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Abstract. Despite significant advances in the development of deformable
registration methods, motion correction of deformable organs such as the
liver remain a challenging task. This is due to not only low contrast in
liver imaging, but also due to the particularly complex motion between
scans primarily owing to patient breathing. In this paper, we address ab-
dominal motion estimation using a novel regularization model that is ad-
vancing the state-of-the-art in liver registration in terms of accuracy. We
propose a novel regularization of the deformation field based on spatially
adaptive over-segmentation, to better model the physiological motion of
the abdomen. Our quantitative analysis of abdominal Computed Tomog-
raphy and dynamic contrast-enhancedMagnetic Resonance Imaging scans
show a significant improvement over the state-of-the-art Demons
approaches. This work also demonstrates the feasibility of segmentation-
free registration between clinical scans that can inherently preserve sliding
motion at the lung and liver boundary interfaces.

1 Introduction

Analysis of functional abdominal imaging (e.g. dynamic magnetic resonance
imaging (DCE-MRI)) and structural imaging (such as CT or MRI) is an emerg-
ing research area that can potentially lead to improved strategies for differential
diagnosis and planning of personalized treatment (e.g. patient stratification) of
abdominal cancer. In this work, we present a generic approach for intra-subject
motion correction of time sequences, applied to both standard 4D CT acqui-
sition, and relatively new quantitative imaging techniques such as DCE-MRI.
This will ultimately provide new opportunities for tumor heterogeneity assess-
ment for patients, with the potential of extending our understanding of human
liver tumor complexity [10]. Deformable registration of time scans acquired us-
ing modalities with contrast agent is challenging due to: 1) significant amount of
motion between consecutive scans including sliding motion at the lung and liver
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interface; 2) low contrast of liver tissue; and 3) local volume intensity changes
due to either contrast uptake in DCE-MRI. Thus, robust image registration is an
inevitable post-acquisition step to enable quantitative pharmacokinetic analysis
of motion-free DCE-MRI data.

Conventional motion correction algorithms use generic similarity measures
such as sum-of-squared differences with a statistical prior to find an optimal
transformation [5]. Alternatively, registration can be performed using a physio-
logical image formation model [3]. However in both cases, the estimated trans-
formation is highly influenced by the chosen regularization model. In the clas-
sic Demons framework, the diffusion regularization is performed by Gaussian
smoothing of the estimated deformation field [14] that generates a smooth dis-
placement field. However, the complex physiology of abdominal motion during
breathing involves modeling of the liver sliding at the thoracic cage, which has
been addressed by only a few registration algorithms [15,16,11]. Limitations of
the aforementioned motion correction methods include the need for segmenting
the liver surface [15,16,11]. Moreover, hepatic deformations [4] that is secondary
to breathing has not been analyzed in motion models proposed so far.

In this paper, we propose a novel registration approach, referred to as SLIC
Demons, owing to the use of the Simple Linear Iterative Clustering algorithm [1]
for a liver motion estimation model. This model is used then for an accurate
deformable registration of DCE-MRI data to enforce the plausibility of the esti-
mated deformation field, e.g. preservation of sliding motion at the thoracic cage
and at the lung boundaries whilst not requiring any prior liver segmentation. The
contributions of this work are as follows. First, we introduce an accurate model
for the regularization of the deformation field, which incorporates additional
(anatomical) information from so-called guidance images in a computationally
efficient manner. This regularization is embedded in a classic non-rigid Demons
registration framework using the local correlation coefficient [9] as a similarity
measure to handle local intensity changes due to contrast uptake. The improved
performance on a publicly available liver CT data [11] is demonstrated. Finally,
the robustness of the method on a challenging clinical application of DCE-MRI
liver motion compensation is quantitatively assessed.

2 Methodology

Deformable Image Registration. In the classic formulation [8], deformable
image registration is defined as a global energy minimization problem with re-
spect to the geometrical transformation describing the correspondences between
input images IF and IM :

û = argmin
u

(Sim(IF , IM (u)) + αReg(u)) (1)

where û is the optimal displacement field, Sim is a similarity measure, Reg is
a regularization term, and α > 0 is a weighting parameter. The Demons frame-
work [14], due to its simplicity and efficiency, is a common choice to solve Eq. (1)
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Fig. 1. Corresponding region of interest (axial view of the segmental branch of hepatic
artery) selected by the expert from consecutive volumes of DCE-MRI sequence. Besides
intensity changes caused by the contrast agent, local structures are visibly correlated,
which is also confirmed by quantitative evaluation of LCC Demons.

when sum-of-squared differences (or any other point-wise difference metric) is
used as a similarity measure, and a diffusion model is used for regularization.
For the Demons framework, the optimization procedure alternates between min-
imizing the energy related to the similarity Sim and the regularization Reg in
an iterative manner. In this work, due to the low contrast of the liver in CT,
and change of intensity values owing to the contrast uptake between consecu-
tive DCE-MRI volumes (see an example in Fig. 1), we propose to use the local
correlation coefficient (LCC) as a similarity measure. This is further motivated
by recent work that used LCC-Demons for brain MRI registration due to their
independence of any additive and multiplicative bias in the data [9].

Filtering of the Deformation Field. Accurate alignment of intra-subject
dynamic imaging data is challenging not only because of intensity changes due
to contrast uptake, but also due to the complexity of motion to be estimated.
In the Demons framework, diffusion regularization is performed by Gaussian
smoothing of the estimated deformation field. However, the complex physiology
of respiratory motion involves more than just modeling of the liver sliding at
the thoracic wall [11,12]. The human liver is non-uniform in composition as it
is built of vascular structures and filamentous tissue. Hence it is not adequate
to model hepatic motion by performing segmentation of the whole liver prior to
registration [15,16]. Thus, inspired by a previous approach of spatially adaptive
filtering of the deformation field [13,12], and the guided image filtering technique
developed for computer vision applications [6], we present a generic approach for
regularization. In our approach, the estimated deformation field is spatially fil-
tered by considering the context of the guidance information coming either from
one of the input images itself or another auxiliary image (e.g. from a segmen-
tation mask). The output deformation field uout of the guided image filtering
technique of the input deformation field uin is based on a linear model of the
guidance image IG in the local neighborhood N centered at the spatial position
x, and is defined as follows [6]:

uout(x) =
∑

y∈N
Wy(IG)uin(y) (2)

whereWy is a filter kernel derived from the guidance image IG. An example of such
local filter kernel weights Wy are the bilateral filtering kernels proposed by [12].
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Note that a guided image filter can be implemented using a sequence of box filters
making the computing time independent of the filter size [6].

Guidance for Accurate Modeling of Complex Liver Motion. An addi-
tional motivation for using the guided filter technique is that it allows incor-
poration of prior knowledge for deformation field regularization. For example,
the output deformation field can be filtered with respect to the registered im-
age (self-guidance), or labels obtained from segmentation of the entire thoracic
cage. While the use of masks in [15,16] is limited to just a few objects, multi-
object segmentation can be easily added to the presented approach by using
a multi-channel guidance image (e.g. similarly to the channels in an RGB im-
age) without a significant increase of computational complexity [6]. Therefore,
we consider an alternative guidance image, which is built based on the concept
of sparse image representation based on supervoxel clustering. Following [7], we
adapt Simple Linear Iterative Clustering (SLIC) [1] for supervoxel clustering.
SLIC performs an image segmentation that corresponds to spatial proximity
(spatial compactness) and image boundaries (color similarity). SLIC is designed
to generate K approximately equally-sized supervoxels. The Euclidean distance
between voxel x and a cluster center y is calculated as dxy = ‖x− y‖ and the

distance measuring the gray-color proximity is given by: dI =
√
(I(x)− I(y))2.

The combination of the two normalized distances dxy and dI is defined in the

following way: D =
√
(dxy/S)

2
+ (dI/m)

2
where m is a parameter determining

the relative importance between color and spatial proximity. A larger value of
m results in supervoxels with more compact shapes, whereas for small m the
resulting clusters have less regular shapes and sizes, but they are more adapted
to image details and intensity edges. The parameter S = 3

√
N/K corresponds to

the sampling interval of the initial spacing of the cluster centers. The algorithm
starts from a set of equally spaced cluster centers. After each iteration the cluster
centers are recomputed, and the algorithm is iterated until the convergence.

Because SLIC performs an image segmentation that corresponds to spatial
and intensity proximity, it removes the redundant intensity information of vox-
els in the homogeneous regions. However, such clustering becomes also very
inconsistent in such regions. In the context of filtering the deformation field
during registration, this is a major drawback, because filtering with respect
to the clustered image would introduce artificial discontinuities. This is called
over-segmentation, and it is a common problem for simple image-driven regular-
ization models. In [7] the authors proposed to use multiple channel (layers) of
supervoxels to obtain a piecewise smooth deformation model. To generate such
different channels of supervoxels, the SLIC algorithm was run several times with
randomly perturbed initial cluster centers. Image clustering in homogeneous re-
gions will result in different clusters for each channel. However, image regions
with sufficient structural content will not be affected by random perturbation
of SLIC cluster centers. Furthermore, the displacement fields obtained for each
channel separately can be averaged to construct the final displacement field, and
therefore avoid discontinuities in homogeneous regions [7]. In our case, we can
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use each channel of supervoxels S as a separate channel of our guidance image
IG = [S1, S2, · · · , SN ] and then perform an efficient filtering of the deformation
field with respect to such multichannel guidance image.

For a given IG, the weights WGIF of the guided filter at the position x are
explicitly expressed in the following way:

WGIF (IG) = 1 + (IG − μIG)
T
(ΣIG + εU)

−1
(IG − μIG) (3)

where μIG and ΣIG are the mean and covariance of the guidance image IG
in the local neighborhood N , and U denotes the identity matrix. It has been
shown [6] that in the case of the guidance image IG being a multichannel image,
the weights of the guided filter (defined in Eq. (3)) can be computed without
a significant increase of computational complexity compared to single-channel
image guidance (however for N numbers of channels, inversion of an N × N
matrix is required for each voxel). The SLIC [1] algorithm is reported to have
a linear complexity with respect to the number of image voxels and therefore is
easily applicable to large medical data sets. It is also important to note that the
SLIC algorithm is memory efficient when dealing with large volumes (see more
details [1]). Our implementation of SLIC is based on jSLIC1.

Physiological Plausibility. The estimated sliding motion should have three
properties: 1) Motion normal to the organ boundary should be smooth both
across organ boundaries and within organs, 2) Motion tangential to the organ
boundary should be smooth in the tangential direction within each individual or-
gan, and 3) Motion tangential to the organ boundary is not required to be smooth
across organ boundaries [11]. The presented regularization model addresses ex-
plicitly 2) and 3), while diffeomorphic formulation of the overall registration
[9] prevents folding between organs. Furthermore, filtering the deformation field
using a guided filter, which is derived from a locally linear model, provides an
invertibility constraint (due to the log-Euclidean parameterization [2]).

3 Evaluation and Results

We performed deformable registration using diffeomorphic logDemons with a
symmetric local correlation coefficient (LCC) as a similarity criterion [9]. We use
the following parameter settings for the optimization: three multi-resolution lev-
els, and a maximum number of iterations of 50. For liver CT data, we empirically
determined the LCC smoothing parameter σLCC=2 the regularization parame-
ter σ = 3 for LCC-Demons, a filter radius r=5 and a regularization parameter
α=0.1 was found to give the best results for the SLIC Demons. For registration
of DCE-MRI, we employ a larger patch σLCC=5 to calculate the local correlation
coefficient, while the other parameters remain the same. It is worth noting that
the parameters for the SLIC Demons have a low sensitivity, causing an increase
of Target Registration Error (TRE) of only 0.1mm when changing r between 4

1 jSLIC: superpixels in ImageJ, http://fiji.sc/CMP-BIA_tools

http://fiji.sc/CMP-BIA_tools
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and 6, and α between 0.2 and 0.01. For SLIC, the weighting parameterm=20 was
selected empirically (for intensity range between 0 - 255). We found that three
channels of the SLIC guidance image provides satisfactory results, and further in-
creasing the number of channels does not improve the overall TRE significantly.

Results on 4DCT. For the quantitative evaluation of liver motion, the SLIC
Demons are tested on volumes of abdominal 4D-CT data sets that are pub-
licly available. Four inhale and exhale abdominal CT image pairs were obtained
from the Children’s National Medical Center/Stanford2 that were previously
used for validation purposes in [11]. Following preprocessing steps performed in
[11], the volumes were cropped, thresholded, intensity-normalized, and finally
linearly resampled to isotropic spacing of 2mm3. To quantify the registration ac-
curacy, the TRE was calculated for the well-distributed set of landmarks, which
are provided with this data set (≈50 landmarks per case for lungs, and ≈20
landmarks per case for the abdomen including liver). For all cases in this data
set, the end-of-inspiration volume was chosen as a reference, and the end-of-
expiration volume as a moving image. The initial average TRE is 7.04±4.3mm
for lung landmarks, and 6.44±3.4mm for abdominal landmarks. A significantly
lower TRE (p-value<0.05 using a two-sample Wilcoxon rank sum test) is ob-
tained by deformation fields estimated using the framework based on the guided
filtering of deformation fields (TRE=2.08mm for lungs and TRE=2.19mm for
abdomen) when compared to the classic Demons (TRE=3.24mm for lungs and
=2.5mm for abdomen). All resulting deformation fields are invertible within the
region of interest (indicated by the positive value of the Jacobian). Moreover,
the TRE yielded by the proposed method is lower than the best results reported
so far in the literature (2.15mm for lungs and 2.56mm for abdomen [11]). Em-
ploying registration with guidance for regularization of the deformation field
preserves discontinuities at the pleural boundaries whilst satisfying smoothness
requirements inside the lungs and liver (e.g. the difference between the estimated
deformation fields close to the lung boundaries shown in Fig. 2).

Results on DCE-MRI. The presented registration approach was addition-
ally applied for two abdominal DCE-MRI sequences acquired at the Churchill
Hospital in Oxford as a part of an ongoing clinical trial exploring the feasibility
of novel imaging techniques to assess how tumors are responding to treatment.
The DCE-MRI data were acquired with a variable time, yielding 25 volumes
with the volume resolution of 0.78×0.78×2.5mm. The initial average TRE is
15.82mm±8.5 for the landmarks annotated within the liver region. Similarly as
for the previous experiment on the 4D liver CT, a significantly lower TRE (p-
value<0.05 using a two-sample Wilcoxon rank sum test) was obtained using the
framework based on the guided filtering of deformation fields (TRE=2.3mm±0.9
for the liver) when compared to the classic Demons (TRE=2.7mm±1.7 for the
liver). The results of this evaluation indicate that the proposed spatially adaptive

2 MIDAS Community: 4D CT Liver with segmentations
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Fig. 2. Coronal view of 3D deformable CT/CT registration results. Color-coded inten-
sity differences between image pair: (a) before registration, using (b) Demons, and (c)
SLIC Demons. The estimated deformation field depicted: using (f) Demons, and (g)
SLIC Demons with the corresponding zoomed images of the region of interest (labeled
by box in the bottom row). Registration with SLIC yields a smooth deformation field
inside the liver, while capturing the sliding motion across the pleural cavity boundaries.

regularization is capable of handling complex hepatic motion that is naturally
present during DCE-MRI acquisition of the liver.

4 Discussion and Conclusions

We have presented an automated regularization approach for deformable regis-
tration that enables estimation of physiologically plausible hepatic deformations.
For this purpose, the classic diffusion regularization using Gaussian smoothing
was replaced by a fast image guidance technique that filters the estimated de-
formation field with respect to the anatomical tissue properties directly derived
from the guidance image. The presented approach forms a spatially adaptive
regularization that is capable of accurately preserving discontinuities that nat-
urally occur between the lungs, liver and the pleura. We verified the robustness
of our method on a publicly available data set [11], for which the results clearly
demonstrated its advantages in terms of accuracy and computational efficiency
when compared to the state-of-the-art methods. The computation time per reg-
istration using the presented framework is ≈5 mins per 3D pair (a standard
CPU, with a non-optimized C++ code), and is several times faster compared to
the bilateral filtering procedure proposed in [12]. We also applied our proposed
method to an on-going clinical trial, where patients are scanned with DCE-MRI,
and for which we obtained a good visual alignment of the data. The presented
technique has the potential to generalize to other modalities and clinical appli-
cations in which compensation of the complex motion is essential.
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