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Abstract. Analysis of anatomical covariance for cortex morphology in 
individual subjects plays an important role in the study of human brains. 
However, the approaches for constructing individual structural networks have 
not been well developed yet. Existing methods based on patch-wise image 
intensity similarity suffer from several major drawbacks, i.e., 1) violation of 
cortical topological properties, 2) sensitivity to intensity heterogeneity, and 3) 
influence by patch size heterogeneity. To overcome these limitations, this paper 
presents a novel cortical surface-based method for constructing individual 
structural networks. Specifically, our method first maps the cortical surfaces 
onto a standard spherical surface atlas and then uniformly samples vertices on 
the spherical surface as the nodes of the networks. The similarity between any 
two nodes is computed based on the biologically-meaningful cortical attributes 
(e.g., cortical thickness) in the spherical neighborhood of their sampled vertices. 
The connection between any two nodes is established only if the similarity is 
larger than a user-specified threshold. Through leveraging spherical cortical 
surface patches, our method generates biologically-meaningful individual 
networks that are comparable across ages and subjects. The proposed method 
has been applied to construct cortical-thickness networks for 73 healthy infants, 
with each infant having two MRI scans at 0 and 1 year of age. The constructed 
networks during the two ages were compared using various network metrics, 
such as degree, clustering coefficient, shortest path length, small world 
property, global efficiency, and local efficiency. Experimental results 
demonstrate that our method can effectively construct individual structural 
networks and reveal meaningful patterns in early brain development. 
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1 Introduction 

In the last decade, analysis of functional and structural connectivity has received 
increasing attentions in human brain studies, as it opens up a new approach in 
understanding brain development, aging and disorders. Generally, functional 
connectivity is identified by exploring the correlation of regional fMRI or EEG/MEG 
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signals [1], while structural connectivity is usually established by tracking the fibers 
in white matters (WM) using diffusion-weighted images (DWI). Recently, there has 
been rising interests in studying anatomical covariance in the cortical gray matter 
(GM) using MR images [1]. This can help identify direct and indirect correlations 
between cortical regions and help reveal genetic influence on brain morphology. In 
contrast to the conventional studies of functional and structural connectivity that 
examine the correlation of brain regions within an individual, most existing studies of 
anatomical covariance in GM explore the correlation among morphological measures 
across a population [1]. To better understand the human brain, studying individual 
anatomical covariance in GM is also considerably indispensable. However, the 
methods for constructing meaningful individual anatomical networks have not been 
well developed yet. Although several methods based on the patch-wise similarity of 
image intensity have been recently proposed and reported interesting results [2-4], 
they all suffer from several major limitations: 1) violation of cortical topological 
properties, 2) sensitivity to intensity heterogeneity, and 3) influence by patch size 
heterogeneity. 

Violation of Cortical Topological Properties. In image-patch-based methods, each 
patch is considered as a node in the constructed network. However, anatomically-
distinct and geodesically-distant cortical regions may be included in the same patch, 
causing the respective node and its connections to be less meaningful. For example, as 
shown in Fig. 1(a), two gyral regions (x and y) are partially included in the red patch, 
although they are geodesically far away from each other.  

Sensitivity to Intensity Heterogeneity. Most existing methods compute the similarity 
between two patches based on their image intensity values. However, the intensity lacks 
clearly defined anatomical meanings, and the same intensity value may stand for 
different tissues in different MR scans, making it incomparable across subjects and 
longitudinal scans of the same subject. This problem is particularly pronounced in early 
brain development studies, where the intensity of MRI varies regionally considerably 
and changes temporally dynamically. For example, as shown in Fig. 1(b), the MR 
images of the same infant have completely different intensity levels at different ages. 
Thus, ‘Similarity 0’ and ‘Similarity 1’ are not comparable, though they measure the 
anatomical covariance in corresponding regions. 

 

Fig. 1. Limitations of existing methods (a, b), and the advantages of the proposed method (c). 
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Influence by Patch Size Heterogeneity. Since the volumes of human brains are quite 
variable across subjects and ages, it is impossible to determine a unique size of image 
patch for each individual, while keeping the patches comparable across subjects. Even 
for the scans of the same subject at different ages, simply adjusting the patch size 
according to changes in brain volume still does not achieve comparable patches, as 
the brain develops nonlinearly and regionally heterogeneously.  

To address the above limitations, this paper proposes a novel cortical surface-based 
method to construct individual structural networks. Specifically, in our method, the 
cortical surfaces are first mapped onto a standard spherical surface and aligned onto 
the spherical surface atlas. Then, patches on the aligned spherical surface are used to 
define the nodes in the individual network, as shown in Fig. 1(c). This guarantees that 
each surface patch strictly represents geodesically and anatomically meaningful 
cortical regions. Moreover, the similarity between two spherical patches is computed 
using cortical anatomical attributes with clear biological meanings, such as cortical 
thickness [5] and cortical folding. This similarity is fully comparable across subjects 
and also across ages for the same subject. Furthermore, since the patches are selected 
from aligned spherical surfaces, the size of the patch is independent from brain 
volume. As a result, each patch will always represent the anatomically corresponding 
cortical regions across different subjects and ages.  

The proposed method has been applied to construct individual cortical-thickness 
networks for 73 healthy infants, with each infant having two MRI scans at 0 and 1 
year of age. The constructed networks at the two ages were compared using various 
network metrics, such as degree, clustering coefficient, shortest path length, small 
world property, global efficiency, and local efficiency. The experimental results 
demonstrate that our method can effectively construct individual structural networks 
and reveal meaningful patterns in early brain development. 

2 Methods 

Subjects and Image Acquisition. MR images were acquired for 73 healthy infants 
(42 males and 31 females), using a Siemens head-only 3T scanner with a circular 
polarized head coil. For each subject, images were longitudinally collected at term 
birth (0-year-old) and 1 year of age (1-year-old). Both T1-weighted (resolution 
=1×1×1 mm3) and T2-weighted (resolution=1.25×1.25×1.95 mm3) MR images were 
collected.  

Image Preprocessing. All MR images were processed by the following pipeline as in 
[6]. First, each T2-weighted image was linearly aligned onto the corresponding T1-
weighted image, and then resampled to the resolution of 1×1×1 mm3. Second, skull, 
cerebellum and brain stem were removed automatically, and intensity inhomogeneity 
was corrected using N3 method [7]. Third, each image was rigidly aligned to the age-
matched infant brain atlas [8]. Fourth, tissue segmentation was performed by using a 
longitudinally-guided coupled level-sets method [9]. Finally, non-cortical structures 
were filled, with each brain further separated into left and right hemispheres [10]. 

Cortical Surface Reconstruction and Registration. For each hemisphere of each 
image, topologically correct inner and outer cortical surfaces (represented by 
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triangular meshes) were reconstructed using a deformable surface method [11]. 
Cortical thickness of each vertex was computed as the closest distance between the 
inner and outer cortical surfaces. To establish both inter-subject and left-right cortical 
correspondences, all cortical surfaces of the left hemisphere and mirror-flipped right 
hemisphere at the same age were mapped onto a spherical space and nonlinearly 
aligned to the age-matched unbiased surface atlases [11]. Longitudinal cortical 
correspondences were established by aligning the cortical surfaces at birth to the 
corresponding cortical surfaces at 1 year of age using Spherical Demons [12]. 

 

Fig. 2. Illustration of construction of individual structural network based on cortical surface. 

Construction of Individual Networks. The individual network is constructed with 
the following three major steps: (1) defining the nodes of the network, (2) computing 
similarity matrix between nodes, and (3) binarizing the similarity matrix.  

In Step (1), ܰ vertices are uniformly sampled on the aligned spherical surfaces of 
two hemispheres. For each sampled vertex, its neighborhood is selected and defined 
as a node of the network, as shown in Fig. 2(a). The size of the neighborhood (also 
namely node area) is constrained by two factors. First, any position on the spherical 
surface must be covered by at least one node area. Second, the portion of overlapping 
among node areas is no more than a user-specified threshold  ௢ܶ௩௘௥௟௔௣ . We 
experimentally set ܰ as 1284 and  ௢ܶ௩௘௥௟௔௣  as 10% in our implementation.   

In Step (2), as shown in Fig. 2(b), the similarity matrix is built by calculating the 
similarity between any two node areas. Specifically, in the area of each node ݅, a 
certain number of vertices are uniformly sampled. Then, a feature vector ࢜௜ ∈ ℝ௡ is 
constructed using the cortical morphological attributes (e.g., cortical thickness in our 
implementation) at all sampled vertices, where ݊ is the number of sampled vertices in 
the node area. To obtain the similarity of two areas of nodes  ݅  and  ݆ , Pearson’s 
correlation coefficient ݎ௜௝  is computed using their feature vectors ࢜௜ and ࢜௝ as: ݎ௜௝ =∑ (௩೔ೖି௩ത೔)(௩ೕೖି௩തೕ)೙ೖసభට∑ ൫௩೔ೖೕି௩ത೔൯మ೙ೖసభ ට∑ ൫௩ೕೖି௩തೕ൯మ೙ೖసభ . Since the similarity of two node areas is directionally 

sensitive, for any two nodes ݅  and  ݆ , the Pearson’s correlation coefficient ݎ௜௝  is 
repetitively computed for every ߠ   angle rotation of the spherical patches in its 
tangential plane. The maximum value is used as the similarity ݏ௜௝  for these two 
nodes. This process can be formulated as: ݏ௜௝ = max௠ (ߠ݉)௜௝ݎ . In our 
implementation, we set ߠ  as 10/ߨ , which indicates that 10 different correlation 
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coefficients are computed for each pair of nodes. We also tested using the smaller ߠ, 
but the results showed no significant changes.  

In Step (3), the similarity matrix is binarized using a subject-specific threshold, 
which is determined automatically for each subject based on an expected level of 
statistical significance. Specifically, the matrix of Pearson’s correlation coefficients is 
first transformed to a p-value matrix, and then the false discovery rate (FDR) 
technique is applied to the p-value matrix with an expected p-value  ߬  [13]. A 
corrected p-value ߬′ is produced by FDR. Finally, each element in the p-value matrix 
is compared with ߬′. If it is less than ߬′, the corresponding element in the similarity 
matrix is set as 1; otherwise, it is set as 0. The FDR process is necessary because it 
can effectively control the proportion of false positives for multiple comparisons 
under an expected level. Generally speaking, by using FDR technique, for any subject 
the chance of including false correlations in its network is limited to 100߬%. We 
chose ߬ to be 0.022 since the average sparsity degree of the network for this value 
was 22~23%, which was similar to that of previous studies [3, 14, 15].  

By using the above three steps, an individual network of cortical thickness can be 
established. Leveraging spherical cortical surface patches, our method generates 
biologically-meaningful individual networks, of which the node areas are comparable 
across ages and subjects. Note that, connections in the individual network may reflect 
the direct or indirect fiber connectivity in white matter or similar genetic influence 
between two regions [1] or intrinsic micro-structural connectivity in gray matter [16]. 
This method can also be used to construct individual networks using other cortical 
attributes, such as sulcal depth and cortex folding degree. 

Network Metrics. The constructed individual cortical thickness network is an 
undirected and unweighted graph represented by a binary matrix. To measure these 
individual networks, we employ the following widely used metrics in graph theory, 
including: node degree, clustering coefficient, shortest path length, small world 
property, global efficiency, and local efficiency, as in [3, 17]. Specifically, in an 
undirected graph, node degree ߙ௜ is the number of edges of a node ݅. Assume the 
subnetwork ܩ௜ consists of all the direct neighbors of node ݅ and their connections, 
the clustering coefficient ܿ௜  of the node ݅ is defined as the number ( ீܰ೔ ) of edges 

in ܩ௜ divided by the number of all possible connections, formulated as: ܿ௜ = ଶேಸ೔ఈ೔(ఈ೔ିଵ). 
The shortest path length ܮ௜ of a node ݅ is the average value over its shortest path 
lengths to all other nodes. Of note, in our network, the path length between two 
directly connected nodes is 1. The small world property of a network ܩ is denoted 
as ߪ =  ܩ is defined as the sum of clustering coefficients for all nodes in ߛ where ,ߣ/ߛ
divided by the sum of clustering coefficients for all nodes in a random network ܩ௥௔௡ௗ, 

formulated as: ߛ = ∑ ௖೔೔∈ಸ∑ ௖೔೔∈ಸೝೌ೙೏ . And ߣ is defined as the sum of shortest path lengths for 

all nodes in ܩ divided by the sum of shortest path lengths for all nodes in ܩ௥௔௡ௗ , 

formulated as: ߣ = ∑ ௅೔೔∈ಸ∑ ௅೔೔∈ಸೝೌ೙೏ . Of note, the random network ܩ௥௔௡ௗ  is generated by 

reconnecting the nodes (changing the edges) in ܩ, while preserving the node degrees 
[18]. A network is considered to own small world property if and only if the 
following two conditions are satisfied simultaneously: ߛ > 1 and ߣ ≈ 1. The global 
efficiency of a network ܩ is defined as the average of the inverse of all shortest path 
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lengths, formulated as: ௚௟௢௕௔௟ܧ  = ଶே(ேିଵ) ∑ ଵௗ೔ೕ௜ஷ௝∈ீ . Herein,  ݀௜௝  is the shortest path 

length between nodes ݅  and  ݆ ; and  ܰ  is the number of nodes in ܩ  . The local 
efficiency of a node ݅ (௜ܩ)௚ܧ , , is defined as the global efficiency of the local 
network ܩ௜ . Then the local efficiency of a network ܩ is defined as the average of 

local efficiencies of all nodes, formulated as: ܧ௟௢௖௔௟ =  ଵே ∑ ீ∋௜(௜ܩ)௚ܧ . 

 

Fig. 3. Network metrics of 73 subjects at 0-year-old and 1-year-old, respectively.  

3 Results 

We constructed individual cortical thickness networks for 73 health infants at age 0 
and age 1, and measured each individual network using the metrics introduced in 
Section 2. Fig. 3 reports the distributions of network measures of the whole 
population. As we can see, from 0 to 1 year of age, all the metrics change 
dramatically, indicating that our method is able to reveal network differences during 
early brain development. Specifically, the degree, clustering coefficient, global 
efficiency, and local efficiency of the cortical thickness network increase, while the 
shortest path length decreases in the first year. The increase of global and local 
efficiency is generally consistent with the results in early brain development study of 
population-based anatomical networks [19]. We also launched paired t-test for each 
metric to evaluate the difference between the networks at 0-year-old and 1-year-old. 
With all p-values being far less than 0.01, we can conclude that all those metrics 
derived from individual networks of cortical thickness are significantly different at the 
two time points.  

We further investigated the small world property for the cortical thickness networks 
at age 0 and 1. Although the metric ߪ changes significantly during the first year as 
shown in Fig. 3, the cortical thickness network consistently has the small world 
property. Fig. 4 shows the comparison between constructed networks and their 
corresponding randomized networks for 10 randomly selected individuals. We can see 
that, at both age 0 (Fig. 4a) and age 1 (Fig. 4e), the clustering coefficient of constructed 
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network for each individual is consistently larger than that of the randomized network, 
which has the same degree distribution with our constructed network. Moreover, the 
shortest path length of our constructed network for each individual is consistently 
approximately equivalent to that of the randomized network at both age 0 (Fig. 4c) and 
age 1 (Fig. 4g). The similar observation can also be seen from the average metrics for 
73 subjects (Fig. 4b, d, f, and h). Therefore, for both ages, the metric ߛ is always larger 
than 1 and the metric ߣ is always approximately equal to 1, indicating that the small 
world property of the cortical thickness network constructed by our method is retained 
in the first year, which is consistent with results reported in early brain development 
study of population-based anatomical networks [19].  

 

Fig. 4. Comparison of constructed networks and randomized networks for 10 randomly 
selected individuals (a, c, e, and g) and the whole population of 73 subjects (b, d, f, and h). The 
first row shows the metrics of 0-year-old networks, and the second row shows the metrics of  
1-year-old networks. 

4 Conclusion 

This paper presents a novel method for cortical surface-based construction of 
individual structural networks. Compared to the existing intensity patch based 
methods [2-4], the proposed method has three major advantages. First, surface-based 
patch (node area) guarantees that each patch corresponds to anatomically meaningful 
and geodesically neighboring cortical regions, in contrast to an image patch that might 
contain geodesically-distant regions. Second, the cortical morphology-defined 
similarity ensures that this similarity is comparable across subjects and ages, in 
contrast to image intensity, which is quite variable across ages and subjects and has 
less meaningful anatomical meanings. Third, since patches are defined on the 
standard spherical surface atlas space, the patch size is independent of the brain 
volume, which makes both the cross-subject and longitudinal comparisons more 
meaningful. The proposed method has been applied to 73 healthy infants at age 0 and 
age 1, leading to meaningful discoveries of early brain development. In the future, we 
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will construct individual networks using other cortical attributes, e.g., sulcal depth, 
cortical folding and cortical local gyrification [20], and further compare them with the 
structural networks derived from DTI and also the functional networks derived from 
fMRI. 
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