Multi-GPU Reconstruction of Dynamic
Compressed Sensing MRI

Tran Minh Quan, Sohyun Han, Hyungjoon Cho, and Won-Ki Jeong*

Ulsan National Institute of Science and Technology (UNIST)
{quantm,hansomain,hcho,wkjeong}@unist.ac.kr

Abstract. Magnetic resonance imaging (MRI) is a widely used in-vivo
imaging technique that is essential to the diagnosis of disease, but its
longer acquisition time hinders its wide adaptation in time-critical ap-
plications, such as emergency diagnosis. Recent advances in compressed
sensing (CS) research have provided promising theoretical insights to ac-
celerate the MRI acquisition process, but CS reconstruction also poses
computational challenges that make MRI less practical. In this paper, we
introduce a fast, scalable parallel CS-MRI reconstruction method that
runs on graphics processing unit (GPU) cluster systems for dynamic
contrast-enhanced (DCE) MRI. We propose a modified Split-Bregman
iteration using a variable splitting method for CS-based DCE-MRI. We
also propose a parallel GPU Split-Bregman solver that scales well across
multiple GPUs to handle large data size. We demonstrate the validity of
the proposed method on several synthetic and real DCE-MRI datasets
and compare with existing methods.

1 Introduction

Magnetic resonance imaging (MRI) has been widely used as an in-vivo imaging
technique due to its safety to living organisms. Because the acquisition process is
the major bottleneck of MRI, many acceleration techniques have been developed
using parallel imaging techniques [2]. Recently, the compressed sensing (CS)
theory [3] has been successfully adopted to MRI to speed up the acquisition
process [10]. However, CS-MRI introduces additional computational overhead
in the reconstruction process because the ¢; minimization is a time-consuming
nonlinear optimization problem. Therefore, there exists a need to develop fast CS
reconstruction methods to make the entire MRI reconstruction process practical
for time-critical applications.

One research direction for accelerating CS reconstruction has focused on de-
veloping efficient numerical solvers for the ¢; minimization problem [7,5,1]. The
other direction has been leveraging the state-of-the-art parallel computing hard-
ware, such as the graphics processing unit (GPU), to push the performance to the
limit [9,13,1]. We believe that GPU acceleration is the most promising approach
to make CS-MRI reconstruction clinically feasible, but multi-GPU acceleration
has not been fully addressed in previously published literature.

* Corresponding author.

© Springer International Publishing Switzerland 2015
N. Navab et al. (Eds.): MICCAI 2015, Part III, LNCS 9351, pp. 484-492, 2015.
DOI: 10.1007/978-3-319-24574-4 58

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI 485

(a) x8 subsampled k-space (b) Zero padding recon. (c) CS-DCE-MRI recon.

Fig. 1. CS-DCE-MRI examples. Red line: time axis, Blue—green lines: z—y axis

In this paper, we introduce a novel multi-GPU reconstruction method for
CS-based dynamic contrast-enhanced (DCE) MRI. DCE-MRI is widely used to
detect tumors, and its diagnostic accuracy highly depends on the spatio-temporal
resolution of data. Fig. 1 shows an example of CS-based DCE-MRI reconstruc-
tion from a sub-sampled k-space data. CS has been successfully adopted to
DCE-MRI to increase the resolution of data, but CS also imposes a high com-
putational burden due to the increasing data size. In addition, we observed that
a popular numerical method for CS reconstruction, i.e., Split-Bregman, is not
directly applicable to the CS-based DCE-MRI formulation because the time and
spatial domains of DCE-MRI data cannot be treated equally.

The main contributions of this paper can be summarized as follows. First,
we present a modified Split-Bregman iteration to solve CS-based time-varying
2D DCE-MRI reconstruction problems. The proposed method splits time (1D)
and spatial (2D) operators in the sub-optimization problem in the original Split-
Bregman method, which can be efficiently solved by a single-step implicit integra-
tion method. The proposed method runs 3x faster than the conjugate gradient
method and 5x faster than the fixed-point iteration method, which makes the
entire reconstruction process converge up to about 7x faster than the state-
of-the-art GPU DCE-MRI method [1]. Second, we introduce a scalable GPU
implementation of the proposed reconstruction method and further extend to a
multi-GPU system by leveraging advanced communication and latency hiding
strategies. We demonstrate the performance of the proposed method on several
CS-based DCE-MRI datasets with up to 12 GPUs.

2 Method

The input to our system is 2D DCE MRI data (a collection of 2D k-space data
over time) defined on a 3D domain by the parameter (x,y,t), where z and y are
spatial coordinates for 2D k-space data, and ¢ denotes a temporal coordinate
on the time axis. In the following, the subscript of an operator represents its
dimension, e.g., Fy, stands for a Fourier operator applied to a 2D z-y grid.

2.1 Compressed Sensing Formulation for DCE-MRI

Let U be a collection of 2D MRI k-space data u;, i.e., U = {uq,us,...,u,}, ac-
quired over time. Then the general CS formulation for DCE-MRI reconstruction
problem can be described as follows:

486 T.M. Quan et al.

min {J(U)} s.t. Z||Kui—fi\|§<02 (1)

where J(U) is the £)-norm energy function to minimize (i.e., regularizer), f; is
the measurement at time 7 from the MRI scanner, and K = RF is the sampling
matrix that consists of a sampling mask R and a Fourier matrix F for 2D
data. Since DCE-MRI does not change abruptly along the time axis, we enforce
the temporal coherency by introducing a total variation energy along t axis and
decouple the sparsifying transform on the z-y plane and temporal axis as follows:

J(U) = HWwyU||1 + vayUH1 + Hthul (2)

where W is the wavelet transform. Then Eq. 1 can be solved as a constrained
optimization problem using a Bregman iteration [5] where each update of U**1
in line 3 solves an unconstrained problem as shown in Algorithm 1. Using the

Algorithm 1. Constrained CS Optimization Algorithm

1: k=0,ud = f) =0 for all
2: while Y || Ri Fayuf — f:|; > 0 do

4 U= fE 4 fi = RiFuuftt for all i
5: end while

Split Bregman algorithm [5], we can decouple ¢; and ¢» components in line 3 in
Algorithm 1 and iteratively update using a two-step process (more details can
be found in [5]). Note that in the original Split-Bregman algorithm, U and J(U)
are defined on the same dimensional grid, i.e., if U is a 3D volume then J(U)
is a hybrid of 3D total variation (TV) and wavelet regularizers, which allows a
closed-form solution for U**+1. However, because our J(U) consists of 1D and 2D
operators, the same closed-form solution is not applicable. To be more specific,
U1 can be updated by solving the linear system defined as follows:

(WF'R"RFyy — Mgy — 04 + w)UT = rhs” (3)

where the parameters A, 6, w and p are used to control the amount of regu-
larization energy, and refer to [5] for the definition of 7hs*. Goldstein et al. [5]
proposed a closed form solution to invert the left-hand side of the given lin-
ear system using the forward and inverse 3D Fourier transforms, but we cannot
apply the same method since the k-space data is 2D in our formulation.

Since the left-hand side of Eq. 3 is not directly invertible, we can use iterative
methods, such as the fixed-point iteration or the conjugate gradient method,
that converge slower than the explicit inversion in the original method. In order
to speed up the convergence, we propose a single iteration method, which further
reduces the iteration cost by splitting the left-hand side of Eq. 3 and solve for

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI 487

UF+1 directly in a single step. If we separate 1D and 2D operators in the left-
hand side, then Eq. 3 can be represented as follows:

(Ay + A)UM! = rhsh (4)

where A, = (,uF;leTRFw —AAgy) and Ay = —0A, + w. If we treat A as the
operator applied to U from the previous iteration, i.e., U¥ at (k+4-1)-th iteration,
then Eq. 4 can be expressed as follows:

A UMY 4 AU = rhs”. (5)

Because U* is known, we can move it to the right-hand side to make the update
rule for U*+!
UMY = AT (rhs® — AUP). (6)

This assumption holds for a sufficiently large k because U* and U**! will con-
verge. Then, 4; can be inverted by making the system circulant as shown in [5]

UMt = F KT Fyy (rhs® + (04 — w)U*) (7)

where K is the diagonal operator defined as K = uRTR —)\meAIyF;yl.

We evaluated the convergence rates of three different minimization strategies
for UF+1 — fixed-point iteration, conjugate gradient, and single iteration methods
(Fig. 2). We observed that the conjugate gradient method converges about twice
faster than the fixed-point iteration, and our single iteration converges about
2-3-fold faster than the conjugate gradient method to reach the same PSNR.

PSNR (dB)
@ @
8 g

PSNR (dB)
@

@

8

N
@

N
>

»
R

—— Single Iteration
Conjugate Gradient {
—%— Fixed-point Iteration

10 12 14

—— Single Iteration
Conjugate Gradient {
—%— Fixed-point Iteration

0 100 200 300 400 500 600 700 2 4 6 8
CPU running time (s) GPU running time (s)

N
N

Fig. 2. PSNR vs. CPU (left) and GPU running times (right) of various methods.

2.2 Multi-GPU Implementation

As the temporal resolution of DCE-MRI increases, the entire k-space can not
be mapped onto a single GPU. We decompose the domain along the t-axis into
chunks where each chunk consists of three parts: interior, exterior, and ghost,
similar to [12]. Interior and exterior regions form a computational domain for
a given chunk, and ghost is the region extends to its neighbor chunk that is

488 T.M. Quan et al.

g Across-node Network Exterior Computation

4 . I
‘ Domain %ecomposn OH,ZPQTQ Y‘ communication PU Memory Interior Computation
~— .- S
/'/ N Memcpy Device To Host
\

/ N GPU Memory Memcpy Host To Host
/ \
5 > Memcpy Host To Device

Valid data Stream 0

Stream 1 "
Stream 2
Interior i Non-blocking

___Ghost
Exterior

... Exterior
Ghost

Fig. 3. Ghost region communication between neighbour GPUs

required for computation (Fig. 3 left). In our method, we increase the ghost and
exterior size (up to 5 slices in our experiment) in order to run the algorithm
multiple iterations without communication.

Data communication between adjacent GPUs is performed as follows (see
Fig. 3 bottom right): First, we perform the computation on the exterior regions,
which are the ghost regions of the neighborhood GPU, using the main stream
(stream 0, Fig. 3 cyan). Note that we can run n iterations in this step for the
ghost size n (one slice of ghost region is invalidated per each iteration, so we can
run up to n iterations). Next, the other concurrent streams (stream 1 and 2) will
perform the peer copies from GPU (device) to CPU (host) memory, one stream
per an exterior region (Fig. 3 green). Because streams run in parallel, stream
0 can continue to compute on the interior region during the communication
(Fig. 3 yellow). Then each exterior region data on the CPU will be transferred
to the ghost region of its neighborhood CPU via MPI send and receive (Fig. 3
magenta). Because the MPI process becomes available right after invoking the
GPU asynchronous calls, it can be used to perform a non-blocking transaction
across the GPUs (note that stream 2 is overlapped with MPI transfer). Finally,
the valid ghost data is copied from the host to device asynchronously to com-
plete one round of ghost communication (Fig. 3 purple). By doing this, we can
effectively hide the communication latency by allowing the ghost transfers occur
on the different GPU streams while the main stream continues the computation
on the interior region. If GPUs are in the same physical node, this communica-
tion can be implemented using asynchronous peer-to-peer device communication
via PCI bus. In addition, if the system supports infiniband network, we can use
NVIDIA GPUDirect for RDMA communication.

3 Result

We used an NVIDIA GeForce GTX 680 GPU with Jacket for MATLAB for the
single GPU evaluation (same environment as Bilen’s). We ran our scalability
test on a 6-node GPU cluster system with two NVIDIA K20m per node, 12
GPUs in total. GA-DTPA contrast agent was used for data preparation, and the
CS-undersampling factor is x8.

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI 489

3.1 Image Quality and Running Time Evaluation

We compared our methods with IMPATIENT [4], kt-SPARSE [11], kt-FOCUSS
[8], GPU Split-Bregman [9] and GPU ADMM [1], and our method is comparable
to or outperforms those. Among them, we discuss Bilen et al. [1] in detail because
it is the most recent work close to our method in the sampling strategy, energy
function, numerical method, and GPU implementation. For a direct comparison
with Bilen’s, the wavelet term in the formulation is ignored in this experiment.

10s 20s 30s 40s Reconstruction
time

Full reconstruction
Bilen’s method

=l
9]
£
@
£
o
@
1%
o
Q
IS
o

Full Ak, map

=——Full signal
——Bilen's method
——Proposed method

=——Full signal
———Bilen's method 1
——Proposed method

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Time (s) Time (s)
(b) Temporal profile of A (¢) Temporal profile of B

Fig. 4. Comparison between Bilen’s method and the proposed solution

Fig. 4 (a) compares Ak., maps [6] of reconstructed images at different points
in time. The Ak, maps in the bottom row (our method) is much closer to
the ground truth (Full Akmap on the left) than those in the upper row at the
same point in time, which implies our method converges faster. Fig. 4 (b) and
(c) show the least-square fitting curve to the temporal profile of the region of
interest in the Ak., map (A and B, high vascularity regions), which is also a
commonly used quality measure to characterize the perfusion and permeability
in DCE-MRI data. For this test, we ran each method until its reconstruction
image reaches the same PSNR. While both methods generate the curves similar

490 T.M. Quan et al.

to that of the full reconstruction, our result is more accurate (i.e., close to the
full reconstruction curve), which is due to the different numerical characteristics
of the algorithm. Table 1 shows the running time of each method on several
tumor datasets until convergence (i.e., reaching a steady state). The result also
confirms that our method converges much faster than Bilen’s, up to 6.9x in
GPU implementation.

Table 1. Running times of Bilen’s and the proposed method on various datasets of
size 128 x 128 x 256.

Tumor 1 Tumor 2 Tumor 3 Tumor 4
Metrics Bilen Ours Bilen Ours Bilen Ours Bilen Ours
PSNR(dB) 30.598 30.636 40.169 39.931 39.678 39.479 33.559 34.174
CPU time(s) 448.451 360.689 797.056 340.143 719.187 327.868 715.004 407.461
GPU time(s) 292.341 61.637 475.155 68.002 394.241 66.125 367.759 63.276

3.2 Multi-GPU Performance Evaluation

In this evaluation, we check the scalability up to 12 GPUs on a distributed
GPU cluster. We first measure the computation-only time to obtain the best
possible running times, and then measure the total running times including
data communication (i.e., ghost region exchange). As shown in Fig. 5, the total
time including the ghost exchange is approximately close to the computation-
only time, in both strong and weak scaling tests. This result confirms that our
multi-GPU implementation can effectively hide the communication latency while
performing the CS DCE-MRI reconstruction solver on distributed systems.

Fixed total problem size, 128x128x64 Fixed per GPU problem size, 128x128x768
14 T T T T T 2 T T T T T
13 I Scalability of computation-only cost 18 I Scalability of computation-only cost
12 I scalability of total cost ' I Scalability of total cost
-1 ~—#—Running time of computation-only cost 150 .16 ~—#—Running time of computation-only cost
o 10 —#— Running time of total cost o —#*—Running time of total cost 15
S S 1.4 > - -
] o = g = -+
20 s 5 — e
£ 3 2 120 p—r * = 2 e
8 7 1003 8 10 o
2] 2 2] 2
B g Bos g
85 « 3 =
£ 4 <06
g 3 50 2 5
0.4
2
1 0.2
0 0 0 o
1 GPU 2 GPUs 4 GPUs 8 GPUs 12GPUs 1 GPU 2 GPUs 4 GPUs 8 GPUs 12GPUs
(a) (b)

Fig. 5. Strong (a) and weak scaling (b) on a distributed GPU cluster.

4 Conclusion

In this paper, we presented our new CS-based DCE-MRI reconstruction sys-
tem for the multi-GPU computing environment. The proposed method deliv-
ered a new numerical method in order to apply the Split-Bregman algorithm to

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI 491

CS-based time-variant DCE-MRI problem. We also introduced a scalable im-
plementation of the proposed CS-MRI reconstruction method on a distributed
multi-GPU system. As discussed, the proposed method outperforms the exist-
ing GPU CS-reconstruction algorithm in quality and running time. For future
work, we plan to extend the proposed CS-MRI method to large-scale dynamic
3D DCE-MRI reconstruction. Assessing the clinical feasibility of the proposed
method would be another interesting future research.

Acknowledgements. This work was partially supported by the National Re-
search Foundation of Korea grant NRF-2012R1A1A1039929 and NRF- 2013K2A1
A2055315.

References

1. Bilen, C., Wang, Y., Selesnick, I.: High-speed CS reconstruction in dynamic par-
allel MRI using augmented lagrangian and parallel processing. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 2(3), 370-379 (2012)

2. Blaimer, M., Breuer, F., Mueller, M., Heidemann, R.M., Griswold, M.A., Jakob,
P.M.: SMASH, SENSE, PILS, GRAPPA: How to choose the optimal method. Top-
ics in Magnetic Resonance Imaging 15(4), 223-236 (2004)

3. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4),
1289-1306 (2006)

4. Gai, J., Obeid, N., Holtrop, J.L., Wu, X.L., Lam, F., Fu, M., Haldar, J.P., Hwu,
W.M.W., Liang, Z.P., Sutton, B.P.: More IMPATIENT: a gridding-accelerated
toeplitz-based strategy for non-cartesian high-resolution 3D MRI on GPUs. Journal
of Parallel and Distributed Computing 73(5), 686-697 (2013)

5. Goldstein, T., Osher, S.: The split bregman method for ¢1-regularized problems.
SIAM Journal on Imaging Sciences 2(2), 323-343 (2009)

6. Hoffmann, U., Brix, G., Knopp, M.V., Hess, T., Lorenz, W.J.: Pharmacokinetic
mapping of the breast: a new method for dynamic MR mammography. Magnetic
Resonance in Medicine 33(4), 506-514 (1995). PMID: 7776881

7. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS: a general com-
pressed sensing framework for high resolution dynamic MRI. Magnetic Resonance
in Medicine 61(1), 103-116 (2009)

8. Jung, H., Ye, J.C., Kim, E.Y.: Improved k-t BLAST and k-t SENSE using FO-
CUSS. Physics in Medicine and Biology 52(11), 3201-3226 (2007)

9. Kim, D., Trzasko, J., Smelyanskiy, M., Haider, C., Dubey, P., Manduca, A.: High—
performance 3D compressive sensing MRI reconstruction using many—core archi-
tectures. Journal of Biomedical Imaging, 1-11, January 2011

10. Lustig, M., Donoho, D., Santos, J., Pauly, J.: Compressed sensing MRI. IEEE
Signal Processing Magazine 25(2), 72-82 (2008)

11. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of CS for rapid
MR imaging. Magnetic Resonance in Medicine 58(6), 1182-1195 (2007)

492

12.

13.

T.M. Quan et al.

Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU 2009, pp. 79-84. ACM, New York (2009)

Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast -
SPIRIT compressed sensing parallel imaging MRI: scalable parallel implementation
and clinically feasible runtime. IEEE Transactions on Medical Imaging 31(6), 1250
1262 (2012)

	Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI
	1 Introduction
	2 Method
	3 Result
	4 Conclusion

