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Abstract. The amount of scholarly data available on the web is steadily increas-
ing, enabling different types of analytics which can provide important insights 
into the research activity. In order to make sense of and explore this large-scale 
body of knowledge we need an accurate, comprehensive and up-to-date ontolo-
gy of research topics. Unfortunately, human crafted classifications do not satis-
fy these criteria, as they evolve too slowly and tend to be too coarse-grained. 
Current automated methods for generating ontologies of research areas also 
present a number of limitations, such as: i) they do not consider the rich amount 
of indirect statistical and semantic relationships, which can help to understand 
the relation between two topics – e.g., the fact that two research areas are asso-
ciated with a similar set of venues or technologies; ii) they do not distinguish 
between different kinds of hierarchical relationships; and iii) they are not able 
to handle effectively ambiguous topics characterized by a noisy set of relation-
ships. In this paper we present Klink-2, a novel approach which improves on 
our earlier work on automatic generation of semantic topic networks and ad-
dresses the aforementioned limitations by taking advantage of a variety of 
knowledge sources available on the web. In particular, Klink-2 analyses net-
works of research entities (including papers, authors, venues, and technologies) 
to infer three kinds of semantic relationships between topics. It also identifies 
ambiguous keywords (e.g., “ontology”) and separates them into the appropriate 
distinct topics – e.g., “ontology/philosophy” vs. “ontology/semantic web”. Our 
experimental evaluation shows that the ability of Klink-2 to integrate a high 
number of data sources and to generate topics with accurate contextual meaning 
yields significant improvements over other algorithms in terms of both preci-
sion and recall. 
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1 Introduction 

The amount of scholarly data available on the web is steadily increasing, enabling 
different types of analytics which can provide important insights into the research 
activity. Increasingly, Semantic Web standards are being used to represent this com-
plex data and, as a result, we have seen the emergence of a number of bibliographic 
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repositories in the Linked Data Cloud [1, 2, 3] and a variety of ontologies to describe 
scholarly data, including SWRC1, BIBO2, BiDO3, AKT4 and FABIO5. The semantic 
enhancement of scholarly articles, known as semantic publishing [4], is also becom-
ing an important topic, attracting the interest of major publishers and leading to the 
formation of new communities (e.g., FORCE116), workshops (e.g., Linked Science at 
ISWC, Sepublica at ESWC, SAVE-SD at WWW), and challenges (e.g., the ESWC 
Semantic Publishing Challenge7).  

Indeed, today’s scientific knowledge is so vast that scientists necessarily tend to 
specialize in relatively narrow fields, thus potentially missing important links across 
different fields and/or ending up reinventing solutions already available in other do-
mains. However, there is growing consensus that semantic technologies can help to 
overcome this problem by improving our ability to discover, query, explore, annotate 
and visualize research information on the web [4, 5, 6, 7, 8, 9, 10]. Nonetheless, we 
still face some important technical challenges before this vision can be realized. These 
crucially include the problem of identifying and modelling the various relationships 
that exist between components of the research environment. While this task is rela-
tively easy when describing the relationships between real world entities, such as 
authors and organizations, it becomes much harder when taking in consideration ab-
stract concepts, such as the notion of research topic. For example, while it is easy to 
retrieve all the co-authors of Enrico Motta, it is much more difficult to identify all the 
papers of Enrico Motta which are relevant to research on the Semantic Web or one of 
its sub-areas. For this reason many popular systems for the exploration of research 
data, such as Google Scholar8, Microsoft Academic Search9 and Scopus10, sidestep 
the challenge of identifying research topics and linking them to other relevant re-
search entities, and simply use keywords as proxy. Unfortunately, this purely syntac-
tic solution is unsatisfactory, as it fails i) to distinguish research topics from other 
keywords which can be used to annotate papers; ii) to deal with situations where mul-
tiple labels exist for the same research area; iii) to deal with the fact that a keyword 
may denote different topics depending on the context, and iv) to model and take ad-
vantage of the semantic relationships that hold between research areas, treating them 
instead as lists of unstructured keywords.  

The traditional way to address the problem of identifying and structuring research 
topics has been to adopt human-crafted taxonomies, such as the ACM Computing 
Classification System11. Unfortunately, as we discussed in [11], this solution also 
presents a number of problems. First, building a large taxonomy of research areas 
requires a large number of experts and is an expensive and lengthy process.  
                                                           
1 http://ontoware.org/swrc/ 
2 http://bibliontology.com. 
3 http://purl.org/spar/bido 
4 http://www.aktors.org/publications/ontology 
5 http://purl.org/spar/fabio 
6 https://www.force11.org 
7 https://github.com/ceurws/lod/wiki/SemPub2015 
8 https://scholar.google.com 
9 http://academic.research.microsoft.com/ 
10 http://www.scopus.com/ 
11 http://www.acm.org/about/class/2012 
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For example, the 2012 version of ACM taxonomy was finalized fourteen years after 
the previous version. Hence, by the time these taxonomies are released they tend to be 
already obsolete, especially in fields such as Computer Science, where the most inter-
esting topics are the newly emerging ones. Moreover, these taxonomies are very 
coarse-grained and usually represent wide categories of approaches, rather then the 
fine-grained topics addressed by researchers. For example, in the ACM Classification, 
the Semantic Web area is characterized as “Semantic web description languages” and 
has only two sub-areas: “OWL” and “RDF”. Finally, these taxonomies are ambi-
guous, since the semantics of their links is not specified.  

For these reasons, it is our view that building large-scale and timely taxonomies of 
research topics is a task that needs to be tackled through automatic methods and in 
2012 we developed Klink [11], an algorithm which takes as input large amounts of 
scholarly metadata and automatically generates an OWL ontology containing all the 
research areas mined from the input data and their semantic relationships. This ap-
proach was demonstrated to work very well in comparison with the state of art and the 
ontology produced by Klink has been used to provide a comprehensive semantic topic 
network for Rexplore [5], a novel system which integrates semantic technologies, 
statistical analysis and visual analytics to provide effective support for making sense 
of scholarly data. In particular, the ontology generated by Klink enhances semantical-
ly a variety of data mining and information extraction techniques, and improves 
search and visual analytics. A variation of Klink was also used in the field of recom-
mender systems to improve significantly the performance of a state of the art content-
based recommender [12].   
However, both Klink and similar solutions – e.g., [8, 13, 14], suffer from a number of 
limitations. First, they only consider the graph of co-occurrences between keywords 
[11] and/or direct semantic relationships [12], thus ignoring relevant indirect statistic-
al and semantic relationships – e.g., the situation where two topics are related to the 
same conferences or associated to the same standards, knowledge which can improve 
the robustness and the performance of a solution, especially in the presence of noisy 
data. Moreover, they fail to deal with keywords which can denote different topics 
depending on the context in which they are used – e.g., “java” can be a programming 
language, but also an Indonesian island. 

To address these problems we have developed Klink-2, an evolution of the Klink 
algorithm that addresses these limitations and provides a much better performance 
than Klink. Klink-2 introduces a number of new features, including: 

• The ability to take as input any kind of statistical or semantic relationship 
between scholarly keywords and other entities – e.g., authors, organiza-
tions, venues and others.  

• The ability to handle ambiguous keywords characterized by a noisy set of 
relationships – e.g., “java”, by splitting them into multiple topics and labe-
ling them correctly with their highest level super topic – e.g., “java (pro-
gramming)” and “java (Indonesia)”. 

• The ability to scale up to large interdisciplinary ontologies, by being able to 
generate the topic ontology incrementally on different runs, rather than hav-
ing to process all the data at the same time.  
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In the rest of the paper we will describe Klink-2 in detail, illustrating the main fea-
tures of the algorithm and analyzing its performance in comparison to a number of 
alternative algorithms. In particular, we will show that the ability of Klink-2 to inte-
grate a high number of data sources and to generate topics with accurate contextual 
meaning yields significant improvements over the other tested algorithms in terms of 
both precision and recall. 

2 The Klink-2 Algorithm 

2.1 Data Model 

Many classifications of research areas simply take in consideration a single hierar-
chical relation, for example the 2012 ACM Classification uses skos:narrower to build 
a taxonomy of topics in computer science. However, as we discussed in [11], this is a 
limited solution and therefore our model12, which builds on the BIBO ontology13, uses 
a richer set of relationships: 

1) skos:broaderGeneric. This is used when we have solid evidence that a topic is a 
sub-area of another one – e.g., “linked data” is a sub-area of “sematic web”.  

2) contributesTo (sub-property of skos:related). This indicates that while a topic, x, 
is not a sub-area of another one, y, its research outputs contribute to research in 
y to the extent that, for the purposes of querying and exploration, it is useful to 
consider x as ‘under’ y. For example, research on “ontology” contributes to re-
search on “semantic web”.  

3) relatedEquivalent (sub-property of skos:related). This indicates that two topics 
can be treated as equivalent for the purpose of exploring research data – e.g., 
“ontology mapping” and “ontology matching”. 

Skos:broaderGeneric and relatedEquivalent are necessary to build a taxonomy of 
topics and to handle different labels for the same research areas, while contributesTo 
provides an additional relationship that can be used to assist the user in browsing 
research topics [5] and analyzing research data –e.g., for identifying topic-based re-
search communities [10]. 

2.2 Overview of Klink-2 

Klink-2 takes as input a set of scholarly keywords and their relationships with a varie-
ty of entities, including research papers, venues, authors, and organizations. The out-
put is a populated OWL ontology describing the semantic relationships between the 
research topics identified from the set of keywords and the other data provided as 
input. This semantic network can then be used for improving the processes of search-
ing and performing analytics on scholarly data [3, 5, 6, 7]. As in the case of the Klink 
algorithm, Klink-2 generates an ontology of research topics linked by the three rela-
tionships introduced above. To support those scenarios where we simply wish to gen-
                                                           
12 http://kmi.open.ac.uk/technologies/rexplore/ontologies/BiboExtension.owl 
13 http://purl.org/ontology/bibo/ 
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Figure 1 shows the difference between Klink and Klink-2 in terms of relationships 
processed to create the topic network. Klink integrates a number of external sources, 
but only in order to produce an unbiased co-occurrence graph, which is the only 
knowledge used by the inference process. Klink-2 can instead exploit multiple rela-
tionships and thus take advantage of the rich network of interconnections between the 
different types of research entities, including papers, authors, venues, and technolo-
gies.  

The Klink-2 algorithm is structured as follows: 

1. Each pair of keywords whose number of common relationships with other 
scholarly entities is higher than a threshold is analyzed to check whether a hie-
rarchical relationship between the components of the pair can be inferred. If 
this is the case, skos:broaderGeneric and contributesTo relationships are de-
rived. 

2. Each keyword is analyzed in order to detect possible multiple meanings asso-
ciated to it. The keywords that seem ambiguous are split into multiple topics 
with unique meaning, which are then compared to the other keywords, possi-
bly inferring new relationships.  

3. The keywords which appear to be very similar are merged together and the re-
latedEquivalent semantic relationships are inferred. As in the previous case, 
the aggregated keywords are then compared to the already computed ones.  

4. Step 2 and 3 are repeated until no new keywords are split or aggregated. Then 
Klink-2 filters out the keywords that do not represent research areas, fixes the 
loops in the topic network, and generates the triples describing the semantic re-
lationships between topics. 

In what follows we will describe the different phases of the algorithm. We will dis-
cuss only briefly the steps already present in the original Klink algorithm – e.g., filter-
ing out keywords which do not denote research areas, to focus instead on the novel 
solutions. 

2.3 Inferring Semantic Relationships 

Klink-2 examines each pair of keywords which share a minimum number of relation-
ships to the same scholarly entities and infers the semantic relationships discussed in 
Section 2.1 by means of three metrics: i)  ܪோሺݔ,  ሻ, which uses a semantic variation ofݕ
the subsumption method to estimate whether a hierarchical relationship exists be-
tween two topics; ii) ோܶሺݔ, ሻݕ , which uses temporal information also to estimate 
whether a hierarchical relationship exists between two topics; and iii) ܵோሺݔ,  ሻ, whichݕ
estimates the similarity between two topics. The first two are used as statistical indi-
cators to detect skos:broaderGeneric and contributesTo relationships, while the other 
is used to infer relatedEquivalent relationships.  

These metrics are computed for each semantic or statistical relation R linking key-
words x and y to a set of entities. The keywords (e.g., “semantic web”) are mapped to 
entities (e.g., dbpedia:Semantic_Web) by using DBpedia spotlight14. Of course, the 
                                                           
14 spotlight.dbpedia.org 
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selected relationships should have a minimum degree of quality and number of linked 
entities to be analyzed statistically. Hence, in some cases, it can be convenient to ag-
gregate a number of similar semantic relations. For example, DBpedia uses a variety 
of different relations to connect topics to prominent authors in a discipline, such as 
dbpprop:field, dbpprop:fields, dbpedia-owl:knownFor. We can thus consider these 
relations as equivalent for our purposes, so as to improve the number of linked entities 
and the robustness of the statistical inferences. 

2.3.1   Hierarchical Relationship Indicators 
A classical way to infer a hierarchical relationship between two entities, which can 
occur in a set of documents, is the subsumption method [13]. According to this ap-
proach, term x subsumes term y if P(x|y) ≥ α and P(y|x) < 1, with α usually set to 0.8. 
The original Klink improved on this method by considering the similarity between the 
distributions of co-occurring keywords as well as their string similarity. Klink-2 gene-
ralizes this approach by taking also in consideration the relationships linking key-
words x and y to common entities. It does it by computing the conditional probability 
that an entity e linked to x by relation R will also be linked to y by the same relation. 
For example, a relationship between “semantic web” and “linked data” can also be 
inferred by the probability that an author working in one of these topics would also 
work in the other, or that a tool used in one of these topics would be used in the other. 
Hence, for every relation R, Klink-2 computes two statistical indicators (ܪோሺݔ, ,ݔሻ and ோܶሺݕ -ሻ) that are used to detect a hierarchical relationship and then establish its naݕ
ture. 

Our approach distinguishes two classes of relations: quantified and unquantified 
ones. An unquantified relation is a triple in the form of rel(t, e) linking a topic t to an 
entity e. For instance, this could be a triple of the form isAbout(p, t) from the SWRC 
ontology, which states that a publication p is about topic t. A quantified relation is a 
quadruple in the form of rel(t, e, q), where q quantifies numerically the intensity of 
the relationship. For example, haveCitationInTopic(a, t, 25) points to the fact that 
author a has 25 citations in topic t. The former are usually queried directly from RDF 
repositories, while the latter are inferred from metadata.  

Using these input data we compute the statistical indicator ܪோሺݔ, -ሻ between keyݕ
words x and y for relation R with the following formula: 

,ݔோሺܪ  ሻݕ ൌ ቀூೃሺ௫,௬ሻூೃሺ௫,௫ሻ െ ூೃሺ௬,௫ሻூೃሺ௬,௬ሻቁ · ܿோሺݔ, ሻݕ · ݊ሺݔ,  ሻ   (1)ݕ

The first factor gives the direction of the possible hierarchical relationship, while 
the others give the intensity. ூೃሺ௫,௬ሻூೃሺ௫,௫ሻ is the conditional probability that an element asso-

ciated with keyword x will be associated also with keyword y. If R is an unquantified 
relation, ܫோሺݔ, -ሻ  is simply the number of elements associated with both x and y acݕ
cording to relation R. For example, in the case of isAbout(p, x), ܫோሺݔ,  ሻ is equal toݕ
the number of co-occurrences between x and y,  while ܫோሺݔ, ,ݕோሺܫ ሻ andݔ  ሻ indicateݕ
the total number of publications in x and y. If R is a quantified relation, we should also 
take into account the intensity of the relationship. In this case, ܫோሺݔ,  ሻ is computedݕ
as the summation of the minimum values quantifying the two relationships connecting 
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x and y with e. For example, in the case of the relationship haveCitationInTop-
ic(a,x,c), ܫோሺݔ,  ሻ is the sum of the minimum numbers of citations in x and y receivedݕ
by each author, while ܫோሺݔ, ,ݕோሺܫ ሻ andݔ ሻݕ  are respectively the sum of the total 
number of citations in x and in y received by all authors.  ܿோሺݔ,  ሻ measures the semantic similarity of x and y and is computed as the cosineݕ
similarity between the two vectors in which each index represents the keyword k, which 
has in common with x and/or y a set of instantiations of a relation, say R, with the same 
scholarly entities, with the values equal to ܫோሺ݇, ,ோሺ݇ܫ ሻ for x andݔ  .ሻ for yݕ

Finally ݊ோሺݔ, -ሻ defines the string similarity between two keywords. It is comݕ
puted as the linear combination of a number of string metrics based on the longest 
common sub-string, the percentage of identical words, the number of characters in 
common, the presence of acronyms, and so on.  

When ܪோሺݔ, ሻݕ ൒ -ோ we infer that, according to relation R, x is a candidate to beݐ
coming a sub-area of y, while when ܪோሺݔ, ሻݕ ൑ െݐோ, x is a candidate to becoming a 
super-area of y. The value of ݐோ can be set manually by analyzing the trade-off be-
tween precision and recall or alternatively it can be estimated by running the algo-
rithm on training data and using the Nelder-Mead algorithm [12] to choose the thre-
sholds which maximize the performances (usually in term of F-measure). 

It is interesting to note that the formula used by the original Klink algorithm [11] 
can be considered (except for the improved ݊ோሺݔ, ,ݔோሺܪ ሻ component) as aݕ -ሻ indiݕ
cator, using as relation isAbout(p,x). 

In many cases, it is also useful to consider the diachronic component of the rela-
tionships between two keywords, e.g. how their relationship evolved in time. For 
example, in the case of isAbout(p,x), it can be argued that after some time certain 
topics may stop to co-occur simply because their association has become implicit. 

This may cause a statistical indicator, which does not consider the diachronically 
dimension, to miss some important semantic relationships. Moreover the temporal 
dimension is useful to understand better the nature of the relationship linking two 
topics. The fact that the relationship was strong when one of the topics was young 
may point to the fact that this topic actually derived from the other and thus is truly 
one of its sub-areas. For this reason, Klink-2 computes also ோܶሺݔ, -ሻ, a temporal verݕ
sion of ܪோሺݔ,  ሻ, which gives more weight to the information associated with the firstݕ
years of x. This is calculated using a variation of formula (1) in which ܫோሺݔ,  ሻ isݕ
computed by weighting the number and intensity of the relationships in each year 
according to the distance from the debut of x. The weight is computed as w(year, x)= 
(year - debut(x) +1) –γ, with γ>0 (γ=2 in the prototype). 

2.3.2   Inferring Hierarchical Semantic Relationships 
A hierarchical relationship between two topics (represented by the keywords) is in-
ferred when a sufficient number of indicators, i.e., a number above a given threshold, 
agree on the direction of the relationship. The precise threshold depends on the de-
sired precision/recall trade-off. In some rare cases the situation may arises where indi-
cators provide conflicting information – i.e., both x > y and y > x are suggested. In 
such a case we compute the difference between the two groups and go for a ‘majority 
vote’, assuming the difference is higher than the given threshold.  
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The nature of the inferred relationship is assessed by Klink-2 using a rule-based 
approach. This method takes into consideration a variety of factors, including the 
number of publications associated to x and y, the number of entities related to them, 
their debut years (i.e., the years in which the keywords first appeared), and the preva-
lence of ோܶሺݔ, ,ݔோሺܪ ሻ indicators versusݕ  ሻ ones. If x is older, associated with moreݕ
entities and there is a prevalence of ோܶሺݔ, ሻݕ  indicators, Klink-2 will infer a 
skos:broaderGeneric relationship. If these conditions do not apply, it will infer a con-
tributesTo relationship. If the choice is unclear, it will be conservative and generate a 
contributesTo relationship since it provides a less risky assumption. A 
skos:broaderGeneric(x,y) relationship is transitive and implies that every publication 
tagged with x should also be tagged with y. Hence it is important to minimize as much 
as possible errors with the derivation of skos:broaderGeneric relationships, which 
will adversely affect the exploration of the scholarly data.  

At the end of each main analysis loop, Klink-2 will also run the fixLoops() pro-
cedure, which detects loops in the graph of skos:broaderGeneric relationships and 
breaks them by eliminating the relationships with weaker statistical indicators.  

2.3.3   Inferring RelatedEquivalent Relationships 
Klink-2 uses the ܵோሺݔ,  .ሻ similarity metric to infer relatedEquivalent relationshipsݕ
We compute ܵோሺݔ, ,ݔሻ by normalizing ܿோሺݕ  ሻ with respect to the similarity betweenݕ
the super-areas and the siblings of x and y, according to the previously inferred hierar-
chical relationships. For this reason the relatedEquivalent relationships start to be 
inferred only after the first loop. The rationale is that for considering two elements in 
a taxonomy near enough to be merged they must be not only similar in absolute 
terms, but also more similar to each other than their super areas and siblings are to 
each other. Hence, we adopt the following formula: 

 ܵோሺݔ, ሻݕ ൌ ௖ೃሺ௫,௬ሻ௠௔௫ቀ௖ೃೞೠ೛೐ೝሺ௫,௬ሻ , ௖ೃೞ೔್ሺ௫,௬ሻቁାଵ                       (2) 

This formula is an evolution of the one used in Klink and proved to work better 
both on scholarly domains and on other domains [12]. Each pair of keywords which 
receives enough positive indicators is then linked by a similarity link. These pairs are 
then given in input to a bottom-up single-linkage hierarchical clustering algorithm 
[14], labeled in the pseudocode as mergeSimilarKeywords(), which uses as distance 
criterion a linear combination of the ܵோሺݔ,  ሻ indicators. For each pair of keywordsݕ
clustered together, Klink-2 infers a relatedEquivalent relationship. The keywords in 
the cluster are then merged by aggregating all their relationships and will be re-
analyzed in the next loop to infer additional relationships 

2.4 Handling Ambiguous Keywords 

The assumption that each keyword can be mapped to only one topic is unsafe, even 
when we consider keywords which were directly associated to a paper by the authors 
themselves. Our analysis on a subset of the Scopus dataset revealed mainly three cat-
egories of ambiguous keywords: 
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1. Terms which happen to have two or more different meanings, e.g., “java”, the 
programming language, and “java”, the island.  

2. Vague terms, with meaning that can change according to the paper they are as-
sociated to – e.g., “mapping”. 

3. Terms that used to have a unique meaning, but are now used in specialized 
ways by different research communities – e.g. “ontology”.  

The first case is the most trivial, but also the one that may yield the biggest mis-
takes. For example, the original version of Klink, when processing a mixed database 
of life science and computer science, would infer that “owl” is both a sub-area of 
“semantics” and of “birds”. The second case is partially addressed by the original 
Klink by excluding from the process the generic terms that co-occur significantly with 
a very high number of uncorrelated keywords. However, this quick solution may lose 
potentially interesting pieces of information. For example, we may assume with a 
good degree of confidence that the keyword “mapping”, when combined with “ontol-
ogy” and “interoperability”, acquires an accurate meaning that is useful to capture. 
The third category is subtler, but can still yield a number of problems both for users, 
who may want to query the data using only the meanings more commonly used in 
their research community, and for algorithms that rely on statistical inferences. For 
example, “ontology” is used by most philosophers with the original meaning of study 
of the nature of being, while computer scientists usually refer to it as a practical tool 
for modeling a domain.  

The ambiguous keywords are usually associated with a noisy set of relationships, 
which hinders the statistical inference process discussed in section 2.3. For this rea-
son, Klink-2 addresses these cases by detecting the ambiguous terms and splitting 
them in multiple distinct topics. Differently from the disambiguation of probabilistic 
topic models [15, 16, 17], this process is driven by both pre-existing and inferred 
semantic relationships.  

 

function splitAmbiguosKeywords(keywords, rel) returns (keywords) { 
 foreach k in keywords { 
  related_keywords = getRelatedKeywords(keywords, rel); 
  clusters = quickHierarchicalClustering(related_keywords, rel); 
  if ( count(clusters) > 1) { 
   clusters2 = intersectBasedClustering(related_keywords, rel); 
   if ( count(clusters2) > 1) { 
    keywords = split(k, clusters2, keywords, rel); } 
  } 
 } 
return keywords; 
} 

Algorithm 2. Detecting and splitting ambiguous keywords. 

The first step is to quickly detect that a keyword x is probably ambiguous and thus a 
valid candidate to be analyzed more in depth. Since Klink-2 aims to be a scalable me-
thod, able to process a very large number of keywords, this first phase should be as 
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quick as possible. To this purpose, we first select the keywords which share with x a 
minimum number of relationships to the same entities. We then run a hierarchical bot-
tom-up clustering algorithm on this set of keywords, using as initial distance a linear 
combination of the ܵோሺݔ,  ሻ indicators. At each iteration of the algorithm, the distancesݕ
between the new cluster n and each other cluster c is quickly updated by computing the 
weighted average of the distances between the merged elements and c, using as weight 
the number of papers associated with each keyword. If the algorithm yields more than 
one cluster, Klink-2 estimates that the analyzed keyword is connected to two or more 
distinct groups of keywords and thus may be ambiguous. For example, the keywords 
associated to ‘owl’ would be grouped in two clusters, one including terms such as ‘RDF 
and ‘semantic web’ and the other including terms such as ‘raptores’ and ‘barn owl’. 
However, it would be careless to directly generate new topics from this result, since a 
keyword may actually be associated with different groups of keywords without neces-
sary being ambiguous. For this reason we run a slower and more accurate clusterization 
algorithm only on the keywords that yielded more than one cluster in the first phase. 
This method, intersectBasedClustering(), assigns to each cluster a pseudo-
keyword, whose relationships are recomputed by considering only the entities that are 
connected both with the potential ambiguous keyword and at least one of the other key-
words occurring in the cluster, which thus act as disambiguators. For example, in the 
case of “owl”, the isAbout relation will be recomputed by considering only the publica-
tions tagged by the intersection of “owl” and a number of keywords associated to the 
general meaning of either “semantics” or “birds”. The clustering process is then res-
tarted and, at each iteration, the distances between clusters are re-calculated by updating 
the pseudo-keywords. If the process yields more than one cluster, the original keyword 
is used to produce as many topics as the resulting number of clusters. This is done by 
inserting the pseudo-keywords associated with the final clusters in the set of keywords 
to analyze, after labeling them accordingly to the most important high-level topics in the 
cluster. The related higher-level keyword used in the label is the member of the cluster 
with the highest harmonic mean between the number of co-occurrences with the original 
keyword and its total number of associated publications. For example, “owl” may be 
split into two different pseudo-keywords: “owl (semantics)” and “owl (birds)”. These 
keywords will be associated with the set of disambiguated relationships re-computed 
during the clustering process and will be compared with the other keywords for infer-
ring new relationships. 

In some cases, it would be inconvenient for the algorithm to return all the possible 
meanings of a keyword. For example, a researcher interested in the Semantic Web 
would just want the algorithm to automatically assign to “owl” the meaning of “owl 
(semantics)”, without actually producing a second topic related to birds. For this rea-
son, the approach can also be run in contextual mode. In this modality, Klink-2 will 
only keep the disambiguated keyword that is more similar to the input keywords, 
according to the cosine distance of the associated keyword distributions. Hence, if the 
input keywords were about the Semantic Web, “owl” will automatically take the cor-
rect contextual meaning and have its relationships disambiguated by using keywords 
about “semantics”.  
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The threshold to stop the clustering process can be set to a high value, so to address 
only the first two categories of ambiguous keywords, or can be relaxed to tackle also 
the third one. While the second solution may produce an excessively fine-grained set 
of topics, it will also reduce the noise in the data and foster the quality of the relation-
ships, by mapping each topic to a very accurate and unique meaning. 

2.5 Triple Generation 

Klink-2 exits the main loop when it has no more keywords to analyze. It then filters 
the keywords considered “not academic” or “too generic” according to a number of 
heuristics, such as the profile of distribution of their co-occurrences or their absence 
from relevant academic sources – this process is fully described in [11]. While the 
first version of Klink used to filter the keywords before analyzing them, Klink-2 does 
it afterwards. This is because the ability to process ambiguous keywords can actually 
generate usable topics from many of the keywords that the original version would 
have discarded. In this phase, Klink-2 also deletes the redundant relationships which 
would be entailed by other relationships. Finally, Klink-2 generates the triples de-
scribing the research topics and their relationships. The output can be used to create a 
new OWL knowledge base or can be added to an existing one. In the latter case 
Klink-2 will check the relationships for inconsistencies and loops and may delete 
some of them. Being able to build an ontology iteratively on different runs is indeed 
very useful to address scalability, since the algorithm will not be forced to load the 
full graph of all existing keywords, but can run on different sub-taxonomies, which 
are then merged.  

3 Evaluation 

We tested our approach on the keywords of a dataset extracted from Scopus, consist-
ing of 16 million publications about computer science and life sciences. Additional 
knowledge about these keywords and their relationships was extracted from DBpedia, 
Google Scholar and Wikipedia. We evaluated our method by testing a number of 
alternative algorithms for their ability of building an ontology about the Semantic 
Web and related areas. To this end, we adopted as gold standard the ontology used in 
[11], after updating it by i) mapping some of the terms in the ontology to keywords 
used by Scopus (e.g., “linked datum”), which were not present in the data used in the 
2012 evaluation, and ii) adding 30 new topics co-occurring with “Semantic Web” and 
“Semantics” in the Scopus database. The new version of the ontology was validated 
and corrected by three external domain experts with publications in ISWC and ESWC 
conferences. The resulting gold standard15 includes 88 topics linked by 133 semantic 
relationships (263 when taking in consideration also the subsumption relationships 
that can be derived from transitive relations).  

                                                           
15 The gold standard and the data generated in the evaluation are publicly available at 

http://kmi.open.ac.uk/technologies/rexplore/iswc2015/. 
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There are a variety of approaches for learning taxonomies or ontologies, including 
natural language processing [21], clustering techniques [22], statistical methods [13], 
and methods based on spreading activation [19]. Text2Onto [21] is a popular system 
for learning ontologies, which represents the learned ontological structures in a prob-
abilistic ontology model and uses natural language processing techniques. The Lex-
ico-Syntactic Pattern Extraction (LSPE) approach [23] exploits linguistic patterns, 
e.g., “such as…” and “and other…”, to discover relationships between terms. Howev-
er, these approaches are based on the analysis of textual documents, while Klink-2 
focuses instead on metadata, statistics and semantic relationships, since its scope is a 
large-scale analysis of research data. 

The TaxGen framework [14] creates taxonomies from a set of documents by means 
of a hierarchical agglomerative clustering algorithm and text mining techniques. 
Klink-2 also adopts a clusterization algorithm for inferring the relatedEquivalent 
relationship and handling ambiguous keywords. 

A very popular statistical approach is the subsumption method [13], which com-
putes the conditional probability for a keyword to be associated with another in order 
to infer hierarchical relationships, as discussed in section 2.2. The same idea is ex-
tended in the GrowBag algorithm [8], which enriches the original model by using 
second order co-occurrences made explicit by a biased PageRank algorithm. The 
original Klink algorithm [11] also used statistical methods on the co-occurrence 
graph, while Klink-2 goes a step further by allowing the use of semantic or statistical 
relationships from multiple sources. The use of multiple sources for this task was also 
strongly advocated by Wohlgenannt et al [19], who proposed a framework for infer-
ring lightweight ontologies which first build a semantic network through co-
occurrence analysis, trigger phrase analysis, and disambiguation techniques, and then 
uses spread activation to find candidate concepts. Klink-2 does a similar co-
occurrence analysis, but also uses indirect relationships and generates novel topics 
derived from the combination of different keywords. Similarly to the approach of 
Wohlgenannt et al, Klink-UM [12], a variation of Klink designed to generate 
lightweight ontologies for recommender systems, adopts spreading activation for 
tailoring semantic relationships to user needs. 

Klink-2 is able to manage ambiguous keywords by generating multiple topics with 
a unique meaning, according to the semantic context. This is conceptually similar to 
the disambiguation performed by probabilistic topics models which detect latent top-
ics by exploiting Probabilistic Latent Semantic Indexing (pLSI) [15] or Latent Dirich-
let Allocation [16]. For example the Author-Conference-Topic (ACT) model [17] 
treats authors as probability distributions over topics, conferences and journals. Diffe-
rently from them, our approach uses explicit semantic relationships, rather than latent 
semantic, to drive the generation of unambiguous topics. These topics are accurately 
described by a number of semantic relationships and not simply as term distributions. 

Methods for automatically learning ontologies can be complementary to crowd-
sourcing ontology verification [18, 19], a process in which a large number of workers 
solve micro-tasks for validating and correcting semantic relationships.  

As mentioned in the introduction, Klink-2 is currently integrated in the Rexplore 
system [5], and is used to semantically enhance a number of algorithms for exploring 
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research data. Nowadays we have several interesting tools which exploit semantic 
technologies to make sense of research. The Saffron system [9], which builds on the 
Semantic Web Dog Food Corpus [1], allows for advanced expert search and estimates 
the strength of an author/topic relationship by analyzing co-occurrences on the Web. 
Arnetminer [17] also provides support for expert search and a variety of analytics on 
research topics. RKBExplorer [3] is an application that generates comprehensive vi-
sualizations of the research environment from a number of heterogeneous data 
sources. Klink-2 can benefit these systems by generating an accurate, large-scale and 
up-to-date topic network. 

5 Conclusions 

We presented Klink-2, a novel approach to generate semantic topic networks which 
can integrate a number of web sources and exploit multiple semantic and statistical 
relationships. The output can be useful to a vast number of tools as it can be used to 
provide a semantic structure to support the identification, search, exploration and 
visualization of research data. The evaluation shows that Klink-2 performs signifi-
cantly better than alternative solutions. In particular, Klink-2 is able to yield a good 
precision (80%) even when a very high recall (90%) is needed. 

Our approach opens up many interesting directions of work. On the research side, 
we plan to investigate diachronically the shift in meaning of scholarly keywords to 
better characterize the evolution of research areas. We also want to exploit natural 
language processing techniques to augment our semantic model with additional enti-
ties (e.g., methods, tools, and standards) which can be extracted from the text of sci-
entific publications. Finally, on the technology transfer side, we are currently collabo-
rating with two major academic publishers, who are looking to deploy Klink-2 in their 
organizations, thus providing a strong semantic topic structure to support classifica-
tion, search and exploration in their digital libraries. 

Acknowledgements. We would like to thank Elsevier BV and Springer DE for providing us 
with access to their large repositories of scholarly data. 

References 

1. Moller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web dog food — 
the ESWC and ISWC metadata projects. In: 6th International Semantic Web Conference, 
November 11–15, 2007, Busan, South Korea (2007) 

2. Latif, A., Afzal, M.T., Helic, D., Tochtermann, K., Maurer, H.: Discovery and construction 
of authors’ profile from linked data (A case study for Open Digital Journal). In: WWW 
2010 Workshop on Linked Data on the Web (LDOW 2010). CEUR-WS, vol. 628, Ra-
leigh, North Carolina, USA (2010) 

3. Glaser, H., Millard, I.: Knowledge-enabled research support: RKBExplorer.com. In: Pro-
ceedings of Web Science 2009, Athens, Greece (2009) 

4. Peroni, S., Shotton, D.: FaBiO and CiTO: ontologies for describing bibliographic re-
sources and citations. Journal of Web Semantics 17, 33–43 (2012) 



424 F. Osborne and E. Motta 

5. Osborne, F., Motta, E., Mulholland, P.: Exploring scholarly data with rexplore. In: Alani, H., 
et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 460–477. Springer, Heidelberg (2013) 

6. Decker, S.L., Aleman-Meza, B., Cameron, D., Arpinar, I.B.: Detection of bursty and 
emerging trends towards identification of researchers at the early stage of trends (Doctoral 
dissertation, University of Georgia) (2007) 

7. Erétéo, G., Gandon, F., Buffa, M.: SemTagP: semantic community detection in folksono-
mies. In: 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology (WI-IAT), vol. 1, pp. 324–331. IEEE (2011) 

8. Diederich, J., Balke, W., Thaden, U.: Demonstrating the semantic GrowBag: automatically 
creating topic facets for FacetedDBLP. In: JCDL 2007, NY, USA (2007) 

9. Monaghan, F., Bordea, G., Samp, K., Buitelaar, P.: Exploring your research: sprinkling 
some saffron on semantic web dog food. In: Semantic Web Challenge at the International 
Semantic Web Conference (2010) 

10. Osborne, F., Scavo, G., Motta, E.: Identifying diachronic topic-based research communi-
ties by clustering shared research trajectories. In: Presutti, V., d’Amato, C., Gandon, F., 
d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465,  
pp. 114–129. Springer, Heidelberg (2014) 

11. Osborne, F., Motta, E.: Mining semantic relations between research areas. In: Cudré-
Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 410–426. Springer, 
Heidelberg (2012) 

12. Osborne, F., Motta, E.: Inferring semantic relations by user feedback. In: Janowicz, K., 
Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876,  
pp. 339–355. Springer, Heidelberg (2014) 

13. Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: Proceedings of the 
SIGIR Conference, pp. 206–213 (1999) 

14. Müller, A., Dorre, J.: The TaxGen framework: automating the generation of a taxonomy 
for a large document collection. In: Proceedings of the 32nd Hawaii International Confe-
rence on System Sciences, vol. 2, pp. 20–34 (1999) 

15. Hofmann, T.: Probabilistic latent semantic indexing. In: the 22nd Conference on Research 
and Development in Information Retrieval, pp. 50–57, Berkeley, CA (1999) 

16. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learn-
ing Research 3, 993–1033 (2003) 

17. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of 
academic social networks. In Proceedings of the 14th ACM International Conference on 
Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008) 

18. Mortensen, J.M., Alexander, P.R., Musen, M.A., Noy, N.F.: Crowdsourcing ontology veri-
fication. In: The Semantic Web–ISWC 2013, pp. 448–455 (2013) 

19. Wohlgenannt, G., Weichselbraun, A., Scharl, A., Sabou, M.: Dynamic integration of mul-
tiple evidence sources for ontology learning. Journal of Information and Data Management 
3(3), 243 (2012) 

20. Suominen, O, Viljanen, K., Hyvänen, E.: User-centric faceted search for semantic portals. 
In: 4th European Conference on the Semantic Web (ESWC 2007), pp. 356–370 (2007) 

21. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005) 

22. Assadi, H.: Construction of a regional ontology from text and its use within a documentary 
system. In: Guarino, N. (ed.) Proceedings of FOIS 1998 Formal Ontology in Information 
Systems, pp. 236–249, Trento, Italy (1999) 

23. Hearst, M.: Automated discovery of WordNet relations. In: Fellbaum, C. (ed.) WordNet: 
An Electronic Lexical Database, pp. 131–153. MIT Press (1998) 


	Klink-2: Integrating Multiple Web Sources to Generate Semantic Topic Networks
	1 Introduction
	2 The Klink-2 Algorithm
	2.1 Data Model
	2.2 Overview of Klink-2
	2.3 Inferring Semantic Relationships
	2.4 Handling Ambiguous Keywords

	3 Evaluation
	4 Related Work
	5 Conclusions
	References




