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Abstract. Ultrasound is the mainstay of imaging for pediatric hydronephrosis, 
which appears as the dilation of the renal collecting system. However, its poten-
tial as diagnostic tool is limited by the subjective visual interpretation of radiol-
ogists. As a result, the severity of hydronephrosis in children is evaluated by  
invasive and ionizing diuretic renograms. In this paper, we present the first 
complete framework for the segmentation and quantification of renal structures 
in 3D ultrasound images, a difficult and barely studied challenge. In particular, 
we propose a new active contour-based formulation for the segmentation of the 
renal collecting system, which mimics the propagation of fluid inside the kid-
ney. For this purpose, we introduce a new positive delta detector for ultrasound 
images that allows to identify the fat of the renal sinus surrounding the dilated 
collecting system, creating an alpha shape-based patient-specific positional 
map. Finally, we incorporate a Gabor-based semi-automatic segmentation of the 
kidney to create the first complete ultrasound-based framework for the quantifi-
cation of hydronephrosis. The promising results obtained over a dataset of 13 
pathological cases (dissimilarity of 2.8 percentage points on the computation of 
the volumetric hydronephrosis index) demonstrate the potential utility of the 
new framework for the non-invasive and non-ionizing assessment of 
hydronephrosis severity among the pediatric population. 

Keywords: Collecting system, 3D ultrasound, segmentation, monogenic signal, 
alpha shapes, kidney, hydronephrosis. 

1 Introduction 

Thanks to its non-invasive and non-irradiating properties, ultrasound (US) allows 
quick, safe, and relatively inexpensive evaluation of the kidney and the urinary tract 
in children. Hydronephrosis (HN), the dilation of the renal collecting system (CS) 
inside the kidney with distortion of the renal parenchyma caused by the obstruction of 
the urinary track (see Fig. 1(a)), is one of the most common abnormal finding in these 
studies, affecting 2-2.5% of children [1] in a wide spectrum of severity. Thus, an early  
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shape, blurred boundaries, heterogeneous structures of different shapes and intensities 
inside the kidney (i.e., the renal pyramids in very young children), which can confuse 
even the experienced eye (see Fig. 1(a)). 

In this paper, we present, to the best of our knowledge, the first segmentation and 
quantification method of the CS in 3DUS. In Section 2.1 we introduce a new positive 
delta detector for ultrasound images derived from the monogenic signal formulation 
[9]. This delta detector allows to identify echogenic bands in US images, such as the 
fat of the renal sinus that surrounds the dilated collecting system. Based on this in-
formation, Section 2.2 presents an alpha shape-based patient-specific positional map 
that controls the evolution of the segmentation process. Section 2.3 presents an origi-
nal active contour-based formulation, which allows to replicate the evolution of HN in 
the CS. Finally, the Gabor-based segmentation method for the kidney [7] is incorpo-
rated in Section 2.4 to create the complete segmentation framework for renal struc-
tures in 3DUS. The segmentation algorithm is tested in Section 3.  

2 Methods 

2.1 Local Phase-Based 3D Positive Delta Detection 

Local phase-based boundary detection methods in US images have been exploited in 
previous work in the context of echocardiography images [12], showing promising 
results thanks to reduced sensitivity to speckle and intensity invariance. Given the 
complex-valued representation of a signal (i.e., the 1D analytic signal based on the 
Hilbert transform), the local amplitude includes intensity information, whereas the 
local phase contains local structural information (i.e., location and orientation of im-
age features, such as transitions or discontinuities).  

The monogenic signal [9] is a n-dimensional generalization of the 1D analytic rep-
resentation by means of the Riesz transform. In the context of 3D image processing, 
the monogenic signal,  ࡵெ, is defined as the 4D vector ࡵெ = (ࡵ, Ω :ࡵ ோ), whereࡵ → ℝା 
represents the 3D gray level image in the image domain Ω ∈ ℝଷ , and ࡵோ =൫ࡵோ௫, ,ோ௬ࡵ ோ௭൯ࡵ =  ൫ࡵ ∗ ,௫ࢎ ࡵ ∗ ,௬ࢎ ࡵ ∗ -௭൯ represents the three Riesz filtered compoࢎ
nents. The spatial representation of the earlier filters is defied by ࢎ௞ = −݇/൫2ݔ)ߨଶ + ଶݕ + ଶ)ଷ/ଶ൯ݖ , where ݇ = ,ݔ ݖ or ,ݕ . In practice, the original signal ࡵ 
should be first filtered by an isotropic bandpass filter such as a log-Gabor filter ࡳࡸࢍ,ఠ , with central frequency ߱ . Therefore, the monogenic signal can be repre-
sented in a polar form by the scalar-valued even component, ݁݊݁ݒఠ = ఠ,ࡳࡸࢍ  ∗  ,ࡵ

and odd component, ݀݀݋ఠ = (∑ ఠ,ࡳࡸࢍ) ∗ ோ௞)૛௞ୀ௫,௬,௭ࡵ )ଵ/ଶ. Using this representa-
tion of the monogenic signal, the local phase [13] can be defined as Φఠ =atan (݁݊݁ݒఠ ఠ݀݀݋/ ), with atan (. ) being the inverse tangent in radians. Typical-
ly, the properties of the local phase are used to detect step edges in images identifying 
those points whose absolute value of the local phase is 0 (positive edges), or ߨ (nega-
tive edges) [13]. However, local phase properties can also be exploited to detect 
symmetrical image features such as positive (ridge) or negative (valleys) deltas, iden-
tified with points whose local phase is +2/ߨ, or −2/ߨ, respectively. In particular,  
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intuitive notion of the shape defined by the  fat regions. In particular, the level of 
detail of the polyhedron is controlled by the single configuration parameter, ߙ ∈ ℝା, 
with  ܵஶ being equivalent to the convex hull defined by the points. Thus, the new 
stopping function can be defined as SF(ܠ) =  1/(1 + උܦௌഀ(ܠ)ඏ)ఛ , where ܠ ∈ Ω  
defines a point in the image domain, ܦௌഀ(ܠ) is the signed distance to ܵఈ , taking 
negative or positive values inside and outside ܵఈ, respectively, and ߬ ∈ [1, +∞) is a 
control variable (see Fig. 2(b) and (c)). Note that the computation of SF(. ) can be 
performed offline for the entire image domain, Ω, since it does not depend on the 
evolution of the contour. This new stopping function is integrated in the active  
contour evolution equation in the next section.  

2.3 Active Contours Formulation 

To address the segmentation of the CS, we employ an active contour approach [8]. In 
particular, we propose a new energy functional that combines contour and intensity-
based terms, incorporating the patient-specific positional map described above as 
additional stopping criteria.  

Suppose ࡵ: Ω → ℝା  represents a 3D gray level image in the image domain Ω ∈ ℝଷ, and ࢁ: ,ݐ) Ω) → ℝ is an implicit representation of the surface ࡿ, which coin-
cides with the set of points ݐ)ࢁ, . ) = 0. Following the geodesic active contours for-
mulation proposed by Caselles et al. [8], the evolution of ࢁ is defined by /࢚ࣔ ߢ)|ࢁ∇|(ࡵ)݃ = + ܿ) + (ࡵ)݃ߘ · ߢ where , ࢁߘ =  is the curvature term (|ࢁ∇|/ࢁ∇)ݒ݅݀ 
computed on the level set of  ࢁ,  ܿ ∈ ℝା is a constant velocity term, and ݃(ࡵ) is an 
inverse edge indicator function of the image ࡵ. The constant expanding force repre-
sented by ܿ prevents the contour to get stuck at local minimum when dealing with 
noisy and low contrast data in US images. Additionally, the constant expanding force 
represented by ܿ can be interpreted as the expansive dilation force that pushes the 
dilation of CS inside the kidney. The directionality of the expansion process of the CS 
(i.e. the dilation of the CS is not uniform in space; see Fig. 1(a)) is controlled by the 
patient specific positional map described in Section 2.2. Typically, ݃(ࡵ) is defined as ݃(ࡵ) = 1/(1 + ఙܩ)ߘ| ∗ ఙܩ with ,(|(ࡵ  representing a Gaussian kernel with standard 
deviation ߪ . However, this typical intensity-based method of boundary detection 
generally performs poorly in US due to the aforementioned drawbacks. As alternative, 
we use the feature asymmetry detector (FA) [13] (i.e., a local phase-based step func-
tion detector) whose satisfactory performance as edge detector in US images was 
emphasized by previous works [10,12]. Thus, the inverse edge indicator function can 
be defined as (ࡵ) = 1 − ߛ ఊ , withܣܨ ∈ [0,1ሿ.  

The terms described above are all expansive forces controlled by the external 
 image dependent stopping function, ݃(ࡵ), whose main goal is to stop the evolving 
surface when it arrives to the object boundaries. However, it turns inefficient when 
segmenting objects with weak or missing boundaries. Here we combine the above 
gradient-based active contour model with the minimal variance formulation proposed 
by Chan and Vese [11], whose more general formulation defines the evolution of the 
contour as ߲ݐ/ࢁ = ࡵ)௢௨௧ߣ)  − ௢௨௧)ଶߤ − ࡵ)௜௡ߣ −  ௜௡ areߤ ௢௨௧, andߤ where ,|ࢁ∇|(௜௡)ଶߤ
the mean intensities in the exterior and the interior of the surface ࡿ, respectively; ߣ௢௨௧ 
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and ߣ௜௡ are two control parameters generally defined as ߣ௢௨௧ = ௜௡ߣ = 1. With this 
formulation, the segmentation turns into an optimization process that looks for the 
best separating contour in ࡵ, and the optimal expected values ߤ௢௨௧ and ߤ௜௡. Given 
the hypoechoic nature of the CS in US images (i.e., ߤ௜௡ ≈ 0), the second term of the 
above equation prevents the evolution of the contour into brighter areas, whereas the 
first term acts as expansive force toward dark areas (i.e., toward the CS). Finally, 
incorporating the alpha shape-based patient-specific positional map as additionally 
stopping function, the final evolution equation of the active contour is defined as 

డࢁడ௧ =  SF(ࡵ) ቀβ൫(ߢ + |ࢁ∇|(ࡵ)݃(ܿ +  ∇g(ࡵ) · ൯ࢁ∇ + (1 − ࡵ)௢ߣ)൫(ߚ − ௢)ଶߤ ࡵ)௜ߣ − −  ൯ቁ, (2)|ࢁ∇|(௜)ଶߤ

where β ∈ ℝାis a constant that balances the contour- and the intensity-based terms. 

2.4 Complete Segmentation Framework of Renal Structures in 3DUS 

The kidney (including CS) Gabor-based segmentation method recently proposed by 
Cerrolaza et al. [7] is now integrated with the CS segmentation approach described 
above, creating a complete framework for the segmentation and quantification of 
hydronephrosis in 3DUS. The semi-automatic algorithm proposed in [7] requires 
minimal user intervention, selecting two point clicks to roughly define the major axis 
of the kidney. Within the segmented kidney, the segmentation of CS is automatically 
initialized by selecting the darkest 3 × 3 × 3 region within ܵఈ. Using the initial seg-
mentation of the kidney to filter those spurious adipose points outside the renal tissue, 
an estimation of ܵఈ is obtained and the CS is segmented. Finally, the volumetric HI is 
automatically computed as explained in Section 1. 

3 Results and Discussion 

To validate the new framework for the analysis of renal structures, we used a set of 13 
3DUS image of pathologic pediatric right kidneys diagnosed with hydronephrosis of 
varying severity. Image data were acquired from a Philips iU22 system with X6-1 
xMATRIX Array transducer. The average image size was 484 × 404 × 256 voxels, 
with a resolution range from 0.15 mm to 0.82 mm. For each image, the kidney and CS 
were delineated manually by an expert radiologist to provide the ground truth. The 
method was evaluated using the leave-one-out cross-validation. The statistical shape 
model used in the kidney segmentation method was refined using an additional set of 
11 healthy kidney cases. The same configuration parameters described in [9] were 
used during the experiments. The rest of the configuration parameters were deter-
mined empirically using an iterated grid search approach. In particular, the selected 
values were: ܿ = 1 ௢௨௧ߣ , = ௜௡ߣ = 1 ߚ , = 0.3 , ߙ  = 60 , and ߬ = 9 . For the local 
phase-based feature detection, we use a bank of log-Gabor filters with central fre-
quencies ߱ = 0.04, 0.05 and 0.06. Two point clicks were manually defined to initial-
ize the segmentation of the kidney, while the CS was initialized automatically, as 
described in Section 2.4 A valid initialization seed (i.e., a 3 × 3 × 3 region inside the 
CS) was automatically detected in 11 cases; in the other two images, the location of 
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the seed was corrected manually. No significant difference was observed for different 
initializations, provided that the seed is located inside the CS.  

Table 1 shows the segmentation error of both the kidney and CS. Although the 
method proposed here is the first segmentation framework for the CS in 3DUS, the 
performance of this new approach is compared with our 3D version of the graph cut-
based method described by Mendoza et al. [8], originally conceived for 2DUS. It can 
be observed how the new framework provides not only better average results, but also 
lower standard deviation for the two accuracy metrics considered: Dice’s coefficient 
(DC), and symmetric point-to-surface distance (SPSD). This improvement was statis-
tically significant (p-value < 0.05 for both metrics), as assessed by means of a Wil-
coxon paired signed non-parametric test. In particular, the new method provides an 
average DC of 0.75 ± 0.08 , similar to the inter-user accuracy reported by [6], 0.76 ± 0.18 (p-value > 0.2 using a two-sample t-test between the mean values). 

Table 1. Segmentation accuracy evaluation of the kidney and the CS segmentation using the 
new tailored active contour-based approach (CS-TAC), and the graph cut-based method 
proposed in [6] (CS-GC). The table present the average error and standard deviation for the 
Dice’s coefficient (DC), and the symmetric point-to-surface distance (SPSD). 

 Kidney CS-TAC CS-GC 

 MEAN STD MEAN STD MEAN STD 

DC 0.80 0.06 0.75 0.08 0.62 0.19 

SPSD(mm) 2.30 0.80 0.98 0.27 1.35 1.20 

 
Finally, the potential utility of the new segmentation framework for the assessment 

of pediatric hydronephrosis was evaluated computing the volumetric HI for all the 
cases (computed as percentage). The average error provided by the full semi-
automatic framework detailed in Section 2.3 was 2.8 ± 3.30  percentage points. 
Compared to the subjective and commonly used SFU grading system, 3DHI provides 
a quantitative measurement for hydronephrosis severity, allowing objective longitudi-
nal monitoring of the patient by US. The ability to objectively assess kidneys with 
hydronephrosis without using invasive imaging with ionizing radiation would be of 
great clinical value. This would permit establishment of thresholds where less com-
plex imaging would be safe and effective for ongoing monitoring and assessment. 

A Matlab® implementation of the framework was tested on a 64-bit 2.8 GHz pro-
cessor, with an average execution time of 321 s (kidney: 96 s and CS: 225 s), which 
represents a considerable improvement over the several hours it takes for the unrepro-
ducible manual delineation by an operator.  

4 Conclusions 

In this paper, we present the first complete framework for the segmentation and quan-
tification of renal structures in 3DUS. Thanks to the new positive delta detector intro-
duced here, bands of fat inside the kidney are successfully identified, allowing us to 
define positional maps of the dilated collecting system via alpha shapes-based volume 
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reconstruction. This patient-specific information is integrated into a hybrid contour-
based formulation for the segmentation of the collecting system, combining contour- 
and intensity-based propagation terms. Finally, a Gabor-based semi-automatic seg-
mentation of the kidney is incorporated to create the first complete ultrasound-based 
framework for the quantification of hydronephrosis. The promising results obtained in 
the segmentation and the estimation of the volumetric hydronephrosis index demon-
strate the potential utility of the new proposed framework for the assessment of 
hydronephrosis among the pediatric population using non-invasive non-ionizing US 
images. In particular, the system provides objective and accurate information of the 
renal parenchymal status, which allows for better informed clinical decision making. 
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