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Abstract. Brain mapping plays an important role in neuroscience and
medical imaging fields, which flattens the convoluted brain cortical sur-
face and exposes the hidden geometry details onto a canonical domain.
Existing methods such as conformal mappings didn’t consider the
anatomical atlas network structure, and the anatomical landmarks, e.g.,
gyri curves, appear highly curvy on the canonical domains. Using such
maps, it is difficult to recognize the connecting pattern and compare the
atlases. In this work, we present a novel brain mapping method to ef-
ficiently visualize the convoluted and partially invisible cortical surface
through a well-structured view, called the structural brain mapping. In
computation, the brain atlas network (“node” - the junction of anatom-
ical cortical regions, “edge” - the connecting curve between cortical re-
gions) is first mapped to a planar straight line graph based on Tutte
graph embedding, where all the edges are crossing-free and all the faces
are convex polygons; the brain surface is then mapped to the convex
shape domain based on harmonic map with linear constraints. Experi-
ments on two brain MRI databases, including 250 scans with automatic
atlases processed by FreeSurfer and 40 scans with manual atlases from
LPBA40, demonstrate the efficiency and efficacy of the algorithm and
the practicability for visualizing and comparing brain cortical anatomical
structures.

1 Introduction

Brain mapping was introduced to map the genus zero 3D brain cortical surface
(usually brain hemisphere) onto a unit sphere or a planar canonical domain (e.g.,
a unit disk, a rectangle domain), so that the convoluted and invisible cortical
folds are flattened and the geometric details are fully exposed onto the canonical
domain. A plausible category of methods is conformal mapping, which preserves
angles (local shapes) and therefore is highly desired for brain morphometry study
in neuroscience and medical imaging fields. It has been well studied in recent
works using spherical harmonic mapping [1], Ricci curvature flow [2] and other
methods [3]. Another commonly used category of methods is area-preserving
brain mapping [4,5], computed based on optimal mass transportation theory.

Brain anatomical landmarks including gyri and sulci curves are used to help
shape registration and analysis applications. One method [2] is to slice the brain
surface open along these curves, and map the new surface to a unit disk with
circular holes or a hyperbolic polygon; the curves are mapped to circular holes or
hyperbolic lines for generating intrinsic shape signatures. The other method [6]
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is to map the whole brain surface with interior curve straightening constraints
based on holomorphic 1-form method, without changing surface topology; the
interior curves are mapped to canonically-shaped segments, e.g., straight lines in
a rectangle or circular arcs in a unit disk. Brain anatomical connectivity between
cortical regions (atlas) is also one significant anatomical feature. To date, none of
the existing methods integrate the anatomical atlas structure into the mapping,
and makes the atlas well-shaped in the mapping.

Brain networks, the so-called brain graphs [7], have been intensively studied in
neuroscience field. Bullmore et al. [7] gave thorough reviews and methodological
guide on both structural and functional brain network analysis. In this work, we
focus on brain structural network on cortical surface, i.e., cortical network. It
has been used to discover the relation of its disorganization to diseases such as
Alzheimer’s disease [8]. One important task within this is brain network visual-
ization and comparison. To date, it still needs a lot of efforts to explore a more
perceptively straightforward and visually plausible graph drawing.

In summary, the motivation of this work is to provide a well-structured convex
shape view for convoluted atlas structure, which is more accessible for reading
than pure surface mapping (e.g. conformal) views with curvy landmarks and
more efficient for anatomical visualization and comparison.

Brain Net. The cortical network studied in this work is different from the
definition of structural “brain graph” in [7], where the node denotes the cortical
region, the edge denotes the connectivity between two cortical regions, and it is
completely a topological graph. In this work, we define the node as the junction
of anatomical cortical regions and the edge as the common curvy boundary
of two neighboring cortical regions. This anatomical graph (see Fig. 1 (b)) is
embedded on the 3D genus zero cortical surface, has physically positioned nodes
and crossing-free curvy edges, and therefore is planar in theory [9]. For simplicity
and differentiation, we call it “brain net”. In terms of topology, it is the “dual
graph” of the brain graph in [7]. We have verified this in our experiments. In
this work, brain net is used to drive a canonical surface mapping (the regions
and the whole domain are convex). We call this technique brain-net mapper.

Approach. This work presents a novel method for brain cortical anatomical
structure mapping. It employs the special properties of the anatomical brain
net: 1) planar and 2) 3-connected (after testing and minor filtering). The com-
putational strategy is to employ the planar graph embedding as guidance for
structural brain surface mapping using constrained harmonic map. In detail,
first, the 3-connected planar brain net graph is embedded onto the Euclidean
plane without crossing graph edges and every face is convex based on Tutte em-
bedding theorem [10]; then, using the obtained convex target domain with convex
subdivision as constraints, a harmonic map of the brain surface is computed. The
mapping is unique and diffeomorphic, which can be proved by generalizing Radó
theorem [11]. The algorithm solves sparse linear systems, therefore is efficient and
robust to topology and geometry noises. The resulting mapping exposes invisible
topological connectivity and also details cortical surface geometry.
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(a) cortical surface (c) conformal mapping (d) conformal embedding
M φ(M) φ(G)

(b) cortical net (e) Tutte embedding (f) structural mapping
G η(G) h(M,G)

Fig. 1. Brain net embeddings for brain A1 (left hemisphere).

Figure 1 gives an example where regions are denoted in different colors (a).
The brain net G (b) is mapped to a planar polygonal mesh (e), where each
face is convex and assigned with the corresponding region’s color. The planar
representation (f) is the final map guided by (e), with visually plausible structure,
i.e., planar straight lines and convex faces with interior surface harmonically
flattened (stretches minimized). It illustrates the cortical anatomical structure
(a). We call this mapping structural brain mapping. In contrast, conformal map
(c) generates the planar graph embedding but with curvy graph edges (d).

To our best knowledge, this is the first work to present a structural view of
brain cortical surface associated with anatomical atlas by making all anatomi-
cal regions in convex polygonal shapes and minimizing stretches. Experiments
were performed on 250 brains with automatic parcellations and 40 brains with
manual atlas labels to verify the 3-connected property of brain nets (anatomi-
cal connectivity) and test the efficiency and efficacy of our algorithm for brain
cortical anatomical atlas visualization and further cortical structure comparison.

2 Theoretic Background

This section briefly introduces the theoretic background. For details, we refer
readers to [9] for graph embedding and [11] for harmonic mappings.

Graph Embedding. In graph theory, a graph G is k-connected if it requires at
least k vertices to be removed to disconnect the graph, i.e., the vertex degree of
the graph deg(G) ≥ k. A planar graph is a graph that can be embedded in the
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plane, i.e., it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. Such a drawing is called the planar embedding of a
graph, which maps the nodes to points on a plane and the edges to straight lines
or curves on that plane without crossings.

A 3-connected planar graph has special property that it has planar crossing-
free straight line embedding. Tutte (1963) [10] gave a computational solution,
the classical Tutte embedding, where the outer face is prescribed to a convex
polygon and each interior vertex is at the average (barycenter) of its neighbor-
ing positions. Tutte’s spring theorem [10] guarantees that the resulting planar
embedding is unique and always crossing-free, and specially, every face is convex.

Harmonic Map. Suppose a metric surface (S,g) is a topology disk, a genus
zero surface with a single boundary. By Riemann mapping theorem, S can be
conformally mapped onto the complex plane, D = {z ∈ C||z| < 1}, φ : S → D,
which implies g = e2λ(z)dzdz̄, where λ is the conformal factor.

Let f : (D, |dz|2) → (D, |dw|2) be a Lipschitz map between two disks, z = x+iy
and w = u + iv are complex parameters. The harmonic energy of the map
is defined as E(f) =

∫
D
(|wz |2 + |wz̄ |2)dxdy. A critical point of the harmonic

energy is called a harmonic map, which satisfies the Laplace equation wzz̄ = 0.
In general, harmonic mapping is unnecessarily diffeomorphic. Radó theorem [11]
states that if the restriction on the boundary is a homeomorphism, then the map
from a topological disk to a convex domain is a diffeomorphism and unique.

3 Computational Algorithms

The computation steps include: 1) compute graph embedding; and 2) compute
harmonic map using graph embedding constraints (see Algorithm 1).

The brain cortical surface is represented as a triangular mesh of genus zero
with a single boundary (the black region is cut off), denoted as M = (V,E, F ),
where V,E, F represent vertex, edge and face sets, respectively. Similarly, the
brain net is denoted as a graph G = (VG, EG, FG) (3-connected and planar,
embedded on M) (see Fig. 1(b)). Thus, we use (M,G) as the input.

Step 1: Isomorphic Graph Embedding. The first step is to compute a
straight line convex graph embedding of G, η : G → Ĝ by Tutte embedding
[10]. We first place the graph nodes on boundary ∂M onto the unit circle uni-
formly, and then compute the mapping positions η(vi) for interior nodes vi as
the barycenters of the mapping positions of neighboring nodes vj , {η(v̂i) =
Σ(vi,vj)∈EG

λijη(v̂j)}. We use λij = 1/deg(vi), where deg(vi) denotes the degree
of node vi in G. Solving the sparse linear system, we obtain the Tutte embedding
result Ĝ, which defines a convex planar domain Ω (see Fig. 1(e)).

Step2:ConstrainedHarmonicMapping.The second step is to compute a sur-
face mapping h : (M,G) → (Ω, Ĝ) to restrict graphG to the planar Tutte embed-
ding result Ĝby a constrainedharmonicmap (see Fig. 1(f)).Wemap thewhole sur-
faceM onto the convex planar domainΩ by minimizing the discrete harmonic en-
ergy under graph constraints, formulated asmin{E(φ(vi)) = Σ[vi,vj ]∈Ewij(φ(vi)−
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Algorithm 1. Graph Embedding for Surface Mapping

Input: A triangular mesh with decorative graph (M,G)
Output: A planar triangular mesh with straight line decorative graph (Ω, Ĝ)
1: Compute Tutte embedding η : G → Ĝ
2: Compute harmonic map φ : (M,G) → (Ω, Ĝ) with constraints φ(G) = Ĝ

φ(vj))
2, ∀vi ∈ V }, s.t., φ(lk) = l̂k, ∀lk ∈ G, l̂k = η(lk), i.e., lk is the curvy edge of

graphG, and l̂k is the corresponding edge on the planar graph embedding Ĝ. The
solution to the harmonic energy minimization problem is equivalent to solving the
linear system Δφ = 0 (Δ is the Laplacian operator), descreterized as the linear
equations {Σ[vi,vj ]∈Ewij(φ(vi)− φ(vj)) = 0, ∀vi ∈ V }.

We only specify the target positions for the two end vertices of lk. Other
interior vertices on lk are constrained to l̂k through a linear combination of two
neighbors on l̂k. The linear constraints between coordinates x, y on straight line
l̂k can be plugged into the above system. We employ the mean value coordinates
to guarantee the edge weight wij to be positive. Then in our construction, for
each vertex there is a convex combination of neighbors. According to Tutte’s
spring theorem [10], Radó theorem [11] and generalized Tutte embedding [12],
the solution achieves a unique and diffeomorphic surface mapping.

4 Experiments

The proposed algorithms were validated on two databases with different atlas
types: 1) the own captured 250 brain MRI scans, we use FreeSurfer to automati-
cally extract triangular cortical surfaces and anatomical atlas (see Figs. 1, 2(a));
and 2) the public 40 brains with manual atlas labels provided by LPBA40 [13]
(see Fig. 2(b-c)), we use BrainSuite to correlate the triangular cortical surface
with manual labels. All the brains come from human volunteers.

Brain Net Extraction. We extract the brain nets from cortical surface using
anatomical region id or color assigned. To employ Tutte embedding, we then test
the 3-connected property of all the brain nets using two conditions: (a) every
node has ≥ 3 neighboring regions; (b) every region has ≥ 3 boundary nodes.
If both are satisfied, then the brain net is 3-connected, a “good” one.

Our tests show that all brain nets satisfy condition (a). All the “bad” regions
detected contain 2 nodes, i.e., 2 boundary edges, which contradicts (b). There
may be (i) 1, (ii) 2, or (iii) 3 bad regions. Table 1 gives the number of brains
for each above case. We use (lh, rh) to denote the percentage of left and right
hemisphere brain nets satisfying both (a-b): FreeSurfer (22.8%, 100%), LPBA40
(12.5%, 82.5%), both (21.4%, 97.6%). The tests give that most exception cases
are with 1 ∼ 2 “bad” regions, for which we only map one boundary edge to
straight line and ignore the other in next structural brain mapping procedure. If
the region is totally interior, we randomly select one; if it is adjacent to the brain
surface boundary, then we select the boundary one, as shown in Fig. 2(b-c).
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pial surface MA2

convex mapping ΩA2

pial surface MB1

convex mapping ΩB1

pial surface MB2

weighted convex ΩB2

(a) brain A2 (lh) (b) brain B1 (lh) (c) brain B2 (lh)

Fig. 2. Structural brain mappings driven by graph embedding.

Table 1. Statistics on brain nets, meshes and time. lh (rh) - left (right) hemisphere.

Data FreeSurfer (lh) FreeSurfer (rh) LPBA40 (lh) LPBA40 (rh)

#region,#node 33∼35, 62∼70 33∼35, 41∼52 24∼28, 64∼72 20∼22, 39∼55

#triangle,time 277k, 20 secs 279k, 20 secs 131k, 10 secs 131k, 10 secs

#good (a-b) 57 250 5 33
#bad (i/ii/iii) 193/0/0 0/0/0 24/10/1 7/0/0

Structural Brain Mapping. The algorithms were tested on a desktop with
3.7GHz CPU and 16GB RAM. The whole pipeline is automatic, stable and
robust for all the tests. Table 1 gives the averaged running time. Figures 1-2
show various results, by which it is visually straightforward to figure out local
topology (adjacency of regions) and tell whether two atlases are isomorphic (or
topologically same); in contrast, it is hard to do so in a 3D view. Note that the
polygonal shape is solely determined by the combinatorial structure of the brain
net. Brains with consistent atlases are mapped to the same convex shape (see
brains A1, A2), which fosters direct comparison. Brains B1, B2 from LPBA40 are
with different brain nets, especially around the exception regions. Even though
the unselected edges of the bad regions appear irregular, the mapping results
are visually acceptable and functionally enough for discovering local and global
structures and other visualization applications, such brain atlas comparison.
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(a) straight line (b) convex harmonic (c) straight line
drawing of Fig. 1(c) mapping of Fig. 1(a) drawing of (b)

Fig. 3. Straight line graph drawings induced by conformal and harmonic mappings.

5 Discussion

This work focuses to present a novel brain mapping framework based on Tutte
embedding and harmonic map with convex planar graph constraint. For better
understanding the method and its potentials, we have the discussions as follows.

Convex Shape Mapping: The cortical surface can be directly mapped to canonical
domains such as conformal map to a disk [2] (Fig. 1(c)) and harmonic map to a
convex domain [1] (Fig. 3(b)). Each map can define a planar straight line graph
embedding (Fig. 3(a,c)) by simply connecting the nodes on the planar domain,
but it may generate concave and skinny faces and cannot guarantee “crossing-
free” and further the diffeomorphic brain mapping. Our method can solve these,
and the diffeomorphism property has been verified in all the tests. If the graph is
not 3-connected, we use valid subgraph for guiding the mapping. The unselected
part is ignored and won’t affect the diffeomorphism.

Topology and Geometric Meanings: This work studies “graph on surface” and
its influence to surface mapping. The convex map preserves the topology of the
graph on the canonical domain and minimizes the constrained harmonic energy
(preserving angles as much as possible under constraints), therefore is more
accessible and perceptually easy to capture global and local structures.

Advantages: In theory, the method is rigorous, based on the classical Tutte graph
embedding for 3-connected planar graphs (Tutte’s spring theorem [10]), and
the harmonic map with linear convex constraints with uniqueness and diffeo-
morphism guarantee (Radó theorem [11], generalized Tutte embedding [12]). In
practice, all the algorithms solve sparse linear systems and are easy to imple-
ment, practical and efficient, and robust to geometry or topology noises. The
framework is general for surfaces decorated with graphs.

Extensions: This method is able to reflect more original geometry by introducing
weighted graph embeddings, and can be extended to handle high genus cases by
using advanced graph embeddings.

Potentials for BrainMapping andOther Biomedical Research: The structural brain
mapping can help understand anatomical structures and monitor anatomy pro-
gression, and has potential for brain cortical registration with atlas constraints.
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This anatomy-aware framework is general for other convoluted natural shapes
decorated with feature graphs (e.g., colons), and can be applied for their anatomy
visualization, comparison, registration and morphometry analysis.

6 Conclusion

This work presents a brain cortical surface mapping method considering cortical
anatomical structure, such that the complex convoluted brain cortical surface
can be visualized in a well-structured view, i.e., a convex domain with convex
subdivision. The algorithms based on Tutte embedding and harmonic map are ef-
ficient and practical, and are extensible for other applications where 3-connected
feature graphs are associated. We will further employ weighted graph embed-
dings to reflect the original geometry in the mapping, and explore the potentials
for solving brain surface registration and analysis problem in future works.
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