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Abstract. We propose an automatic feature selection framework for
analyzing temporal ultrasound signals of prostate tissue. The framework
consists of: 1) an unsupervised feature reduction step that uses Deep Be-
lief Network (DBN) on spectral components of the temporal ultrasound
data; 2) a supervised fine-tuning step that uses the histopathology of the
tissue samples to further optimize the DBN; 3) a Support Vector Ma-
chine (SVM) classifier that uses the activation of the DBN as input and
outputs a likelihood for the cancer. In leave-one-core-out cross-validation
experiments using 35 biopsy cores, an area under the curve of 0.91 is ob-
tained for cancer prediction. Subsequently, an independent group of 36
biopsy cores was used for validation of the model. The results show that
the framework can predict 22 out of 23 benign, and all of cancerous
cores correctly. We conclude that temporal analysis of ultrasound data
can potentially complement multi-parametric Magnetic Resonance Imag-
ing (mp-MRI) by improving the differentiation of benign and cancerous
prostate tissue.

Keywords: Temporal ultrasound data, deep learning, deep belief net-
work, cancer diagnosis, prostate cancer, feature selection, classification.

1 Introduction

The early diagnosis of prostate cancer, as the most common type of diagnosed
malignancy in North American men, plays an important role in the choice
and the success of treatments [8]. The definitive diagnosis of prostate cancer
is histopathological analysis of biopsy tissue samples, which is typically guided
under Transrectal Ultrasound (TRUS). However, conventional systematic biopsy
under TRUS guidance does not have high sensitivity and specificity. Recently,
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fusion of multi-parametric MRI (mp-MRI) with TRUS has shown significant po-
tential for improved cancer yield [7]. A meta-analysis of seven mp-MRI studies
with 526 patients show specificity of 0.88 and sensitivity of 0.74, with negative
predictive values ranging from 0.65 to 0.94 [9]. mp-MRI suffers from several lim-
itations including low sensitivity for detection of small lesions and low grade
cancer. Hence, there is a need to develop new imaging techniques that can com-
plement mp-MRI for prostate cancer diagnosis.

Over the past two decades, several ultrasound-based techniques have been
proposed for characterizing cancerous tissue [8]. The clinical uptake of these
methods has been slow, mainly due to the large variability of the tissue charac-
terization results. The primary sources of such variability are the heterogeneous
patient population and cancer grades. Moreover, these methods do not generally
report clinically sufficient specificity and sensitivity to ensure that all aggressive
cancer cases can be captured by ultrasound analysis.

Ultrasound-based tissue typing techniques to-date mainly rely on spectral
analysis of a single ultrasound image, or alternative modalities such as elas-
tography and Doppler, that are not commonly used during prostate biopsy.
Recently, analysis of temporal ultrasound data obtained from a fixed tissue lo-
cation has been proposed to complement other ultrasound-based tissue typing
techniques [4]. The key advantage of this technique is that it relies on conven-
tional ultrasound imaging data, without the need to change the clinical scan-
ning protocol. It has been shown that temporal changes in the ultrasound signal
backscattered from the tissue varies across tissue types. Several hypotheses have
been explored to determine the physical phenomenon governing the approach. It
has been proposed that the acoustic radiation force of the transmit ultrasound
signal increases the tissue temperature, and changes the speed of sound [2].
Another hypothesis indicates that micro-vibration of acoustic scatterers, con-
tribute to tissue typing in this approach. Previous works [4,5,12] utilize a ma-
chine learning framework to determine the correlation between features extracted
from the temporal ultrasound data and cancer presence or grade provided by
histopathology. In these methods, features were heuristically determined from
the spectral/wavelet analysis of the ultrasound data. In addition to challenges
associated with defining features that are correlated with the underlying tissue
properties, it is also difficult to determine the best combination of those features
for effective tissue typing as the number of features increases. The lack of a sys-
tematic approach for feature selection can lead to a so-called “cherry picking”
of the features [4,5,12].

Deep learning approaches have gained significant attention for capturing ab-
stract representations of input data [1], and have been successfully used in
medical image analysis [6,11]. In this paper, we exploit Deep Belief Networks
(DBN) [1] to automatically learn a high-level feature representation of the tem-
poral ultrasound data that can detect prostate cancer. Subsequently, we use the
high-level features in a supervised classification step based on Support Vector
Machines (SVM) to generate a cancer likelihood. In a study consisting of 71
biopsy cores obtained from 62 subjects, we demonstrate that the approach is
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effective in identifying both benign and cancerous biopsy cores in TRUS-guided
biopsy, and can complement mp-MRI to further improve the cancer yield.

2 Materials

Temporal ultrasound Radio-Frequency (RF) data was acquired with a Philips
iU22 ultrasound scanner during MRI-guided targeted TRUS biopsies using the
Philips UroNav platform at the National Institutes of Health Clinical Center
(NIH-CC), Bethesda, MD. Prior to the biopsy session, mp-MR images including
T2-weighted, Diffusion Weighted Images (DWI), and Dynamic Contrast En-
hanced (DCE) images were acquired for each subject. Two independent radiolo-
gists identified and scored suspicious lesions in MR images based on a standard
protocol, ranging from 1 (no cancer) to 5 (aggressive cancer) and assigned grades:
low (2 or less), moderate (3) and high (4 or more). The desired biopsy targets
were delineated on the T2-weighted MR image based on these scores. In the
beginning of the procedure, a 3D ultrasound volume of the prostate was recon-
structed by acquiring a series of electromagnetically (EM) tracked 2D TRUS
images. For targeted biopsy, T2-weighted MR images were automatically fused
with the 3D US volume of the prostate using the UroNav platform. Follow-
ing the registration of ultrasound and MR volumes, the targeted locations for
biopsy were transformed to the EM coordinate frame. During biopsy, the clini-
cian navigates through the prostate volume to reach the desired target location
for acquiring a core. The clinician then holds the TRUS transducer fixed for
about 5 seconds to acquire 100 frames of ultrasound time series data. Temporal
ultrasound data is collected from at most two MR-identified targets per subject.
Tissue biopsy is then followed by histopathology analysis and results are used
as the ground-truth labels for evaluation of cancer detection. The level of ab-
normality for each biopsy core is described using Gleason Score (GS). Data is
obtained from 71 biopsy cores of 62 subjects; among them 45 cores are benign
while 26 other cores are cancerous. The data was divided into two independent
data sets for training,D1, and validation, D2. For building the model, we need to
use homogeneous tissue regions. Given potential mis-registration errors between
MR and ultrasound images, we only include biopsy cores with at least 7.2 mm
of cancer for a typical core length of 18 mm. We also add benign cases to the
training data set.

The training dataset,D1, consists of 35 biopsy cores obtained from 31 patients
with the following histopathology label distribution: Benign: 22; GS 3+3: 0; GS
3+4: 5; GS 4+3: 2; GS 4+4: 4; and, GS 4+5: 2 cores. The validation data set, D2,
contains another 36 biopsy cores obtained from 31 patients with the following
histopathology label distribution: Benign: 23; GS 3+3: 4; GS 3+4: 3; GS 4+3:
0; GS 4+4: 4; and, GS 4+5: 2 cores.

We extract features from temporal ultrasound data over 20 equally-sized Re-
gions of Interest (ROI) of size 1mm2 for each biopsy core. For each biopsy target,
we analyze an area of 2×10 mm2 in the lateral and axial directions, respectively,
along the projected needle path in the ultrasound image, and centered on the
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Fig. 1. An illustration of the proposed method for prostate cancer detection. Our DBN
has a layer of real-valued visible units of dimension 50 and four hidden layers with 100,
50, 45 and 6 hidden units. The red box contains the pre-trained DBN, and the blue
box containing one neuron is added for the fine-tuning step. The latent features are
the output of the last layer of DBN.

target. The width of this area is close to the width of the biopsy core, but the
length of the biopsy core is typically 18 mm. To generate the features of tem-
poral ultrasound data, we take the Fourier transform of the entire time series,
normalized to the frame rate. For each ROI, we generate 50 spectral features by
averaging the absolute values of the Discrete Fourier Transform (DFT) of the
zero-mean ultrasound time series for 50 positive frequency components. Due to
symmetry, only the positive frequency components of the spectrum are used.

3 Methods

Fig. 1 illustrates a schematic diagram of the proposed method. Using D1, we
derive high level - latent- feature representation from the 50 extracted features
using DBN. Then, we use the learned feature information along with ground-
truth labels to train a Support Vector Machine (SVM). To verify the generated
model, we extract the features for data set D2. Then, we use the activations of
the trained DBN and SVM to derive the tissue type labels for each ROI.

3.1 Deep Belief Networks

DBN, as a generative probabilistic model, can be trained to extract a deep hi-
erarchical representation of the input data. We construct a DBN by stacking
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many layers of Restricted Boltzmann Machines (RBMs), each of which consists
of a visible layer and a hidden layer of neurons. The two layers are connected by
a matrix of weighted connections and there are no connections within a layer.
RBMs can be stacked by linking the hidden layer of one RBM to the visible
layer of the next RBM. A schematic representation is shown in Fig. 1. The role
of a RBM is to model the distribution of its input and capturing patterns in the
visible units. Thus, DBNs offer an unsupervised way to learn multi-layer proba-
bilistic representations of data that are progressively deeper with each successive
layer. Utilizing this representational power, we can find a latent representation
of the original low-level features extracted from temporal ultrasound data.

We perform the contrast divergence approximation [1] to update the weights
during training. The DBN can be trained by performing a greedy layer-wise
unsupervised pre-training phase [1]. In a greedy layer-wise learning, we train one
layer at a time and use the representation of the previous hidden layer as input for
the next hidden layer. In order to capture a higher level representation of input
features, we stack another output layer on top of the DBN. This layer is used to
represent the class label of an input data. Therefore, by back-propagation and
having parameters initialized by the pre-training, we can optimize the weights
of the deep network. This supervised optimization step is called fine-tuning [1].

3.2 Feature Learning

The model architecture of the DBN is shown in Fig. 1. Training of the DBN
requires trial and error to determine various parameters, such as the learning
rate, the momentum, the weight-cost, the initial values of the weights, the num-
ber of hidden units and the size of each mini-batch [3]. We used the MATLAB
library of Tanaka et al. [10] to build and train the DBN. We started with the
default values for all parameters as it was suggested in this library. In the first
step, we heuristically searched for the number of hidden layers and the number
of neurons in each layer, within the layer-wise greedy training framework [1],
so that lowest errors with the default library parameters were obtained in the
the training data, D1. Next, we followed the guidelines given by Hinton [3] to
adjust the learning rate, the momentum and the weight-cost to achieve lower
error in the training data. The pre-trained DBN was finalized with 100 passes
(epochs), a fixed learning rate of 0.001 and batch size of 5, and has a layer of
real-valued visible units of dimension 50, and four hidden layers, consisting of
100, 50, 45 and 6 hidden units. The last hidden layer produces the latent features.
To further reduce the error, we then proceeded to a fine-tuning step using the
same training set. We ran 70 epochs with a fixed learning rate of 0.01. During
both pre-training and fine-tuning, a small weight-cost of 0.0002 was used and
the learning was accelerated by using a momentum of 0.9. To mitigate the risk
of over-fitting the model during training, all the parameters stated above were
only tuned based on data set D1. The classification performance reported in the
paper is only associated with the independent data set D2.
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3.3 Classification

We use the latent features as input for the SVM classifier1 with the Radial
Basis Function (RBF) kernel in the final stage. The parameters of SVM were
determined using a grid-search algorithm which uses leave-one-core-out cross-
validation on latent features obtained from D1. In addition to the binary output
of the classifier, we estimate the likelihood of the ROIs to be cancerous by using
the approach presented in [12]. Finally, the classification model developed using
data set D1, was validated with the data set D2 in the testing step (See Fig. 1).

4 Results

In order to identify the consistency of learnt features in the training set D1, we
follow a cross-validation strategy. In leave-one-core-out cross-validation experi-
ments, an area under Receiver Operating Characteristics (ROC) curve of 0.91
is obtained for cancer prediction in the biopsy cores. The result of validation of
our classification framework on data set D2 is shown in Fig. 2. Using a threshold
of 55% for the model output, 22 out of 23 benign cores can be labeled correctly.
Furthermore, all cancerous cores can be identified correctly. Finally, we compare
the model output against the grade assigned to each biopsy core in MRI. As
shown in Fig. 2(b), the majority of MRI grades are moderate and our method
can detect all of cores with moderate MRI grade correctly. Moreover, except one
benign case with low MRI grade, the model correctly predicts the label of all
High MRI grade biopsy cores.

We also performed an additional experiment by permuting the training and
testing data. To create new training and test sets, in each permutation, we ex-
changed a randomly selected cancerous core larger than 1.5 mm between D1 and
D2. Similarly, we exchanged a randomly selected benign core between the two
data sets. This resulted in five different permutations given the distribution of
large cancer cores in our data. One average, we achieved accuracy, sensitivity,
and specificity of 93%, 98%, and 90%, respectively. In four out of five permuta-
tions, all cancer cores were correctly identified.

5 Discussion and Conclusion

We utilized a machine learning framework for analysing temporal ultrasound data
to accurately predict prostate cancer in MRI-TRUS guided targeted prostate
biopsy. A deep learning approach was used for automatic feature selection and
learning of the high-level features from temporal ultrasound signals.We automati-
cally reduced the dimensionality of the temporal ultrasound features using a DBN
followed by supervised fine-tuning. Then, we used an SVM classifier alongwith the
activation of the trained DBN to characterize the prostate tissue. The proposed
approach systematically learneddiscriminant features fromhigh-dimensional tem-
poral ultrasound features to detect prostate cancer.

1 A Library for SVMs: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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(a) (b)

Fig. 2. Percentage of cancerous ROIs with a likelihood of more than 50% in the model
output in each core: (a) The model output versus tumor-in-core-length for the vali-
dation data. (b) The model output versus MRI grade for the validation data. Cancer
cores and benign cores are shown as circles and squares, respectively.

While our results with DBN are highly promising, DBN is a computationally
expensive method that performs best on very large data sets. The greedy training
algorithm [1] ensures that the parameters of the model can be tuned layer-by-
layer, reducing the need for large sample sizes to a certain extent. We compare
our approach with standard SVM and random forests implementations using
the same input. In our data set, random forests outperforms SVM, and achieves
sensitivity of 69% and specificity of 78%.

We built our model using a training data set consisting of temporal ultrasound
data of 35 biopsy cores. The model was validated on an independent set of 36
biopsy cores. The results indicate that latent feature selection with DBN can im-
prove the tissue typing capabilities of temporal ultrasound data analysis, which
can potentially complement mp-MRI for TRUS-guided biopsy. Specifically, since
all patients in our study were originally labeled as suspicious for cancer in mp-
MRI, our results indicate that with a subsequent analysis of temporal ultrasound
data, it might be possible to further improve the differentiation of benign and
cancerous cases, hence reducing the need for unnecessary biopsy. This can be a
powerful tool for surveillance of patients.
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