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Abstract. Recently, Web search engines have empowered their search
with knowledge graphs to satisfy increasing demands of complex informa-
tion needs about entities. Each engine offers an online knowledge graph
service to display highly relevant information about the query entity in
form of a structured summary called knowledge card. The cards from dif-
ferent engines might be complementary. Therefore, it is necessary to fuse
knowledge cards from these engines to get a comprehensive view. Such
a problem can be considered as a new branch of ontology alignment,
which is actually an on-the-fly online data fusion based on the users’
needs. In this paper, we present the first effort to work on knowledge
cards fusion. We propose a novel probabilistic scoring algorithm for card
disambiguation to select the most likely entity a card should refer to.
We then design a learning-based method to align properties from cards
representing the same entity. Finally, we perform value deduplication to
group equivalent values of the aligned properties as value clusters. The
experimental results show that our approach outperforms the state of
the art ontology alignment algorithms in terms of precision and recall.

1 Introduction

With the prevalence of entity search [1], a large portion of Web queries are to
search entity related information. To support the ever growing information needs,
search engines leverage public available knowledge bases such as Wikipedia and
Freebase to build their own knowledge graphs. When submitting a query to
Google (Bing or Yahoo!), the engine will provide a structured summary called
knowledge card describing attributes of the given entity and relations with other
entities. Such a card can be regarded as a query-based online form of the knowl-
edge graph. Since a query might be ambiguous, it could return several cards
corresponding to different real-world entities. Google returns three cards for the
query “Fox” while Bing returns two more different cards. Even though the two
cards represent the same entity, some property may just appear in one card.
For example, only Google gives an attribute named “Daily sleep” in the card
describing “Fox (animal)”. So it is necessary to fuse knowledge cards from vari-
ous search engines automatically to provide a more comprehensive summary with
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all important facts for a given entity. Also, search engines usually update their
contents quickly so that the fused cards always contain up-to-date information.

Knowledge cards fusion can be regarded as an ontology alignment task. Dif-
ferent from traditional ontology alignment, cards are fused online when a query
is submitted. Actually, it is a new branch of ontology alignment considering that
input ontologies (i.e., cards) might be lack of schema-level information like con-
cepts and domains or ranges of properties. Further, each input ontology (or a
card) only contains a limited number of attribute value pairs. Instances might
be expressed as string values in a card. Equivalent numeric values might use
different units. Therefore, sophisticated ontology alignment algorithms working
for large ontologies with rich information cannot be directly applied.

In this paper, we present the first effort to work on fusing knowledge cards
from various search engines automatically. More specifically, we introduce an
integrated approach with the following contributions. (1) We propose a novel
probabilistic scoring method for knowledge card disambiguation. Two widely
used measures namely the commonness score and the relatedness score in entity
linking are combined to find the most likely Wikipedia entity a card should
refer to. Therefore, different cards representing the same entity can be merged
as aligned instances. (2) We design a learning-based method with four novel
features to predict property alignments. The features include the property sim-
ilarity and different aspects of similarities between values of two properties. In
this way, we not only consider the similarity between two properties but also
leverage their context-based similarities. (3) We normalize values of a same unit
type and complete links for values representing same entities in a pre-processing
step. As a result, equivalent values using different expressions are normalized into
a same value or linked to a same entity. Both data and unit normalization and
missing link completion can further increase the coverage of property alignment.
Moreover, it helps group equivalent values of aligned properties into value clus-
ters during value deduplication. (4) We carried out comprehensive experiments
to test the effectiveness of card disambiguation, property alignment, and value
deduplication on knowledge cards collected from a number of real entity queries.
Furthermore, we convert the cards into ontologies and feed them into several
state of the art ontology alignment tools. Our approach outperforms these tools
in terms of precision and recall for both instance alignment and property align-
ment. The rest is organized as follows. Section 2 gives a brief overview. Section 3
introduces the approach details. Section 4 shows the experiment results. Section 5
lists the related work and Section 6 concludes the paper.

2 Approach Overview

2.1 Problem Definition

Input: Given an entity query, a search engine (e.g., Google) may return zero to
several knowledge cards. Search on a specific KB like Freebase or Wikidata can
also be regarded as a special case of search engine. Each card c describes one real-
world entity e with a label on top. The card can also contain several attribute
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Fig. 1. Knowledge cards from Google and Bing when searching “fox”

value pairs AV Pc={avp1,avp2,. . .,avpm} in which each pair is composed of a
property p and a set of corresponding values Vp,c={v1,v2,. . .,vk}. Among them,
if v links to a knowledge card representing another entity, we call v an object
value. Otherwise, if a value v represents some numeric value of a data type like
length, currency, or date, it is called a numeric value. The remaining values are
string values. Besides, a short abstract might be provided to describe the card.

Output: One or more merged knowledge cards {cm1,cm2,. . .,cmi} are returned.
Each cmi corresponds to a set of cards representing the same entity from different
engines (e.g., cgi). Here, cgi can be a card returned by Google. In cmi, each avpmi

becomes a cluster of the original avps. More precisely, equivalent properties
{p1,p2,. . .,pj} are aligned together to constitute a merged property pmi of avpmi.
Furthermore, the value sets of these properties are grouped into a merged value
set Vm. Each member of Vm is a value cluster containing equivalent values of
aligned properties from different cards.

Taking “fox” as an example query, Figure 1 shows a list of possible knowledge
cards returned by each engine. It also shows the details of two cards from Google
and Bing respectively. The figure illustrates the label, the abstract, attribute
value pairs as well as properties and different types of values in these pairs of
an individual card. Since these two cards represent the same entity, they can be
merged together. Here, we show two aligned pair examples: one is a one-to-one
mapping between two “Founders” properties and their values, while the other is
a one-to-many mapping which will be explained later.

2.2 Challenges

In order to fuse knowledge cards from various search engines for an entity query
effectively, we face several challenges which are listed as follows.

Ambiguous cards from a same Query: Since an input query can be ambiguous,
it may returned several knowledge cards. As shown in Figure 1, Google returns
three different cards and Bing returns five cards. In addition, a card representing
the same entity “Fox Broadcasting Company” may have a different label “FOX
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Fig. 2. Overall workflow of our approach to fuse knowledge cards

(Broadcasting television network)”. How to merge cards into different entities
correctly is challenging. It can also be treated as an instance alignment task.

Same value but Different Expressions: Even two cards are merged correctly,
they might have equivalent properties or values with different expressions. For
example, a card “Inception (2010)” returned by Bing has a property named
“Estimated budget” while the corresponding card from Yahoo! describes the
same meaning by using “Budget”. Furthermore, one value is expressed as “$160
million USD” while the value of the “Budget” property is “$160,000,000”. The
similar situation also occurs when expressing other kinds of values.

One to Many Mappings: A property of one card can be aligned with one or several
properties of another card. As shown in Figure 1, the property “Founded” of the
card “FOX (Broadcasting television network)” introduces the founded date and
the founded place of the company. It should be aligned with two properties
“Founded” and “Place founded” of the card “Fox Broadcasting Company” from
Bing. In most cases, the labels of properties to be aligned are not the same,
sometimes even totally different. Moreover, these properties may share very few
values in common. The above two factors make property alignment difficult.

2.3 Workflow

As shown in Figure 2, there are three main components, namely Card Disam-
biguater, Property Aligner, and Value Deduplicator, to fuse knowledge cards.
When submitting a query, knowledge cards along with other related data are
first fetched from the search engines through the Knowledge Card Extractor.
Then the Card Disambiguater identifies corresponding entities in Wikipedia for
these cards based on a probabilistic scoring algorithm. In this way, we can merge
cards if they represent the same entity. Before aligning properties of these merged
cards, the Property Aligner performs a pre-processing step for data normal-
ization and link completion. In the following step, we design a learning-based
method to predict whether two properties can be aligned. In particular, map-
pings from Wikipedia infobox properties to ontology properties in DBpedia are
used as training data to learn the prediction model. In order to further increase
the accuracy, post-processings including Property Mutual Exclusion Filter and
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Object Value Range Validator are carried out. Finally, the Value Deduplicator
groups equivalent values of aligned properties into value clusters.

3 Approach Details

3.1 Card Disambiguation

Card disambiguation can be treated as an entity linking problem, i.e. linking
a mention found in text to entities defined in a target KB. Due to the wide
coverage of Wikipedia, it is selected as our KB. There are about 4.8M entities
in Wikipedia and it’s continuously growing. A sizable entities can be dealt with
in this step. We use the card label as a mention m for disambiguation. Then we
adopt commonness(m, e) = |Lm,e|∑

e′ |Lm,e′ | as commonness score [14] to measure the
strength m links to a Wikipedia entity e. Here |Lm,e| is the number of links in
Wikipedia with the target e and the anchor text m.

Since the card label might be ambiguous, m can refer to several entities Em.
In order to determine the most likely entity the card should correspond to, we
additionally consider the object values of the card as its context. If an entity
is tightly connected with the corresponding entities of these object values, it
has a high possibility to be the target of the card. For this purpose, we adopt
relatedness(e, v) = 1 − log(1+max(|Le|,|Lev |))−log(1+|Le∩Lev |)

log(|WP |)−log(1+min(|Le|,|Lev |)) as the relatedness
score [15] to measure how close an entity e ∈ Em is to an object value v. Here
|Le| (|Lev |) is the number of links with the target e (or the corresponding entity
ev of v) respectively, Le ∩ Lev is the intersection of links with the target e and
ev, and |WP | is the total number of Wikipedia entities.

We further adopt relatedness(e, Vo) = 1 − ∏
v∈Vo

(1 − relatedness(e, v))
to measure the relatedness between e and a set of object values Vo in
the card. relatedness(e, Vo) is indeed the probabilistic sum of all relat-
edness scores between e and each object value in Vo. We use ê =
arg maxe(commonness(m, e) × relatedness(e, Vo)) as the final score of a pos-
sible entity. Finally, the entity with the highest score greater than a threshold is
selected as the disambiguation result of the card. Note that if a possible entity
of the card does not co-occur with any corresponding entities, the final score is
degraded to its commonness score.

For any v ∈ Vo, in order to get the corresponding Wikipedia entity, we
can leverage object values in the card v links to and use the same formula to
disambiguate v first. After we get the most likely entity ev it refers to, we can
get the relatedness score for relatedness(e, v). So it is a recursive process. In
our implementation, we simply choose the maximal relatedness score between a
possible entity of v and e for relatedness(e, v) as an approximation.

3.2 Aligning Properties Between Cards

Pre-processing. The focus of this step is to normalize values of different types.
More specifically, for a string value, it is lowercased. If it contains any delim-
iter, the value is segmented into different parts by the delimiter and it will be
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normalized by lowercasing all its characters. A numeric value belongs to a par-
ticular type and is often associated with some unit. For instance, a currency
“$160 million USD” from Bing is expressed as “$160,000,000” in Yahoo!. Since
value expressions vary a lot from one unit to another, we need prepare specific
normalization rules for each unit. According to the unit distribution statistics
reported in Section 4.3, by considering only several units such as date time, cur-
rency, length and weight, we can deal with a large proportion of numeric values
in knowledge cards. For an object value, we try to add a missing link to the
correspding Wikipedia entity. The link completion process is same as that of
card disambiguation introduced in Section 3.1.

Learning-Based Property Alignment. In this sub-section, we introduce the
details of our learning-based method to check whether a property pair can be
aligned. If one property is aligned with two or more properties from a second
card, we will consider it as a one-to-many mapping. In particular, we design four
novel features to constitute the learning model. Besides one property-related fea-
ture, we also consider several value-related features because values of a property
can be regarded as its context to help predict property alignments.

– Property Similarity (PS). It measures the similarity between two properties
p1 and p2. We consider two kinds of similarities: the lexical similarity (simls)
and the semantic similarity (simss). The former works well if the property
labels (lp1 and lp2 for p1 and p2 respectively) are close in their lexical forms.
The latter can be a complementary to discover semantically similar proper-
ties in different expressions. So we first use simls(p1, p2) = w× |substr(lp1 ,lp2 )|

min(|lp1 |,|lp2 |)
to calculate the PS value for p1 and p2. If the value is below a threshold,
simss(p1, p2) is further used as the value. |s| is the length of a string s,
substr(s1, s2) returns the longest substring of s1 and s2, and w is a weight.
We set w = 1 if two strings are equal. If s1 is a prefix or a suffix of s2, w
is set to 0.8. While s1 is a substring (except prefix or suffix) of s2, w is 0.6.
Otherwise, w = 0.4. The reason to set different weights is because we assign
different priorities to exact match, prefix or suffix, substring, and overlap. For
simss, we adopt the WUP measure [20] simss(p1, p2) = 2×depth(LCA(sp1 ,sp2 ))

depth(sp1 )+depth(sp2 )

to calculate the relatedness by considering the depths of the two synsets and
the depth of their lowest common ancestor (LCA) in WordNet. spi

is the
most likely synset of pi in the WordNet taxonomy.

– Value Overlap Ratio (VOR). If two properties do not have any value of
the same type (i.e., string, numeric, and object), they are unlikely to be
aligned. Let Tp be the value type set of a property p. For instance, if p has
one numeric value and two object values in a card, Tp = {n, o}. The larger
overlap Tp1 and Tp2 have, the higher coherence two properties achieve. We
use the Jaccard similarity V OR(p1, p2) = |Tp1∩Tp2 |

|Tp1∪Tp2 | to calculate the overlap.
– Value Match Ratio (VMR). It further considers the match ratio of value pairs

of a property pair. The higher the match ratio, the more chance the pair can
be aligned. We use the equation VMR(p1, p2) = |MP(p1,p2)|

|CP(p1,p2)| to measure this
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similarity. A value pair is a match pair if the two values are of the same type
and their similarity is above a matching threshold. MP(p1,p2) is the set of
match pairs of the pair (p1,p2) and CP(p1,p2) is the set of candidate value
pairs. For example, if p1 has one numeric value and one object value while
p2 has only one numeric value, then CP(p1,p2) = 1. If the two values are
dissimilar, then no match pair is found and VMR(p1, p2) = 0.
In order to get match pairs, we define a similarity measure for each spe-
cific value type. For string values, we use the same similarity measure
used for property similarity. For the numeric ones, we used simn(n1, n2) =
1 − dist(abs(n1),abs(n2))

NormFactor to calculate the similarity between n1 and n2.
Here abs(n) returns the absolute value of n, dist is the absolute difference

between n1 and n2, and a NormFactor is an normalization factor which
picks the larger absolute value in general. Numeric values of the date type
are special as each value contains three parts namely year, month, and day.
Sometimes some date value (e.g., 2010-7) is even incomplete. Given a date
type value pair with incomplete parts, we only focus on the common parts
both values have during comparison. For a pair 2010-7-1 and 2011-6, the
day part is ignored. Going back to Equation of simn(n1, n2), we use 360
(counting 30 days per month) for NormFactor instead. Taking the above
value pair as the example, their distance is 330 and the similarity is 1/12
accordingly.

For object values, we choose the ESA (Explicit Semantic Analysis) [6]
measure to compute their similarities. ESA computes semantic relatedness
of natural language texts of arbitrary lengths. It represents the meaning of
texts using relevant Wikipedia entity pages in form of concept vectors. It has
been proved effectively for textual entailment and query expansion. Here, the
similarity simo(o1, o2) between two objects o1 and o2 of a pair is calculated
by using the equation simo(o1, o2) =

∑
wc wc(o1)·wc(o2)√∑

wc wc(o1)2·∑wc wc(o2)2
.

It is actually the cosine similarity between concept vectors wc(o1) and
wc(o2).

– Value Similarity Variance (VSV). It measures the similarity distribution of
match pairs. The smaller the VSV, the more match pairs have high similar-
ities, which indicates that the property pair is more likely to be aligned. We
adopt the equation V SV (p1, p2) =

∑
(1−sim)2

|MP(p1,p2)| where sim is the similarity
score (ranging from 0 to 1) of a match pair.

Post-processing. To increase the precision of property alignment, we design
two heuristic rules to filter out as many false positives as possible.

– Property mutual exclusion filtering. Since a knowledge card only contains a
limited number of highly selected properties, it is unlikely to display redun-
dant properties. Thus properties in a card can be assumed to be distinct
safely. That is, a property is disjoint with any other property in the same
card. Based on this premise, given an aligned property pair predicted by the
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learning model, if one property happens to be in the disjoint set of another
property, the aligned pair should be filtered out.

– Object value range validation. If two properties can be aligned, their ranges
should be compatible. In another word, the categories of their corresponding
values cannot be disjoint. According to this principle, for any object value
pair of two aligned properties, if their categories are disjoint, the property
alignment should be removed. More precisely, for each object value, we use
the categories of the corresponding Wikipedia entity. If the two category sets
have no overlap, we think the categories of the value pair are disjoint.

3.3 Value Deduplication for Aligned Properites

After properties are aligned, values of these aligned properties should be dedu-
plicated so that equivalent ones in different expressions are grouped together
into value clusters. Here, we introduce a simple but effective method. As men-
tioned in Section 3.2, numeric values of the same unit type are normalized. Also,
string values are lowercased and segmented into parts as new string values by
predefined delimiters. For object values, links to their corresponding Wikipedia
entities are completed. The above processing steps ease the deduplication of
these values. That is, if two object values link to the same Wikipedia entity,
they are merged together. For the two normalized numeric values or string val-
ues, we compare their similarity with the corresponding matching threshold to
check whether the two values can be deduplicated.

4 Experiment

4.1 Experiment Setup

We selected a set of queries and submitted them to three search engines to col-
lect knowledge cards to be fused. A query is chosen if at least two engines return
knowledge cards for it. Secondly, a portion of selected queries should be ambiguous
so that some engine will return several possible cards. Third, the returned cards
should have different numbers of attribute value pairs (AVPs). We tried differ-
ent titles of Wikipedia entity pages as well as disambiguation pages, and finally
selected 26,583 different entity queries in total. Among these queries, about one
fifth are ambiguous. Furthermore, We find that more than half of the cards are
medium rich (includes AVPs ranging from 3 to 5), 19% are poor (fewer than 2
AVPs), and 24 percent are rich (more than 6 AVPs). We further randomly chose
154 queries from the above query set. The subset of queries conform the same
richness distribution and have the similar percent of ambiguous queries. As a
result, 464 knowledge cards are collected and manually labeled as ground truths
to evaluate the performance of card disambiguation and property alignment. We
downloaded mapping-based properties under DBpedia 2014 downloads1 to collect

1 http://wiki.dbpedia.org/Downloads2014

http://wiki.dbpedia.org/Downloads2014
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Wikipedia infobox properties and the corresponding ontology properties in DBpe-
dia ontology. Due to the large community of DBpedia, the collected mappings can
be assumed to be of high quality. While it is impossible for these mappings to be
100 percent correct, they can still be used to train a robust learning model for
property alignment. These cards are also converted to ontologies as inputs of sev-
eral ontology alignment tools. We finally compare the alignment performance of
these tools with that of ours. All the data can be downloaded via the following
link2 for the purpose of experiment reproductivity. For more experiment details,
you can refer to our technical report3.

4.2 Card Disambiguation Evaluation

We compare our disambiguation method with two baselines in terms of accuracy
and coverage. One baseline only considers the commonness score and the other
uses the relatedness score. Here, coverage means the fraction of cards that have
been disambiguated w.r.t. all cards while accuracy is the fraction of cards that
are disambiguated correctly. The threshold is 0.01 to filter entities of low scores.

Figure 3 shows the comparison results. Using commonness score only can
deal with the largest number of cards but achieves the lowest accuracy. In most
cases, the card label is an anchor text linking to some Wikipedia entities so
it can always return some entities as the disambiguation result. But the label
is usually ambiguous and can refer to several entities. So using the label alone
cannot distinguish among these possible entities. On the other hand, when con-
sidering the relatedness score only, the coverage becomes slightly lower but the
accuracy increases significantly. This indicates that using object values in the
card as its context can actually help filter unlikely entities the card might refer
to. However, if two possible entities have similar relatedness scores, this baseline
cannot decide which one to choose. For these cases, the commonness score might
help. Therefore, our algorithm combines the strengths of both baselines. As a
result, it gets 100 percent accuracy with very high coverage.

4.3 Unit Distribution Statistics

The same numeric values can be expressed differently using different units of the
same type and should be normalized in a same unit, which has a positive impact
on property alignment and value deduplication. It is impossible to enumerate
all of them so we aim to prepare normalization rules for as few unit types as
possible while still covering a sizeable cases. Since Wikipedia has a wide coverage
and is an important source to build knowledge graphs, we can assume real data
has the similar unit distribution. Thus, we collected 104,101 numeric values with
units from Wikipedia infoboxes to analyze unit distributions. Statistically these
units fall into nine types (i.e., currency, time, length, velocity, voltage, electric
current, frequency, mass and area) and occupy almost 90 percent.

2 http://kcf.hiekn.com/download/experiment.tar.gz
3 http://kcf.hiekn.com/download/tr.pdf

http://kcf.hiekn.com/download/experiment.tar.gz
http://kcf.hiekn.com/download/tr.pdf


Effective Online Knowledge Graph Fusion 295

4.4 Property Alignment Performance

In this section, we first discuss how to tune different parameters for the learning-
based alignment on DBpedia mappings. Then we apply the learned model to
aligning properties of real world knowledge cards.

Alignment Performance on DBpedia Mappings. The DBpedia mappings
dataset contains mappings from Wikipedia infobox properties to ontology prop-
erties in DBpedia. According to these mappings, we can get a large number of
Wikipedia infobox property pairs in which each pair maps to the same ontology
property. These pairs are used as positive examples for training a learning-based
alignment model. The negative examples are those property pairs which have
large values for any of the above introduced features but have not been declared
to map to a same ontology property. We then discuss parameter tuning to learn
a best alginment model without overfitting.

First, we determine matching thresholds for string, numeric and object val-
ues respectively to verfiy whether a pair of values of the same type can match.
Changing thresholds will impact the MVR value of each property pair to be
aligned. Instead of training another model to predict the most suitable thresh-
olds, we analyze the precision distribution by setting different thresholds and
pick the one achieving the highest precision. More precisely, we randomly select
200 value pairs for each type (i.e., numeric, string, or object) from positive and
negative examples equally. Then we calculate the similarity of each value pair
accordingly. Given a threshold, if the corresponding property pair is aligned hav-
ing its similarity greater than or equal the threshold, or the property pair cannot
be aligned and the similarity is below the threshold, we mark the value pair “T”
(indicating a true positive or true negative). Otherwise, we mark it “F”. The
whole process is repeated ten times. Then we get the average precision under
this threshold by calculating the proportion of the number of “T”s to the total
number (i.e., 200). The thresholds range from 0 to 1 and the step is 0.1. When
the string threshold is 0.2, we get the highest precision. Similarly, we set the
thresholds for numeric and object values as 0.8 and 0.5 respectively.

Second, we try to find an empirical value of the minimal size of training
data to learn an “approximately best” alignment model. Here, we use Logistic
Regression, one of the most widely used learning algorithms, to learn a model
and test the performance of property alignment under different sizes of training
data. More specifically, we randomly selected 200, 600, 2,000, 6,000, and 10,000
labeled property pairs from positive and negative examples equally. 5-fold cross
validation is performed during model training. When adding the training data
size from 200 to 6,000, the alignment performance improves significantly. But
when we further increase the size to 10,000, the performance is almost unchang-
ing. So we set 6,000 as the empirical training data size for further model selection.

We then use different learning algorithms to train various models. The align-
ment performance under these models are compared. Here, we choose Logistic
Regression (LR), SVM, Decision Tree (DT), and Random Forest (RF) to com-
pare. All the parameters are set as the ones used in the previous step. The learned
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RF model achieves the best F1-Measure. Since we have a post-processing step
to filter out incorrect alignment candidates, we should pay more attention to
recall. In this case, the selected model also has the best coverage.

Finally, we study the contributions of different features. Here, we choose
five groups of feature combinations, namely all our features (All), all features
except property similarity (All-PS), all features except value overlap ratio (All-
VOR), all features except value match ratio (All-VMR), and all features except
value similarity variance (All-VSV). The same training data is used to learn five
different random forest models.

The model using all features performs best. The F1-Measure scores of other
models decrease to a certain extent, which indicates all features have some pos-
itive impacts to boost the performance of property alignment. Moreover, when
removing property similarity from the feature set, the learned model has the
lowest performance. This means that the property similarity feature is a key
factor to judge if a property pair can be aligned.

Alignment Performance on Real Data. From 464 knowledge cards, we ran-
domly selected 3,487 attribute value pairs and asked students to manually label
whether two properties in each pair can be aligned. As a result, 480 pairs are
positive and 3,007 are negative. We applied the best model trained on DBpedia
mappings to predict alignments on the above pairs. Moreover, we have two exten-
sions. One considers pre-processing and the other further adds a post-processing
step. Precision, recall, and F1-Measure are used for effectiveness study.

Fig. 3. Card disambiguation results Fig. 4. Property alignment results

Figure 4 shows the alignment performance based on three methods. If an
entity cannot refer to any Wikipedia entity, property alignment can still be
executed. We get acceptable results without pre-processing. The model especially
with pre-processing can actually predict aligned property pairs with a relatively
high precision (more than 0.8) and almost perfect recall. Furthermore, after post-
processing, the precision increases significantly at the expense of a slight drop
of recall. This shows the effectiveness of post-processing used in post-processing.
Regarding recall decrease, there exist two possible reasons. One is two similar
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(a) Original ontology (b) + value and unit normalization

Fig. 5. Performance comparison of instance alignment

(a) Original ontology (b) + link completion (c) + data normalization

Fig. 6. Performance comparison of property alignment

object values are categorized into different types. The other is the disjoint sets
are too tight so that the mutual exclusion filter kicks out some similar properties.

4.5 Effectiveness of Value Deduplication

Through deduplication, values associated with the same aligned property are
clustered into different groups within an attribute value pair in a fused card.
Our experiments were carried out on the aligned attribute value pairs in the
previous section (where 480 pairs are collected). As a result, we receive 1,431
value clusters which consist of at least one value. It is important to verify both
precision and recall of this step. We manually labeled the correct clusters in
which all the related candidate values are clustered correctly. Statistically, the
recall of this step reaches 73.17% while precision is 98.9%. Due to the pre-
processing, we have normalized both object values and numeric values so that
values with same expressions can be easily deduplicated. However, there still
left a certain amount of values which are not clustered. After analyzing bad
cases, we find that some values may be originally out-of-date or inaccurate. For
instance, a knowledge card of Arrian who is a Greek historian is presented by
all the three search engines. Google and Bing show his death date as 175 AD
while the same property is displayed as 160 AD in the Yahoo!’s card. Since the
similarity between these two dates is below the threshold, they are clustered in
two groups, which reduces the recall. On the other hand, some related values
are not clustered correctly due to the failure in link completion. Considering two
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equivalent object values, if one has completed the link while the other does not,
such a case will fail and reduce the recall.

4.6 Performance Comparison with Ontology Alignment Tools

Actually, card disambiguation and value deduplication can be treated as instance
alignment tasks. So we compare our approach with the state of the art ontology
matching tools for both instance alignment and property alignment. Here, we
selected RiMoM [12], Logmap [11], Falcon-AO [10], and PARIS [19] as the tools
for alignment performance comparison. The former two are among the top-3
tools of the OAEI champaign4 in recent three years. The latter two also support
both alignment tasks and have been widely used in practical applications.

We convert cards returned by one engine for a query into an ontology in the
OWL format. Each card is treated as an instance with several attribute value
pairs. Both object values and numeric values are treated as instances as well.
For each numeric value, it is represented as an instance of a certain unit type (a
concept defined in the unitontology5). The string values are treated as literals.
If a property is associated with instances as its values, it is an ObjectProperty.
Otherwise, it is a DatatypeProperty. Considering that there may be more than
one kind of values in one property of a card, we divide this property into several
ones in which each new property is associated with either instances or literals. A
label is provided for each instance or property. Together with another ontology
returned by a different engine for the same query, the above tools can be executed
to get alignment results for instances and property pairs between two ontologies.

Here, we collected 204 cards from Google and 130 cards from Bing for all
154 queries used in previous experiments. Among 204 cards, there exist 848
properties with 1,377 values in all. Similarly, 610 properties with 913 values are
found in 130 cards. We asked four students to manually label alignment ground
truths. As a result, we totally get 596 instance alignments in which 108 are card
pairs referring to the same entities and 488 are value pairs with two equivalent
object values or numeric values. We also get 427 aligned property pairs.

Instance Alignment. We record the precision, recall, and F1-measure of
instance alignment run by each tool based on the above introduced ontologies as
inputs. As shown in Figure 5(a), our approach not only achieves the best accu-
racy, but also the highest coverage. Among the selected tools, Logmap performs
best especially in terms of recall. This is because Logmap can identify equiva-
lent values of some particular unit type with the help of a Hermit reasoner. For
instance, Logmap can align 105.3 mi2 with 105.30 sq miles while the other tools
fail. Given an alignment returned by our approach (one value is 0.056-0.11kg
and the other value is 0.12-0.24lb), none of the tools are able to find out this
alignment. This shows that Logmap might be able to deal with abbreviations or
alias of some units, but unit conversion is still out of its ability scope.
4 http://oaei.ontologymatching.org/
5 https://code.google.com/p/unit-ontology/

http://oaei.ontologymatching.org/
https://code.google.com/p/unit-ontology/
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Besides the original ontologies, we further add our pre-processing results to
enrich these ontologies. As a result, the enriched ontologies contain normalized
values and units, which are of higher quality with more unified vocabularies.
When using the enriched ontologies as inputs of these tools, almost all tools have
performance increases in terms of recall (shown in Figure 5(b)). This indicates
that these tools do not complete missing links of object values, which can actually
reduce the ambiguities, and thus have positive impacts on instance alignments.

PropertyAlignment. Similarly, during property alignment, we not only use the
original ontologies as inputs for these tools, but also feed them with two enriched
version of ontologies. One enrichment is to add the card links to the original ontolo-
gies. Another is to further add our pre-processing results (i.e., value and unit nor-
malization) similar to the enrichment made for instance alignment.

Figure 6(a), Figure 6(b), and Figure 6(c) show the property alignment per-
formance comparison results of these tools and our approach based on original
ontologies and two versions of enrichments respectively. From these figures, we
can find that all tools are benefited from the two versions of enriched ontolo-
gies and gain precision and recall improvements. Our approach gets the best
performance again. Among these tools, RiMoM is the best. The performance
gap between RiMoM and ours mainly lies on dealing with one-to-many property
alignments. For example, Both “Born” with two object values “July 18, 1918”,
“Mvezo, South Africa” and “Died” with two object values “December 5, 2013”,
“Houghton Estate, Johannesburg, South Africa” of a card should be aligned
with the property “Lived” (who has an object value named “Jul 18, 1918 - Dec
05, 2013 (age 95)” from another card about Nelson Mandela. But RiMoM fails
to find such an aligned property pair. Moreover, a small number of bad cases
happen when one property has multiple values while the other with the same
property name only has one value to be aligned. For example, a property named
“Previous offices” with one value “Representative (NY 9th District) 1993-1999”
cannot be aligned with the property of the same name with multiple values
“Representative NY 9th District (1993 - 1999)”, and “Representative NY 10th
District (1983 - 1993)”. Instead, we are able to solve the above bad cases of
RiMoM thanks for our learning-based property alignment method.

5 Related Work

There are three lines of research related to our work. They are entity search, Web
data fusion, and ontology alignment in the following subsections respectively.

5.1 Entity Search

Entity search has attracted more and more attentions from both academia and
industry. Jeffrey Pound et al. [16] provided a solid framework for ad-hoc object
retrieval. Jeffrey Dalton et al. [4] developed a method for coreference aware
retrieval over a collection of objects containing a large degree of duplication.
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Roi Blanco et al. [2] proposed a content-based recommendation algorithm to
provide a list of related entities for an input entity query. Roi Blanco et al. [3]
presented an evaluation framework for repeatable and reliable semantic search
evaluation. All these work focus on entity retrieval and ranking.

More recently, Daniel M. Herzig et al. [9] proposed different language models
to tackle vocabulary and structure mismatches among different data sources for
heterogenous entity retrieval. In [8], he further proposed a novel method for
on-the-fly entity consolidation during federated entity search. The above two
works consider instance alignment only during the query time. Thus, there is no
existing research work on fusing knowledge cards from various search engines for
an entity query.

5.2 Web Data Fusion

Essentially, knowledge cards fusion is a kind of data fusion considering both
property alignment and instance alignment.

Xuan Liu et al. [13] proposed SOLARIS which starts with returning answers
from the first probed source and refreshes the answers as it probes more sources.
While it considers online data fusion, it expands to more sources iteratively. Dif-
ferent from it, we extract knowledge cards from multiple search engines (sources)
at the same time before further fusion. D.Rinser et al. [17] leverages the inter-
language links to identify equivalent entities. In our work, the link-completer
plays the same role but uses a different method. R.Gupta et al. [7] focuses on
creating a rich-attribute ontology by extracting attributes from query-stream
and plain-text while our work invests heavily in ontology alignment.

More recently, Stefanidis et al. [18] described some efficient block-based entity
resolution on the Web of data. All the above two work are about entity matching
without considering property or class alignment, which are necessary in knowl-
edge cards fusion.

5.3 Ontology Alignment

The closest work to ours is ontology alignment. PARIS [19], Falcon-AO [10],
RiMOM [12], and Logmap [11] are ontology matching tools for the automatic
alignment of entities, properties and classes from multiple ontologies. These tools
get satisfactory results in the recent OAEI campaigns. They are selected to
compare with our approach on alignment performance of knowledge cards fusion.
Different from traditional ontology alignment settings, in our problem, schema-
level information such as domains and ranges of properties are not provided.
Sometimes, links to some object values are missing. Lack of such ontological
knowledge, these tools fail to return important instance alignments or property
alignments. Thus knowledge cards fusion can be seen as a new branch of ontology
alignment task requiring new methods to deal with the above challenges.
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6 Conclusion and Future Work

In this paper, we presented the first effort to work on fusing knowledge cards
from various search engines. We proposed a probabilistic scoring method for
card disambiguation. A learning-based method is then applied to align proper-
ties coming from different cards. Finally, we deduplicate the values of aligned
properties and group these values into clusters. Knowledge cards fusion is actu-
ally a kind of online data fusion task involving both instance alignment and
property alignment. Compared with several state of the art ontology alignment
tools, our approach achieves better accuracy and wider coverage. As for future
work, we plan to handle inconsistent [5] cards and to design ranking functions to
rank values, attribute value pairs, and cards respectively so that we can return
the most relevant fused cards with highly informative information for entity
search.
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