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Abstract. Glaucoma is a chronic and irreversible eye disease in which the
optic nerve is progressively damaged, leading to deterioration in vision and
quality of life. In this paper, we present an Automatic feature Learning for
glAucomaDetection based onDeepLearnINg (ALADDIN),with deep con-
volutional neural network (CNN) for feature learning. Different from the
traditional convolutional layer that uses linear filters followed by a non-
linear activation function to scan the input, the adopted network embeds
micro neural networks (multilayer perceptron) with more complex struc-
tures to abstract the data within the receptive field. Moreover, a contex-
tualizing deep learning structure is proposed in order to obtain a hierar-
chical representation of fundus images to discriminate between glaucoma
andnon-glaucomapattern,where the network takes the outputs fromother
CNN as the context information to boost the performance. Extensive ex-
periments are performed on the ORIGA and SCES datasets. The results
show area under curve (AUC) of the receiver operating characteristic curve
in glaucoma detection at 0.838 and 0.898 in the two databases, much better
than state-of-the-art algorithms. The method could be used for glaucoma
diagnosis.

1 Introduction

Glaucoma is a chronic eye disease that leads to vision loss, in which the optic
nerve is progressively damaged. It is one of the common causes of blindness, and
is predicted to affect around 80 million people by 2020 [8]. Glaucoma is char-
acterized by the progressive degeneration of optic nerve fibres, which leads to
structural changes of the optic nerve head, the nerve fibre layer and a simultane-
ous functional failure of the visual field. As the symptoms only occur when the
disease is quite advanced, glaucoma is called the silent thief of sight. Although
glaucoma cannot be cured, its progression can be slowed down by treatment.
Therefore, timely diagnosis of this disease is important.

Glaucoma diagnosis is typically based on the medical history, intra-ocular
pressure and visual field loss tests together with a manual assessment of the Optic
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Disc (OD) through ophthalmoscopy. OD or optic nerve head is the location where
ganglion cell axons exit the eye to form the optic nerve, through which visual
information of the photo-receptors is transmitted to the brain. In 2D images, the
OD can be divided into two distinct zones; namely, a central bright zone called
the optic cup (in short, cup) and a peripheral region called the neuroretinal rim.
The loss in optic nerve fibres leads to a change in the structural appearance
of the OD, namely, the enlargement of cup region (thinning of neuroretinal
rim) called cupping. Since one of the important indicators is the enlargement of
the cup with respect to OD, various parameters are considered and estimated
to detect the glaucoma, such as the vertical cup to disc ratio (CDR) [9], disc
diameter [10], ISNT rule [11], and peripapillary atrophy (PPA) [12]. Since all
these measurements focus on the study of OD and most of them only reflect
one aspect of the glaucoma disease, effectively capturing the hierarchical deep
features of OD to boost the glaucoma detection is our main interest in this paper.

Unlike natural scene images, where typical analysis tasks are related to object
detection of regions that has an obvious visual appearance (e.g. texture, shape or
color), glaucoma fundus images reveal a complexmixture of visual hiddenpatterns.
These patterns could be only observed by the training and expertise of the exam-
iner. Deep learning (DL) architectures are formed by the composition of multiple
linear and non-linear transformations of the data, with the goal of yielding more
abstract andultimatelymore useful representations [13].Convolutional neural net-
works (CNNs) are deep learning architectures, are recently been employed success-
fully for image segmentation and classification tasks [14,13,15]. DL architectures
are an evolution ofmultilayer neural networks (NN), involving different design and
training strategies to make them competitive. These strategies include spatial in-
variance, hierarchical feature learning and scalability [13][17].

In this paper, we develop a novel deep learning architecture to capture the
discriminative features that better characterize the important hidden patterns
related to glaucoma. The adopted DL structure consists of convolutional layers
which use multilayer perceptrons to convolve the input. This kind of layers could
model the local patches better [4]. Unlike conventional CNN, we develop a con-
textualizing training strategy, which is employed to learn deep hidden features
of glaucoma. In the proposed deep CNN, the context takes the responsibility of
dynamically adjusting the model learning of CNN, which exploit to effectively
boost glaucoma detection by taking the outputs from one CNN as the context of
the other one. In addition, to reduce the overfitting problem, we adopt response-
normalization layers and overlapping-pooling layers . In order to further boost
the performance, dropout and data augmentation strategies are also adopted in
the proposed DL architecture.

2 Method

2.1 Feature Learning Based on Deep Convolutional Neural Network

The overview of our proposed automatic feature learning for glaucoma detection
is shown in Fig.1, the net of CNN contains 6 layers: five multilayer perceptron
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Fig. 1. System overview of our proposed automatic feature learning for glaucoma de-
tection. The net of CNN contains 6 layers: five multilayer perceptron convolutional
layers and one fully-connected layer. Data Augmentation is done by extracting ran-
dom 224× 224 patches from the input images. 256× 256× 3 denotes the dimension of
input image. 96@11× 11× 3 denote 96 kernels of size 11× 11× 3.

convolutional layers [4] and one fully-connected layer. Response-normalization
layers and overlapping layers are also employed in our proposed learning archi-
tecture as in [14].

Convolutional Layers. Convolutional layers are used to learn small feature
detectors based on patches randomly sampled from a large image. A feature in
the image at some location can be calculated by convolving the feature detector
and the image at that location. We denote L(n−1) and L(n) as the input and
output for the n-th layer of CNN. Let L(0) be the 2D input image patch and
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where w
(n)
ij is the kernel linking i-th input map to j-th output map, ∗ denotes

the convolution, 0 ≤ i ≤ P
(n−1)
I , 0 ≤ j ≤ P

(n−1)
O , and b

(n)
j is the bias element for

j-th output-feature-map of n-th layer.

Multilayer Perceptron Convolution Layers. The convolution filter in tra-
ditional CNN is a generalized linear model (GLM) for the underlying data patch,
and it is observed that the level of abstraction is low with GLM [4]. In this sec-
tion, we replace the GLM with a more potent nonlinear function approximator,
which is able to enhance the abstraction ability of the local model. Given no
priors about the distributions of the latent concepts, it is desirable to use a uni-
versal function approximator for feature extraction of the local patches, as it is
capable of approximating more abstract representations of the latent concepts.
Radial basis network and multilayer perceptron are two well known universal
function approximators.

There two reasons for employing multilayer perceptron in the proposed DL
architecture: First, multilayer perceptron is compatible with the structure of
convolutional neural networks, which is trained using back-propagation; Second,
multilayer perceptron can be a deep model itself, which is consistent with the
spirit of feature re-use. This type of layer is denoted as mlpconv in this paper, in
which MLP replaces the GLM to convolve over the input. Here, Rectified linear
unit is used as the activation function in the multilayer perceptron. Then, the
calculation performed by mlpconv layer is shown as follows:

f1
i,j,k1

= max(w1
k1
xi,j + bk1 , 0), (2)

fn
i,j,k1

= max(wn
kn
fn−1
i,j + bkn , 0), (3)

where n is the number of layers in the multilayer perceptron. (i, j) is the pixel
index in the feature map, xij stands for the input patch centered at location
(i, j), and k is used to index the channels of the feature map.

Contextualizing Training Strategy. Different from the traditional CNNs,
training neural network independently, we adopt a contextualizing training for
our proposed DL architecture, where the whole deep CNN is called Contextual-
ized Convolutional Neural Network (C-CNN). For CNN training, we takes the
outputs from one learned CNN as the context input of its own fully-connected
layer. The context takes the responsibility of adjusting the model learning of
CNN, and thus the contextualized convolutional neural network is achieved.
Fig.1 gives an illustration of the algorithmic pipeline. As shown in Fig.1, CNN2
is trained by above mentioned C-CNN strategy, which takes the output of con-
volutional layers of CNN1 as a contextualized input for its own fully-connected
layer. The C-CNN comprises the five multilayer perceptron convolution layers
of CNN1 and whole network of CNN2. Then the prediction result of glaucoma
is from the soft-max classifier of CNN2.
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2.2 Glaucoma Classification

Disc Segmentation. Since optic disc is the main area for glaucoma diagnosis,
disc images are the input images of our proposed C-CNN. To segment the optic
disc from a retinal fundus image, we employ the method of Template Matching
as adopted in [19]. The adopted disc segmentation method is based on peripap-
illary atrophy elimination, where the elimination is done through edge filtering,
constraint elliptical Hough transform and peripapillary atrophy detection. Then
each segmented disc image is down-sampled to a fixed resolution of 256× 256.
Finally, the mean value over all the pixels in the disc image is subtracted from
each pixel to remove the influence of illumination variation among images.

Dropout and Data Augmentation. To reduce overfitting on image data,
we employ data augmentation to artificially enlarge the dataset using label-
preserving transformations, and dropout for model combination. Dropout con-
sists of setting to zero the output of each hidden neuron with probability 0.5 [16].
If the neurons in CNN are dropped out, they do not contribute to the forward
pass and do not participate in back propagation. During testing, we use all the
neurons but multiply their outputs by 0.5. We use dropout in the fully-connected
layer in our proposed deep learning architecture.

Data augmentation consists of generating image translations and horizontal
reflections [14]. At training time, we perform the data augmentation by extract-
ing random 224 × 224 patches including their horizontal reflections from the
256× 256 images, and training our network on these extracted patches. The size
of our training dataset will be increased by a factor of 2048. If we do not adopt
this scheme, our network will suffer from substantial overfitting. At test time,
the CNN makes a prediction by extracting five 224× 224 patches including the
four corner patches and the center patch, as well as their horizontal reflections,
and averaging the predictions made by the network soft-max layer on these ten
patches. We refer to this test strategy as multi-view test (MVT).

Automatic Classification by Softmax Regression. A softmax regression is
a generalization of a logistic regression classifier, which considers as input the
condensed feature maps of the pooling layer. For the binary classification setting,
the classifier is trained by minimizing the following cost function:

J(Ω) = 1/k[

k∑

i=1

yi log hΩ(vi) + (1 + yi) log(1 − hΩ(vi))], (4)

where (v1, y1), ..., (vk, yk) is the training set containing k images, and hΩ(vi) =
1/(1 + exp(−ΩT vi)). For the i-th image, vi ∈ �q is the image representation
obtained from the output of the pooling layer and yi ∈ {0, 1} is class label. Ω is
a weight vector of q × z (z is the pool dimension).

3 Experiments

To evaluate the glaucoma diagnosis performance of our proposed C-CNNmethod,
we perform experiments on two glaucoma fundus image datasets ORIGA[5] and
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Table 1. The AUCs of different CNN architectures on the ORIGA and SCES datasets.
ORIGAm means that all results in this row are obtained based on various CNN struc-
tures without multi-view test strategy on ORIGA. ORIGAd means that all results in
this row are obtained based on various CNN structures without dropout on ORIGA.

Methods CNN 3 CNN 5 CNN 7 CNN C-CNN 3 C-CNN 5 C-CNN 7 C-CNN

ORIGA 82.4 % 82.4 % 82.6% 82.5% 82.9% 83.0% 83.8% 83.7%

SCES 86.9 % 87.0% 87.7% 87.6% 88.6% 88.9% 89.8% 89.8%

ORIGAm 82.0 % 82.0 % 82.3% 82.1% 82.6% 82.6% 83.2% 83.2%

SCESm 86.4 % 86.5% 87.2% 87.1% 88.0% 88.1% 89.0% 89.0%

ORIGAd 81.6 % 81.7 % 82.0% 82.0% 82.3% 82.4% 83.0% 82.9%

SCESd 86.0 % 86.1% 86.7% 86.6% 87.5% 87.5% 88.4% 88.3%

SCES[6]. We compare our algorithm to state-of-the-art reconstruction-based [7],
pixel [1], sliding window [2] and superpixel [3][18] based methods. In addition, we
compare our system against the current clinical standard for glaucoma detection
using intra-ocular pressure (IOP) and to CDR values from expert graders. To
validate the effectiveness of our proposed C-CNN architecture, we also perform
extensive experiments for glaucoma prediction utilizing different types of CNN
architectures and testing strategies.

3.1 Evaluation Criteria

In this work, we utilize the area under the curve (AUC) of receiver operation
characteristic curve (ROC) to evaluate the performance of glaucoma diagnosis.
The ROC is plotted as a curve which shows the tradeoff between sensitivity
TPR (true positive rate) and specificity TNR (true negative rate), defined as

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
, (5)

where TP and TN are the number of true positives and true negatives, respec-
tively, and FP and FN are the number of false positives and false negatives,
respectively.

3.2 Experimental Setup

We adopt the same settings of the experiments for glaucoma diagnosis in [7] in
this work to facilitate comparisons. The ORIGA dataset with clinical glaucoma
diagnoses, is comprised of 168 glaucoma and 482 normal fundus images. The
SCES dataset contains 1676 fundus images, and 46 images are glaucoma cases.

3.3 Comparison of Different Types of CNN Architectures

We systematically compare our proposed C-CNN with different types of CNN
architectures and testing strategies as listed in Table 1. Amongst them,
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Fig. 2. Glaucoma diagnosis performance on ORIGA dataset (left) and SCES dataset
(right).

– CNN means that the final prediction is just from one CNN.
– 3 CNN means that the final prediction of glaucoma is obtained by averaging

three similar CNNs.
– C-CNN means the net has 2 CNNs (the five multilayer perceptron convolu-

tion layers of CNN1 and whole network of CNN2) as shown in Fig. 1. The
prediction result is from CNN2.

– 5 C-CNN means that we have 5 CNNs and they have the concatenated
structure as shown in Fig. 1.

– 7 C-CNN means that we have 7 CNNs and they have the similar concate-
nated structure as shown in Fig. 1.

From the quantitative results from Table 1, we are able to observe that: 1)
the method of 5 C-CNN outperforms all the competing methods on ORIGA and
SCES datasets, 2) under six different setting (ORIGA, ORIGAm, ORIGAd,
SCES, SCESm, SCESd), 5 C-CNN has the best performance. In this work,
we use the 5 C-CNN strategy to validate the glaucoma diagnosis.

3.4 Glaucoma Diagnosis

To validate the effectiveness of our method C-CNN on glaucoma diagnosis ac-
curacy, we compare the predictions of C-CNN (here we use the 5 C-CNN) to
state-of-the-art algorithms. In addition, we compare to the current standard of
care for glaucoma detection using IOP, as well as CDR grading results from an
expert grader. For ORIGA dataset, we adopt the same setting of [7]. The train-
ing set contains a random selection of 99 images from the whole 650 images, and
the remaining 551 images are used for testing. For SCES dataset, we use the
650 images from ORIGA for training, and the whole 1676 images of SCES are
the test data.

As shown in Fig. 2, the proposed C-CNN method outperforms previous auto-
matic methods and IOP on ORIGA and SCES datasets. The AUC values of our
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method on ORIGA and SCES are 0.838 and 0.898, respectively. For the state-
of-the-art reconstruction-based method, the AUC values are 0.823 and 0.860.
On SCES dataset, our proposed algorithm has better boost performance than
that of ORIGA. The reason is that the size of training set on ORIGA is only 99.

4 Conclusion

In this paper, we present an automatic feature learning scheme for glaucoma de-
tection based on deep convolutional neural network, which is able to capture the
discriminative features that better characterize the hidden patterns related to
glaucoma. The adopted DL structure consists of convolutional layers which use
multilayer perceptrons to convolve the input. Moreover, we develop a contextu-
alizing training strategy, which is employed to learn deep features of glaucoma.
In the proposed deep CNN, the context takes the responsibility of dynamically
adjusting the model learning of CNN, which exploit to effectively boost glau-
coma detection by taking the outputs from one CNN as the context of the other
one. In future work, we plan to extend our study of deep leaning architecture
based on C-CNN to multiple ocular diseases detection.
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