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Abstract. Analysing and understanding population-specific cardiac
function is a challenging task due to the complex dynamics observed in
both healthy anddiseased subjects and thedifficulty in quantitatively com-
paring the motion in different subjects. Affine parameters extracted from
a Polyaffine motion model for a group of subjects can be used to represent
the 3D motion regionally over time for a group of subjects. We propose to
construct from these parameters a 4-way tensor of the rotation, stretch,
shear, and translation components of each affine matrix defined in an in-
tuitive coordinate system, stacked per region, for each affine component,
over time, and for all subjects. From this tensor, Tucker decomposition can
be applied with a constraint of sparsity on the core tensor in order to ex-
tract a few key, easily interpretable modes for each subject. Using this con-
struction of a data tensor, the tensors of multiple groups can be stacked
and collectively decomposed in order to compare and discriminate the mo-
tion by analysing the different loadings of each combination of modes for
each group. The proposed method was applied to study and compare left
ventricular dynamics for a group of healthy adult subjects and a group of
adults with repaired Tetralogy of Fallot.

1 Introduction

Given the challenges in quantitatively measuring cardiac function, beyond simple
1D measures such as volume, strain, and so on, a number of cardiac motion
tracking methods have been proposed. Cardiac motion tracking provides a non-
invasive means to quantify cardiac motion and can be used to assess global
and regional functional abnormalities such as akinesia or dyskinesia, to classify
subjects as healthy/diseased or according to the severity of motion abnormalities,
as well as to aid with diagnosis and therapy planning by providing quantitative
measures of function.

While single-subject motion tracking can provide useful insight into the mo-
tion dynamics for a given subject, population-based (i.e. atlas-based) motion
analysis can give further understanding on how the motion dynamics are typi-
cally affected by a pathology. The key challenge with analysing population-wide
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motion dynamics is in finding a method to be able to compare the motion from
one subject to another in a consistent manner. Recent work to address this
has been focused on comparing either the regional strain values directly, or the
aligned displacements computed from subject-specific motion tracking. Compar-
ing the strain values can provide useful insight to aid with classification, such
as in [1], however, 1D strain measures are not sufficient for fully characteris-
ing abnormalities. The displacement fields from a set of subjects can provide
further characterisation of motion abnormalities, though this requires spatio-
temporal alignment of either the images prior to motion tracking ([2]), or the
displacements themselves ([3]). In either case, spatio-temporal alignment of 3D
data is not straightforward and subsequent analysis of the motion from 3D dis-
placements remains difficult to interpret and analyse. In order to address these
issues, a method was recently proposed to describe the full motion of a group of
subjects in a consistent and low-dimensional manner as the tensor of Polyaffine
parameters for a set of regions in the heart over the cardiac cycle [4].

Given that a set of motion parameters is typically high dimensional (due to
the need to account for the spatial and temporal factors), model reduction can
be useful to reduce the dimensionality of the data while retaining a small number
of variables that describe the data. Tensor decomposition is one such technique
that has been widely studied in the last years for a wide range of applications
(see [5] for a review of tensor decomposition methods). PCA of displacement field
has already been proposed for population-based cardiac motion analysis in [3],
and Tucker tensor decomposition of Polyaffine motion parameters was proposed
in [4]. A difficulty with these methods is in interpreting the results since both
PCA and Tucker are unconstrained and can thus result in factor matrices with
a large number of mode combinations required for each subject.

Inspired by the method developed in [4], we propose a method for population-
wide cardiac motion analysis with intelligible and easy to interpret mode com-
binations. In contrast to this previous work, we study the motion of different
population subgroups using descriptive anatomical motion parameters (namely
the circumferential twisting, radial thickening, and longitudinal shrinking). Fur-
thermore, we identify much fewer, and thus more easily interpretable, factors
discriminating between the motion patterns of healthy and unhealthy subjects
thanks to a Tucker decomposition on Polyaffine motion parameters with a con-
straint on the sparsity of the core tensor (which essentially defines the loadings of
each mode combination). Sparsity of the discriminating factors and their individ-
ual intelligibility is important for clear and intuitive interpretation of differences
between populations. The key contributions of the present work are summarised
in the following:
– Re-orientation of the polyaffine matrices to a prolate spheroidal coordinate

system
– Analysis of the rotation, stretch, shear, and translation components
– Combined basis computation of multiple groups
– 4-way tensor decomposition, decoupling the spatial components
– Tucker decomposition performed with sparsity constraints on the core tensor
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2 Methods

A method for performing population-based cardiac motion analysis methods
by considering spatio-temporally aligned Polyaffine motion parameters and per-
forming decomposition of these for a group of subjects was recently proposed
in [4]. The method involves a cardiac motion tracking step that takes a dense
displacement field computed using the LogDemons algorithm and projects this
to a Polyaffine space [6], subject to some cardiac-specific constraints (namely
incompressibility and regional smoothing). The obtained Polyaffine parameters
are then spatially and temporally aligned to a common reference frame, and the
parameters for all subjects are grouped to a data tensor of [space × time ×
subject]. Non-constrained Tucker decomposition is applied to the data tensor to
extract the dominant spatial and temporal patterns.

In order to obtain more meaningful parameters and interpretations, we pro-
pose in this work to first re-orient the affine parameters from a Cartesian frame to
a prolate-spheroidal coordinate system, as described in Sec. 2.1. The rotation,
stretch, shear, and translation components can be extracted, as described in
Sec. 2.2. A 4-way tensor can be extracted by decoupling the spatial components
into the affine and regional parts (Sec 2.3), from which Tucker decomposition
with a constraint on the sparsity of the core tensor can be applied, as described
in Sec. 2.4. Finally, the analysis can be performed by stacking together multiple
groups as a single tensor to compute a combined basis, as described in Sec 2.5.

2.1. Re-orientation of Affine Matrices to Local Coordinates: Analysing
the affine parameters directly when they are described in Cartesian coordinates
creates a difficulty in interpreting differences (or similarities) between groups.
In contrast, the parameters can be more easily interpreted once they are in a
prolate spheroidal system (which can be computed using the methods described
in [7]), given that the parameters will then directly represent motion along the
circumferential (c), radial (r), and longitudinal (l) directions. The Jacobian ma-
trices defined at the barycentre of each region in prolate spheroidal coordinates
(Ji(PSS)) were computed as in [4]: Mi(PSS) = Ji(PSS) ∗ Mi, where Mi is the
log-affine matrix at region i in Cartesian coordinates, and Mi(PSS) is the trans-
formation of Mi to prolate spheroidal coordinates.

2.2. Extraction of Rotation, Stretch, Shear, and Translation: Rather
than performing the decomposition on the affine matrices Mu

w:

Mu
w =

⎡
⎣
a1,1 a2,1 a3,1 t1
a1,2 a2,2 a3,2 t2
a1,3 a2,3 a3,3 t3

⎤
⎦

the analysis can be performed on vectors Pu,v,w made up of the rotation, stretch,
shearing and translation components for subject u at time v in region w. The
components are given by:
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Rotation :

⎡
⎣
Rc

Rr

Rl

⎤
⎦ =

⎡
⎣
1/2(a2,3 − a3,2)
1/2(a1,3 − a3,1)
1/2(a1,2 − a2,1)

⎤
⎦

Shear :

⎡
⎣
Scr

Scl

Srl

⎤
⎦ =

⎡
⎣
1/2(a1,2 + a2,1)
1/2(a1,3 + a3,1)
1/2(a2,3 + a3,2)

⎤
⎦

Stretch :

⎡
⎣
Sc

Sr

Sl

⎤
⎦ =

⎡
⎣
a1,1
a2,2
a3,3

⎤
⎦

Translation :

⎡
⎣
Tc

Tr

Tl

⎤
⎦ =

⎡
⎣
t1
t2
t3

⎤
⎦

Combining the re-scaled affine parameters to a new [12 × 1] vector, we ob-
tain Pu,v,w = [Rc Rr Rl Sc Sr Sl Scr Scl Srl Tc Tr Tl]

T . The elements of
Pu,v,w can then be scaled by the variance of each element described by: σ =
[σRc , σRr · · ·σtl ]. Scaling by the variance ensures that all parameters are equally
weighted in the decomposition. Tensor analysis can then be performed on the
final vectors Tu,v,w = [Pu,v,w][i]/σ[i].

2.3. 4-Way Tensor Decomposition: In order to analyse the spatial motion
features independently (in terms of regional and affine components), Tucker De-
composition can be performed on a 4-way tensor T stacked by [motion param-
eters × region × time × subject]. Given the complex nature of cardiac motion
with several key components, trying to analyze these independently is difficult.
Performing decomposition on the full tensor directly has the advantage of de-
scribing how all the components interact.

The Tucker tensor decomposition method [8] is a higher-order extension of
PCA which computes orthonormal subspaces associated with each axis of T. The
Tucker decomposition of a 4-way tensor T is expressed as an n-mode product:

T ≈ G×1 A1 ×2 A2 ×3 A3 ×4 A4

=

M1∑
m1=1

M2∑
m2=1

M3∑
m3=1

M4∑
m4=1

gm1m2m3m4a1m1
⊗ a2m2

⊗ a3m3
⊗ a4m4

= [[G;A1, A2, A3, A4]], (1)

where ×n denotes the mode-n tensor-matrix product, and ⊗ denotes the vector
outer product. Ai are factor matrices in the ith direction (i = 1 . . . 4) that can
be thought of as the tensor equivalent of principal components for each axis.
The core tensor G gives the relationship between the modes in each direction
and describes how to re-combine the modes to obtain the original tensor T.
We propose to perform 4-way Tucker decomposition with A1: the extracted re-
oriented affine parameters, A2: the regions, A3: time, and A4: the subject axis.

2.4. Tucker Decomposition with Sparsity Constraints: In order to im-
prove the interpretability of the solution, a sparsity constraint on the core tensor
can be incorporated into the Tucker decomposition. In [9], an alternating prox-
imal gradient method is used to solve the sparse non-negative Tucker decompo-
sition (NTD) problem:
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min 1
2 ‖ T − G×1 A1 ×2 A2 ×3 A3 ×4 A4 ‖2F +λG ‖ G ‖1 +

∑N
n=1 λn ‖ An ‖1

s.t G ∈ R
J1×J2×J3×J4
+ , An ∈ R

In×Jn
+ ∀n,

where Jn is the dimension of the core tensor for axis n and λG, λn are pa-
rameters controlling the balance of the data fitting and sparsity level. The
core tensor G and factor matrices An are alternately updated in the order:
G, A1,G, A2,G, A3,G, A4 (see [9] for details on the λ parameters).

In this work, the tensor T represents the log-affine parameters and are typically
not non-negative. In order to satisfy the non-negativity constraint of the NTD
algorithm, the exponential of each element of T can be analysed rather than T

directly.

2.5. Combined Basis Computation of Multiple Groups: In order to com-
pare the two populations with the same basis, a combined model can be gen-
erated by forming a 4-way tensor of all subjects grouped together, yielding an
observation tensor M of size [12× 17× 29×N ] for the affine, regional, temporal,
and the N patient-specific components respectively. 4-way tensor decomposition
can then be applied to this data tensor (as described in the previous sections).
By performing the decomposition jointly to obtain a combined basis for multiple
groups, the modes relevant to a given population can be extracted by studying
the loadings of each patient of a chosen mode to identify mutual and distinct
motion patterns.

3 Experiments and Results

The proposed methodology was applied to the STACOM 2011 cardiac motion
tracking challenge dataset [10]: an openly available data-set of 15 healthy sub-
jects (3 female, mean age ± SD = 28± 5), as well as a data-set of 10 Tetralogy
of Fallot patients (5 female, mean age ± SD = 21 ± 7). For all subjects, short
axis cine MRI sequences were acquired with 12 - 16 slices, isotropic in-plane
resolution ranging from 1.15 × 1.15mm2 to 1.36 × 1.36mm2, slice thickness of
8mm, and 15 - 30 image frames.

The sparse NTD algorithm described in Sec. 2 was applied to the stacked
parameters for the combined tensor of healthy controls and the Tetralogy of
Fallot subjects with the size of the core tensor chosen as [5 × 5 × 5] (to retain
only the first 5 dominant modes in each axis). The choice of the number of
modes is a trade-off between maintaining a sufficient level of accuracy (in terms
of the percentage of variance explained), while minimizing the number of output
parameters. In this work, 5 modes were considered to be a reasonable trade-off.
The core tensor loadings for each subject were averaged for the different groups,
in order to visualise the dominant mode combinations in each group. These are
plotted in Fig. 1 and indicate that the two groups share some common dominant
loadings, though the Tetralogy of Fallot group have some additional dominant
loadings, which is expected since additional modes may be required to represent
the abnormal motion patterns in these patients.
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(a) Healthy control group (b) Tetralogy of Fallot group

Fig. 1. Average core tensor loadings for the healthy control group (a) and the Tetralogy
of Fallot group (b). The groups share some common dominant loadings (white arrows),
however, the control group have some distinct mode combinations (purple arrows).
The Tetralogy of Fallot group have some additional extreme values (blue arrows),
which indicates that additional modes are needed to represent the abnormal motion
patterns in these patients.

The dominant modes unique to the control group (indicated by purple arrows
in Fig. 1) have the same regional component as the dominant mode in Fig. 2
and the same temporal component (mode 2: black line in Fig. 2 b), along with
affine mode 1,3 (see Fig. 2 for description of each matrix element):

Aff1 =

⎡
⎣

0 0.053 0.002 0
0.015 0.697 0.009 0
0.328 0 0 0.009

⎤
⎦ Aff3 =

⎡
⎣

0 0.144 0.126 0
0.099 0.101 0.076 0.083
0 0.847 0 0.007

⎤
⎦

The affine modes suggest dominance in the radial stretch (thickening) and longi-
tudinal rotation (twisting) for mode 1, and dominance in the longitudinal stretch
for mode 3, which are the expected motion dynamics in healthy subjects. The
temporal mode (2) accounts for differences around peak systole and diastole
(given that the temporal resampling used in this work was linear).

The common dominant mode combinations are plotted in Fig. 2 (top row).
The affine mode for the dominant mode combinations (Fig. 2, a) shows predom-
inant stretching in the circumferential direction, which may be related to the
twisting motion in the left ventricle. The temporal modes (Fig. 2, b) show a
dominant pattern around the end- and mid-diastolic phases for mode 2, which
may be due to the end of relaxation and end of filling. The dominant regions for
these mode combinations are anterior (Fig. 2, c).

The dominant mode combinations for the Tetralogy of Fallot group are plot-
ted in Fig. 2. The affine mode for the first dominant combination (Fig. 2, d)
indicates little longitudinal motion. The corresponding temporal mode (Fig. 2,
e) represents a peak at the end systolic frame (around one third of the length
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Fig. 2. Dominant mode combinations common to both cohorts: affine mode 2 (a),
temporal modes 2 and 4 (b), and regional mode 2 (c). Key - a: anterior, p: posterior,
s: septal, l: lateral.

of the cardiac cycle). The corresponding regional mode (Fig. 2, f) indicates that
there is a dominance in the motion in the lateral wall. This is an area with
known motion abnormalities in these patients given that the motion in the free
wall of the left ventricle is dragged towards the septum. The temporal mode for
the second dominant mode (Fig. 2, h) has instead a peak around mid-systole,
with corresponding regional mode (Fig. 2, i), indicating dominance around the
apex, which may be due to poor resolution at the apex.

4 Conclusion

A method for descriptive and intuitive analysis of cardiac motion in different
populations is described. The proposed method makes use of a Polyaffine mo-
tion model that represents the motion with reasonable accuracy (i.e. on a par
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with state-of-the-art methods) while requiring only few, consistently defined pa-
rameters for motion tracking of different subjects. The parameters are described
in terms of intuitive physiological parameters and the key affine descriptors of
the motion (namely the rotation, stretch, shear, and translation) are analysed
collectively for multiple populations in order to determine common and distinct
motion patterns between different groups. By performing sparse tensor decompo-
sition of the combined parameters, dominant loadings can be extracted in order
to make the analysis and comparison more straightforward, and we believe that
obtaining a very small number of expressive and intelligible parameters is cru-
cial for the future automatic discovery of key motion features in different cardiac
diseases. The proposed method shows promise for analysing pathology-specific
motion patterns in terms of the affine, temporal, and regional factors.
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