relevant sources and navigation links (that is 
the minimum number of steps as determined by the authors to obtain the answers). n° sources Question (min. navigation links to answer them)2 Q1: The sport stadium in Minneapolis near one of the most dangerous pedestrian areas in the USA(4) 2 Q2: Which cafes are near robbery crimes areas in Minneapolis (5)1 Q3: Locations with more than 10 car thefts and 10 arson crimes (3)2 Q4: All places holding both a liquor license and sidewalk permits (2)2 Q5: All police disturbances near the Creekview center (5)3 Q6: Community programs for the elderly population in Queens (5)2 Q7: Readmission rates for hospitals with emergency services (4)1 Q8: Home delivery meal services in the Bronx (2)2 Q9: Non profit hospitals with the minimum mortality rates from heart attack (3) 1 Q10: After school programs for middle school kids (2)

For most tasks, users started by using keyword search or catalogue exploration. 
When catalogue exploration fails, such as when looking for Home Delivered Meals in 
Q8, users will use keyword search to find information hidden in the datasets (in this 
case the entities in the DFTA_Contracts dataset, which value for the object property 
Contract_Type is Home_Delivered_Meals). Besides searching and catalogue explora-
tion, plotting a dataset or search results on the map and displaying entity and tabular 
data were features used in all queries (the latest, often used just to figure out if the 
provenance of the given answer, or search result, is sufficient). Facets were used in 
almost all queries. The query with the second largest number of attempts, Q7, is be-
cause first the boolean property specifying if a hospital has emergency services is 
found in a different dataset to the readmission rates one; and second, it took a while 
for a few users to understand that they can plot in the map the entities in common for 
both datasets, by combining the faceted and co-reference filters. In general, all queries 
related to hospitals took longer in average because of the large amount of clinical 
data, both in terms of number of datasets about hospitals, and the number of proper-
ties within each dataset (more than 50 in some of the Medicare datasets). For these 
cases, search is more efficient than catalogue browsing. 

The bounding box feature was rarely used, even if it is the faster way to answer 
queries such as Q1 (e.g., by drawing a bounding box near the most dangerous pede-
strian area in Minneapolis), or even when the users knew where to look in the map. 
For example for Q5, once the Creekview center was found (in the dataset Minneapolis 
parks and recreations) only one user attempted to find reported disturbances by 
searching in the datasets with entities near by. The reason behind Q5 largest number 
of failed attempts, is because users searched for the answers in both the Police CAD 
and Crime datasets, while only the former has the answer for disturbances. Nonethe-
less, most users would prefer to use faceted search to filter by area (if the property 
exists, such as Queens for Q6), rather than a bounding box. Relatedness was also 
hardly used, even if it is a useful feature for queries such as Q9 (the query that took 
the longest in average) to find all other hospital datasets with related properties to the 
Medicare Hospital Readmission Reduction dataset, e.g., those describing different 
measurements on readmission rates. Users preferred to do a semantic search and ex-
plore all matches till they find the one that is most appropriate. Finally, all queries 
were answered in average in less than 4 minutes, although the deviation between us-
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ers varied greatly (with a max. time of 6 minutes), and required less than 7 steps in 
average (links) to retrieve the answers to a query.  In total, the average of the sum of 
all failed attempts per query for all 5 participants is 7.5. 

Table 2. Results from left to right for each query: the average of the sum of all features used by 
the 5 participants per query; the average num. of links used by user to get an answer; the 
average of the sum of all failed attempts for all 5 participants per query; the num. of users 
which succeeded; the average time to answer the queries and the deviation. 

Features used (for all 5 users per query) Avg. links 
 (For user) 

Failed attemps  
(for all 5 userse per query) 

Success Avg. time Deviation 
 SEM CAT DIS MAP FAC BOU REL Avg 8.6 4.1 9.4 7.6 4.9 0.5 0.8 6.7 7.5 4.7 0:02:37 0:03:04 

4.2 Semantic Search: Performance 

Evaluation Metrics. We compare the precision and improvement on recall of our 
semantic approach with respect to a syntactic baseline based on Lucene full-text 
searches, without semantic expansion. We measure precision (P), defined as the 
number of relevant datasets with respect to the number of datasets found, and recall 
(R), defined as the number of relevant datasets found with respect to the total of rele-
vant datasets. Total recall cannot be measured (no gold standard to evaluate against), 
so we consider as total all the unique relevant datasets found using both approaches, 
and measure the improvement in recall of the semantic approach (Rs) with respect to 

the baseline (RB) as:   

Increasing recall often comes with a decrease in precision, which is affected by the 
quality of the annotations, noisy mappings and ambiguous lexically related words. 
Therefore, precision is also measured for the top N of results: TOP-1, TOP-3 and 
TOP-5, in order to evaluate the efficiency of the ranking. 

Evaluation Set-up 1: Semantic Search. We evaluate the impact of semantic query 
expansion on 20 keywords, obtained randomly from the logs generated after the 
evaluation in 4.1. We distinguish between coverage, correctness and relevance. 
Coverage is measured by counting the number of results. However, this does not 
indicate whether the results are relevant. To evaluate correctness and relevance we 
have engaged three of the previous five evaluators. Each of them has assigned a score 
with a discrete value in {0,1,2} for each datasets retrieved as a result, where: 0 
implies the proposed dataset is based on semantically incorrect assumptions, i.e., due 
to an ambiguous annotation; 1 implies the proposed dataset is based on semantically 
correct justifications, but it is not relevant; and 2 implies the proposed dataset is 
correct and relevant to complement the information of the original dataset. For users 
to judge relevancy they can relate to the tasks presented in Section 4.1. Given the 
three user evaluations, a result was considered correct if at least two evaluators were 
rating it with values higher than 0, and it was considered relevant if at least two 
evaluators were rating it with 2 and the remaining evaluation was not 0. 

R _ improvement  1 
RB

RS
P 

Total _ relevant

Total
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Set-up1 Results: as shown in Table 3. The semantic approach improves the average 
recall of the system by 33%, as it is able to find all the relevant datasets found using 
the baseline approach plus some additional ones, without much loss in precision, from 
70% in the baseline to 69% using the semantic approach. Furthermore, as shown in 
Table 4 the semantic ranking increases the precision from the 0.7 average for the base-
line to 0.9, 0.78 and 0.75 for the top-1, top-3 and top-5 results respectively. In sum, a 
semantic approach helps increase recall, while also increasing the precision for the top 
ranked results, i.e., those users are likely to check. The syntactic errors are mostly due 
to ambiguous terms, e.g., the keyword Fire was mapped to the Fire Station dataset, 
but also to the instance Fire restaurant in the Fats and Oils Licenses dataset. The 
users rated the first match as relevant (2) and the second as incorrect (0). While these 
syntactic mappings were also captured by the semantic component, the inaccurate 
mappings were ranked lower than the more accurate semantic matches. In addition, 
other relevant datasets were only found using the semantic approach, like the Crime 
Stats with the property Arson. In two cases (pedestrian and liquor licenses) the syn-
tactic approach performed slightly better than the semantic. This is because all rele-
vant datasets were syntactically matched, and the semantic extension retrieved inaccu-
rate lexically related results – that although they scored lower they were part of the 
top-5 (as less the 5 datasets were found in total). The semantic approach improves 
over the baseline in particular when asking for schema elements (types, properties) or 
term combinations (e.g., sport stadiums) rather than instance labels. In the latter case, 
both approaches perform the same (returning the instances with matching labels).  

Table 3. Comparison between baseline and semantic approaches Query  Baseline Semantic Approach20 total  Coverage Prec./Recall Coverage Prec./Recall Recall Improvement. TOTAL 3.15 0.70 / 0.66 5.65 0.69 / 1 0.33 
Table 4.   Comparison for the top ranked results  Qi Baseline Semantic Approach Relatedness-TOP3 TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5 #Total #New #Rel Average 0.7 0.69 0.70 0.9 0.78 0.75 7.15 5.45 3.25 

Evaluation Set-up 2: Semantic Relatedness. We evaluate whether our algorithms that 
retrieve highly related tables can also improve the result of searches (by pulling up 
datasets based on their relatedness to top ranked datasets). To measure improvement on 
recall: (1) we find all related datasets for the TOP-3 ranked results in each of the 
previous queries (#Total); (2) from all related datasets, we select only the ones that did 
not appear in the top-5 search results (#New); and (3) from all the #New datasets, we 
select the ones rated as relevant (#Rel);. As before, we randomly ordered the searches 
and asked the 3 users to rate the results between 0-2. A dataset selected as related to a 
given one based on semantically correct assumptions (e.g., common annotations) may 
not be relevant, because the content of the dataset is not specialized enough to give any 
extra information, or the commonalities are not significant. In the same way, a disparate 
dataset from a different topic may be relevant because it describes similar entities from 
different points of view relevant as part of an exploration task. 
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2.16 categories in average (with a maximum of 6 and a minimum of 1), and 28 datasets 
out of 30 have at least one relevant category. The precision for the relevant results in the 
non-filtering approach is 0.54; while in the score-based one is 0.78. The precision for 
the correct results is 0.84 and 0.93 respectively. The loss in recall is 0.76 on the score-
based approach if we consider the non-filtering one as perfect recall (1). As an example, 
to specific categories may not be relevant if they are too specific, such as Swimming 
pools as the category for the dataset Leisure Facilities, or too general, like Leisure and 
culture. For this dataset, Leisure center was rated as the relevant category.  

5 Related Work, Discussion on Usefulness and Future Lines 

We address the timely issue of data consumption, exploration, search and linking in 
the context of cities, through a practical approach based on Linked Data. There are a 
number of unique challenges and opportunities for the IR and semantic communities 
in order to make heterogeneous city data searchable, and to address complex informa-
tion needs that require analyzing the relationships between entities in context. In this 
light, we propose a lightweight and incremental information sharing approach di-
rected towards leveraging the information spaces defined by the LOD datasets and 
city data of diverse ownership, to give meaning to the latter.  

Various publishing platforms exist for automating the lifting of tabular data into 
semantic data, and interlinking datasets with existent LOD datasets [25][18]. In [18] 
Google Refine is used to allow expert users to clean and export tabular data into RDF 
through a reconciliation service extended with Linked Data sources. Following the 
tools and recommendations by the W3C used for automatically converting tabular 
data (mostly CSV) and relational tables into RDF[12][10][7], in [26] a set of tabular 
data from the Norwegian directorates FactPages is transformed into a LOD dataset. 
The DataLift project [25] goes a step forward by transforming the raw RDF extracted 
from the source format to well-formed RDF by mapping to selected ontologies. These 
approaches are based on the assumption that each row is an entity and columns are 
RDF properties for the first RDF conversion; In [25] the user is asked to input a set of 
vocabularies to describe the lifted data and the target RDF is then generated through a 
set of SPARQL construct queries. In QuerioCity[17] we proposed a platform to pro-
vide semantic context for city data and metadata by following a centralized and in-
cremental graph-based approach. The focus is on data-view manipulation by different 
publishers while tracking provenance. However, the drawback is the significant added 
cost on indexing this data. Unlike previous approaches, DALI presents a light-weight 
approach that considers the distributed nature of RDF and it is able to ingest any cus-
tomer or open data available, as long as it follows a tabular representation. The data is 
(1) virtualized into RDF, extracting spatial/temporal entities, datatypes and object 
properties for each entity (row), even if often entities are not linked (no foreign keys); 
(2) exposed and contextualized with any reference ontologies and models of choice in 
the Web of data; and (3) combined in arbitrary ways across data sources, through 
semantic services that support users, without knowledge of SPARQL, to refine explo-
rations and federated queries. 
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Extracting structured data from tables on the Web and semantic search has also at-
tracted interest from search engines [26][3]. In [26] columns in web tables are asso-
ciated with types (automatically extracted from web pages), if the values in that col-
umn can be matched as values of the type. In [22] table rows containing entities of 
specific types derived from an ontology are automatically annotated. In [3] an ap-
proach is proposed for finding related tables on the Web based on: (1) Entity com-
plement: union of entities with similar schemas; (2) Schema complement: joins of 
columns about the same entities. The BBC has annotated its world service radio arc-
hive with DBpedia topics. These associations, stored in a shared RDF store, are used 
to improve search and navigation within the archive [23]. Different from these works 
we propose an application that covers not only the annotating and semantic querying 
across a diverse set of heterogeneous, distributed enterprise and well-formed open 
tabular data for cities, but also the lifting of these data silos to Linked Data. 

There are no tools that we can use for a meaningful comparison and we still are a 
long way from defining standard evaluation benchmarks to evaluate search methods for 
urban data platforms and comprising relevance judgment of similar datasets. From in-
formation platforms, such as DubLinked.ie, one can obtain the most common keyword 
searches and most downloaded datasets. More effort is needed to better capture the 
users’ intention and experience while using the tool, in the context of complex real tasks 
that involve more complicated manipulation and combinations of datasets. Illustrated in 
the context of two real commercial use cases, our user-based evaluations are a first step 
to probe the feasibility and effectiveness of a knowledge-mining prototype to query 
entities distributed across datasets, without the need to ETL data. We also conducted a 
small-scale study with experts from the urban planning and the health domains to fur-
ther validate the system. The experts were three city planners from Dublin City Council 
and three staff members from the Department of Nursing and Midwifery from Trinity 
College Dublin, evaluating scenario 1 and 2 respectively. We have used the widely cited 
methodology from Davis[4] on predicting how much people will use a new product. 
Given our focus on functional components, rather than user interfaces, and the higher 
importance of usefulness compared to ease of use (also reported in [4]), we report num-
bers on the former. In Table 5 we report combined numbers since there were no signifi-
cant differences between the scenarios. Overall, users gave positive scores (avg. =5.85, 
on a scale of 1-7). Critically for the goals of our system, users gave the system a high 
score for allowing them to work more quickly. 

Table 5. Questions and usefulness scores [1-7] for both scenarios.   Quality of work 6 Control over work 5.5 Work more quickly 6.5 Critical to my job 5.5 Increase productivity 6 Job performance 5.5 Accomplish more work 6 Effectiveness 5 Makes job easier 6 Useful 6.5  
 

There is an abundance of research to be pursued: off-the-shelf co-reference tools 
can be used to make links more dense, as long as they do not depend on the availabili-
ty of training data; incorporating social media data; exploring interactive ways to 
build NLP queries, exploiting user feedback to improve the machine-generated rank-
ing, and supporting dataset discovery in the Web of Data using data-hubs such as 
CKAN.net. 
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