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Abstract. With the recent advances of optical tissue clearing technol-
ogy, current imaging modalities are able to image large tissue samples
in 3D with single-cell resolution. However, the severe background noise
remains a significant obstacle to the extraction of quantitative infor-
mation from these high-resolution 3D images. Additionally, due to the
potentially large sizes of 3D image data (over 1011 voxels), the process-
ing speed is becoming a major bottleneck that limits the applicability of
many known background correction methods. In this paper, we present a
fast background removal algorithm for large volume 3D fluorescence mi-
croscopy images. By incorporating unsupervised one-class learning into
the percentile filtering approach, our algorithm is able to precisely and ef-
ficiently remove background noise even when the sizes and appearances
of foreground objects vary greatly. Extensive experiments on real 3D
datasets show our method has superior performance and efficiency com-
paring with the current state-of-the-art background correction method
and the rolling ball algorithm in ImageJ.

1 Introduction

With the recent advances of optical tissue clearing technology, current imag-
ing modalities are able to image large tissue samples (e.g., the whole mouse
brain) in 3D with single-cell resolution [10]. This creates new opportunities for
biomedical research, ranging from studying how the brain works to developing
new medicines for cancer. But, it also brings new challenges to extract infor-
mation from such large volume 3D images. Due to large imaging depth and
tissue auto-fluorescence, background noise in such 3D images is often strong
and highly inhomogeneous [1], not only preventing effective 3D visualization
(Fig. 1(a) and 1(d)) but also causing difficulties to many image processing tasks,
such as segmentation (Fig. 1(c) and 1(f)), registration, and tracking. In this pa-
per, we present a fast background removal algorithm that is capable of precisely
identifying and removing background noise in such large volume 3D images.
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Fig. 1. (a) and (d): 3D visualization results before and after background removal by
our algorithm; (b) and (e): selected 2D slices inside the sample 3D image before and
after background removal; (c) and (f): segmentation results of (b) and (e) based on
thresholding (more accurate segmentation is achieved in both high intensity (upper-left
window) and low intensity (bottom-right window) areas after background removal).

Many methods are known for removing undesired background noise in mi-
croscopy images, such as spatial filtering [4], rolling ball algorithms [2], fitting
smoothly varying function [6], entropy minimization [5], and matrix rank mini-
mization [8]. However, due to the rapidly increasing sizes of image data, the time
and space complexities of some sophisticated methods (e.g., optimization based
methods and function fitting methods) are too high. With whole-body imaging
at single-cell resolution [9], image sizes will continue to grow. Large 3D imaging
fields yield not only large data sizes but also wide variations in the sizes of fore-
ground objects. Although simple methods like spatial filtering and rolling ball
algorithms are quite fast, significant variance of foreground objects can greatly
affect their performance. For example, in some parts of our brain tumor images,
cells are uniformly distributed, for which small window/ball sizes give the best
performance; in other parts, tumor cells are clustered closely together and form
much larger target objects, for which small window/ball sizes may include tumor
cell clusters as part of the background (to be removed). We call those “small”
windows that cause removal of foreground objects the undersized windows.

Taking advantage of the efficiency of spatial filtering methods, we develop a
new spatial filtering algorithm for background removal, which is capable to over-
come the “undersized window” issue. Two possible approaches may be considered
for the window size issue: (1) intelligently choosing the window sizes at differ-
ent parts of the images (e.g., a small window size for single cells, a big window
size for large clusters); (2) first using a fixed small window size, then identifying
“undersized windows”, and recomputing their background accordingly. The first
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approach requires certain effective foreground object detection, which may not
be efficient and accurate. In [6], a method in the second approach was given,
which identified “undersized windows” by automatic thresholding with a kernel
density estimator. However, it still fails when foreground objects are too big [6],
possibly caused by a significant amount of “undersized windows”. By utilizing
the recently developed unsupervised one-class learning model [7], we tackle this
critical window size issue even when foreground objects are ∼ 100 times larger
than the pre-selected window size. Extensive experiments on real 3D datasets
show our method has better accuracy and is ∼ 160 times faster than the current
state-of-the-art background correction method [8]. Also, it has much better ac-
curacy yet is only ∼ 1 time slower than the prevailing rolling ball algorithm in
ImageJ [2]. Tables 1 and 2 show detailed comparison results.

2 Method

Our method includes three main steps: (1) estimate background noise using a
fixed small window size; (2) detect “undersized windows” occurred in Step (1);
(3) recompute background noise in the detected “undersized windows”.

2.1 Estimating Background Noise

Common background/shading correction methods use additive models or mul-
tiplicative models to handle noise [6,8]. In our images, because multiplicative
noise is significantly smaller than additive noise, we utilize an additive model
I(x, y, z) = F (x, y, z) + B(x, y, z), where I(x, y, z) denotes the observed signal,
F (x, y, z) denotes the foreground signal, and B(x, y, z) denotes the background
noise at a voxel (x, y, z).

Our method first uses a fixed small window size w to estimate background
noise in the image. Although this window size may result in a large number of
“undersized windows”, we will deal with them using the algorithm in Section
2.2. Because the background noise varies slowly, meaning it has low frequency in
the Fourier domain, we only need to estimate the background noise for a subset
of all voxels (which we call sampled voxels). By the Nyquist-Shannon sampling
theorem, as long as our sampling frequency is more than twice as high as the
frequency of the background noise, we can recover the true background noise
at every voxel. Thus, we use a point grid to choose the sampled voxels. Then,
centered at each sampled voxel (xs, ys, zs), a w × w × w window W (xs, ys, zs)
is defined and p percentile of the intensities of all voxels inside W (xs, ys, zs) is
used to estimate the background noise B(xs, ys, zs). In order to maximize the
efficiency and quality, the interval of sampled points is chosen to be equal to
the window size so that there is neither gap nor overlap between neighboring
windows (Fig. 2(a)). Because the intensity of each voxel is in a small set of
integers (e.g., [0, . . . , 255]), this step can be computed efficiently in linear time.
Since a smaller w will yield a larger sampled set and better estimation of the
background (when it is not an “undersized window”), we tend to use a very
small w, say 3 or 5.
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Fig. 2. (a) Each red point is a sampled voxel and the cubic window around it is used to
estimate its background intensity; (b) an example histogram of estimated background
noise (the green line is the threshold selected by our method, the red line is the threshold
selected by median + 3 × std, and the orange dashed line is the manually selected
threshold); (c) red points denote the detected “undersized windows”, and green points
denote the correctly estimated windows (we re-estimate the background noise of the
point marked by X); (d) the blue point is a voxel amid sampled voxels, whose value is
computed by linear interpolation based on its neighboring sampled voxels.

2.2 Detecting Undersized Windows

In this section, we formulate “undersized window” detection as a one-class learn-
ing problem [7], and show how to utilize the properties of our specific problem
to make our one-class learning solution more accurate and efficient than in [7].

A key task to our method is to precisely detect “undersized windows”. Specif-
ically, given sampled windows W (xs, ys, zs), s ∈ {1, . . . , n}, find all “undersized
windows” W (xu, yu, zu) among them. A straightforward way is to use some sim-
ple histogram thresholding schemes to determine a threshold on B(xs, ys, zs)
(e.g., using the median and standard deviation, finding the local maxima in
the second derivative and the kernel density estimator [6]). However, the dis-
tribution of B(xs, ys, zs) could be quite complex and greatly affect the perfor-
mance of such methods (Fig. 2(b)). Thus, we need to develop a more robust
approach to detect these “undersized windows”. Because background noise (al-
though quite inhomogeneous to affect image processing tasks) is more homoge-
neous than foreground signals, correctly estimated B(xs, ys, zs)’s are much closer
to one another while B(xu, yu, zu)’s (which are actually foreground signals) have
larger variance. This property allows us to treat B(xu, yu, zu)’s as outliers among
B(xs, ys, zs)’s. Thus, we reformulate our problem as follows: Given an unlabeled
dataset X = {x′

i = B(xi, yi, zi)}ni=1, find a classification function f : R → R that
is able to determine the outliers in X . Our solution for this problem is based on
the state-of-the-art unsupervised one-class learning model [7].

We first briefly review the method in [7]. Its basic idea is to use a self-
guided labeling procedure to identify suspicious outliers and then train a large
margin one-class classifier to separate such outliers from reliable positive sam-
ples. This procedure is achieved by minimizing the following objective func-
tion: minf∈H,{yi}

∑n
i=1(f(x

′
i) − yi)

2 + γ1||f ||2M − 2γ2

n+

∑
i,yi>0 f(x

′
i) such that

yi ∈ {c+, c−}, ∀i ∈ [1, . . . , n] and 0 < n+ = |{i | yi > 0}| < n. Here, f(x ′) =∑n
i=1 κ(x

′, x ′
i)αi is the target classification function, where αi is the expansion

coefficient of the functional base κ(·, x ′
i). In our case, we use an RBF kernel with
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bandwidth σ2 =
∑

i,j ||x′
i − x′

j ||2/n2. yi is the soft label assignment for each

input data x ′
i, by choosing (c+, c−) = (

√
n−n+

n+ ,−
√

n+

n−n+ ), the model treats the

positive samples and outliers in a more balanced way. The first term regularizes
the target classification function to make it consistent with the label assignment.
The second term ||f ||2M is the manifold regularizer that regularizes the smooth-
ness of the intrinsic manifold structure M. It is constructed by a neighborhood
graph with affinity matrix W. W is defined as follows:

Wij =

{
exp(− ||x′

i−x′
j ||2

ε2 ), i ∈ Nj or j ∈ Ni

0, otherwise
(1)

ε is the bandwidth parameter, and Ni is the set of indices of x′
i’s k nearest

neighbors in X . We have ||f ||2M = 1
2

∑n
i,j=1(f(x

′
i)− f(x′

j))
2Wij . The last term

maximizes the average margin of judged positive samples. Finally, γ1, γ2 > 0 are
trade-off parameters that control the relative importance between these parts.

The above minimization problem involves a continuous function f and discrete
variables {yi}, which is very difficult to optimize. In [7], an alternative optimiza-
tion algorithm was given, but it cannot guarantee finding a global minimum.
Interestingly, for our specific problem, we are able to find a global minimum in a
highly effective way. Note that in our setting, the data lie in a small 1D discrete
space (x′

i ∈ [0, . . . , 255]), and we seek a cut between these data points. Since
there are at most 257 ways to cut our data (i.e., C ∈ {−0.5, 0.5, 1.5, . . . , 255.5}),
we can simply compute the optimal objective function value for each one of them
and find the best cut Coptimal that minimizes the objective function. After some
transformations (see more details in [7]), the original minimization problem for
any given cut point C can be put into the following matrix form:

min
α

α�K(I+ γ1(D−W))Kα− 2α�Kỹ

s.t. ||α|| = 1, 0 < n+ = |{i | x′
i ≤ C}| < n

yi = c+ + γ2/n
+, ∀i ∈ {i | x′

i ≤ C}, yj = c−, ∀j ∈ {j | x′
j > C}

(2)

where α = [α1, . . . , αn]
� ∈ R

n, ỹ = [y1, . . . , yn]
�, and the kernel matrix K =

[κ(x′
i,x

′
j)]1≤i,j≤n ∈ R

n×n. D is a diagonal matrix with Dii =
∑n

j=1 Wij . To take

care of the constraint 0 < n+ < n, we add to X two artificial data points with
values -1 and 256. Problem (2) was well studied [7], and its minimum is achieved
when α = (K(I+γ1(D−W))K−λ∗I)−1Kỹ, where λ∗ is the smallest real-valued

eigenvalue of the matrix

[
K(I+ γ1(D−W))K −I

−(Kỹ)(Kỹ)� K(I+ γ1(D−W))K

]

.

For each cut point C, its optimal objective function value is computed using
that α. We can then easily find Coptimal, which attains the minimum objective
function value among all C’s. After find Coptimal, again since x′

i ∈ [0, . . . , 255],
we need not actually compute f(x′) to determine whether x′ is an outlier. We
only need to compare its value against Coptimal. Thus, W (xs, ys, zs) is classified
as “undersized window” if B(xs, ys, zs) > Coptimal.
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Finally, we utilize a sampling strategy to make this procedure more efficient.
In each 3D image, m windows are randomly sampled from all W (xs, ys, zs)’s
to calculate Ĉoptimal. For each class of images which are stained by the same
fluorescence dye, bootstrap is used to choose a sufficiently large m [3]. More
specifically, the standard error of Ĉoptimal, which can be computed by bootstrap,
is used to decide whetherm is sufficient. Initially, we setm = 1000, and gradually
increase m until the standard error of Ĉoptimal is small enough.

2.3 Recomputing Background Noise in “Undersized Windows”

After detecting all “undersized windows”, we re-estimate their values based on
the mean of their surrounding correctly estimated windows. Specifically, the sur-
rounding is defined by whether the distance between the centers of the “under-
sized window” and the correctly estimated window is smaller than r. Initially, r =
1; then we gradually increase r until there are surrounding correctly estimated
windows (Fig. 2(c)); finally, the background noise for each voxel is computed by
linear interpolation based on the neighboring sampled voxels (Fig. 2(d)), and the
estimated foreground signal is computed by F (x, y, z) = I(x, y, z)−B(x, y, z).

3 Experiments and Results

To perform quantitative performance analysis, we collected four sample 3D im-
ages using two-photon microscopy on four different 3D mouse brains. Each mouse
brain was made optically transparent by the method in [10]. To test the applica-
bility of our method to different types of fluorescence dyes, Samples 1 and 3 were
stained by DAPI which marks all cell nuclei in the samples. In these two sam-
ples, the background noise is moderate, but the sizes of foreground objects vary
greatly (Fig. 3). Samples 2 and 4 were stained by GFAP which marks all astro-
cytes in the samples. In these two samples, the foreground objects are relatively
sparse, but the background noise is quite severe (Fig. 3). Three representative
slices were selected from each of these four 3D images for evaluation. To represent
the changes across different depths, they were selected from the top, middle, and
bottom of the 3D images. Human experts then labeled all the foreground objects
in these representative slices. After that, the ground truth images were generated
by computing the dot product between the binary human-labeled images and
the original images. In this way, in the ground truth images, all the foreground
objects keep their original intensities while all background intensities become 0.

Two known methods are selected for comparison with our method. The first
one is a recently published shading correction method based on matrix ranking
minimization [8]. The second one is the rolling ball algorithm, which is a well
established method in ImageJ [2]. In the first method, for each 2D slice, its
background is estimated by the neighboring d slices, where d is manually selected
so that it achieves the best performance. In the second method, the ball size is
selected to be equal to our window size w = 5. In our method, the percentile
p = 10% and the parameters in the one-class learning model, k = 7, γ1 = 1,
γ2 = 1, ε = 1, and m = 4000, are fixed across different samples.
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Fig. 3. (a)(b)(c)(d): Some example slices from 3D image Samples 1, 2, 3, and 4.

Table 1. Root mean squared errors (RMSE).

Sample 1 Sample 2 Sample 3 Sample 4 Avg. Improvement

Our method 9.21 8.48 4.26 7.74 52.53%
Low rank [8] 18.01 9.50 5.68 7.81 34.56%
Rolling ball [2] 20.07 11.03 7.24 9.88 22.37%
Original Image 17.53 17.15 9.23 18.55

As in [6,8], the quality of each method is measured using the root mean
squared error (RMSE) between the processed slice F and the ground truth G,

with RMSE =
√

1
n

∑
i,j(Fij −Gij)2. Table 1 summarizes the results. A smaller

RMSE means more accurate background correction. On Table 1, one can see
that when foreground objects are sparse (Samples 2 and 4), our method and
[8] have comparable performance and are both much better than the rolling ball
algorithm [2]. However, when foreground objects are more complicated (Samples
1 and 3), both [8] and the rolling ball algorithm are considerably worse than our
method. In some cases, they can damage foreground objects (Fig. 4) and thus
are even worse than the original images.

Table 2. Average processing time per voxel (in µs).

Sample 1 Sample 2 Sample 3 Sample 4 Average

Our method 0.66µs 0.76µs 0.98µs 0.81µs 0.80µs
Low rank [8] 130.3µs 128.2µs 133.7µs 126.3µs 129.6µs
Rolling ball [2] 0.54µs 0.46µs 0.42µs 0.46µs 0.47µs

The efficiency of each method is measured by the average processing time
per voxel, as shown in Table 2. Both [8] and our method were implemented in
MATLAB. All these methods were tested on the same workstation. By Table 2,
to process a 3D image for a whole mouse brain (with 1011 voxels), our method
will take about 22 hours while the method in [8] will take 150 days. This shows
the crucial need of efficiency for processing such large 3D images.
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Fig. 4. A cropped window in a slice from Sample 1. (a) The labeled ground truth; (b)
the result of the rolling ball algorithm; (c) the result of [8]; (d) our result. The rolling
ball algorithm damages all foreground objects that are larger than its ball size. [8] is
able to deal with sparse objects; but, it still damages the center of big clusters.

4 Conclusions

We present a fast background removal algorithm based on percentile filtering.
The crucial “undersized window” problem in spatial filtering is tackled by un-
supervised one-class learning. Extensive experiments on real 3D datasets show
our method has superior performance and efficiency comparing with the current
state-of-the-art background correction method and the rolling ball algorithm.
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