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Abstract. Computer-aided detection (CAD) can play a major role in diagnos-
ing pulmonary embolism (PE) at CT pulmonary angiography (CTPA). However,
despite their demonstrated utility, to achieve a clinically acceptable sensitivity,
existing PE CAD systems generate a high number of false positives, imposing ex-
tra burdens on radiologists to adjudicate these superfluous CAD findings. In this
study, we investigate the feasibility of convolutional neural networks (CNNs) as
an effective mechanism for eliminating false positives. A critical issue in success-
fully utilizing CNNs for detecting an object in 3D images is to develop a “right”
image representation for the object. Toward this end, we have developed a vessel-
aligned multi-planar image representation of emboli. Our image representation
offers three advantages: (1) efficiency and compactness—concisely summariz-
ing the 3D contextual information around an embolus in only 2 image channels,
(2) consistency—automatically aligning the embolus in the 2-channel images ac-
cording to the orientation of the affected vessel, and (3) expandability—naturally
supporting data augmentation for training CNNs. We have evaluated our CAD
approach using 121 CTPA datasets with a total of 326 emboli, achieving a sen-
sitivity of 83% at 2 false positives per volume. This performance is superior to
the best performing CAD system in the literature, which achieves a sensitivity of
71% at the same level of false positives. We have further evaluated our system
using the entire 20 CTPA test datasets from the PE challenge. Our system out-
performs the winning system from the challenge at 0mm localization error but is
outperformed by it at 2mm and 5mm localization errors. In our view, the perfor-
mance at 0mm localization error is more important than those at 2mm and 5mm
localization errors.

Keywords: Computer-aided detection, pulmonary embolism, convolutional neu-
ral networks, vessel-aligned image representation.

1 Introduction

Pulmonary embolism (PE) is a thrombus, occasionally colloquially referred to as a
blood clot, that travels from the legs, or rarely other parts of the body, to the lungs
where it obstructs central, lobar, segmental, or subsegmental pulmonary arteries de-
pending on the size of the embolus. The untreated mortality rate of PE may approach
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30%. However, with early diagnosis and treatment, the mortality rate decreases to as
low as 2% to 11%. CT pulmonary angiography (CTPA) is the primary means for the
evaluation of suspected PE. At CTPA, an embolus appears as a dark region surrounded
by the brighter, contrast-enhanced vessel lumen. CTPA dataset interpretation demands
a radiologist to carefully trace each branch of the pulmonary artery for any suspected
PEs. Therefore, PE diagnosis often requires extensive reading time, and the accuracy
of CTPA interpretation depends on the radiologists’ experience, attention span, eye fa-
tigue, and their sensitivity to visual characteristics of PEs.

Computer-aided detection (CAD) can play a major role in detecting and diagnos-
ing PEs. Recent clinical studies have shown that CAD systems can help radiologists
increase their sensitivity for PE detection [3]. However, despite their demonstrated util-
ity, existing CAD systems still require a relatively high false positive rate in order to
achieve a clinically acceptable PE sensitivity. The false positives generated by CAD
systems prolong the reading time of CTPA studies, because each CAD finding must
be examined by a radiologist and adjudicated. It is therefore highly desirable to de-
velop a CAD system that can achieve higher sensitivity while maintaining a clinically
acceptable false positive range (between 1 to 5 false positives per CTPA study).

This paper investigates the feasibility of convolutional neural networks (CNNs) as
an effective tool for eliminating false positive detections. We have found that the effec-
tive utilization of CNNs for detecting PEs and removing false detections in 3D CTPA
datasets is contingent on an effective image representation of PEs. As such, a key find-
ing from our work is a vessel-aligned multi-planar image representation of emboli that
offers three advantages: (1) our proposed image representation is efficient and compact
because it concisely summarizes the 3D contextual information around an embolus in
only 2 image channels; (2) our proposed image representation is consistent because it
automatically aligns the embolus in the 2-channel images according to the orientation
of the affected vessel; and (3) our proposed image representation is expandable be-
cause it naturally supports data augmentation for training a CNN. We have evaluated
our CAD system using 121 CTPA datasets containing a total of 326 emboli, achieving
a sensitivity of 83% at 2 false positives per volume. This performance is superior to the
best performing CAD system in the literature, which achieves a sensitivity of 71% at
the same level of false positives. We have further evaluated our system with the entire
20 CTPA test datasets from the PE challenge [1]. Our system outperforms MeVis’, the
best reported system, at 0mm localization error but is outperformed by MeVis’ at 2mm
and 5mm localization errors. In our view, the performance at 0mm localization error is
more important than those at 2mm and 5mm localization errors.

2 Related Work

CAD systems for PE typically consist of four stages: 1) extracting a volume of inter-
est (VOI) from the original dataset by performing lung segmentation [5,11,8] or vessel
segmentation [7,11,2]; 2) generating a set of PE candidates within the VOI using al-
gorithms such as tobogganing [5]; 3) extracting hand-crafted features from each PE
candidate (e.g., [6]), and 4) computing a confidence score for each of the candidates us-
ing a rule based classifier [7], neural networks and a nearest neighbor classifier [11,8],
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or a multi-instance classifier [5]. However, current CAD systems either produce many
false positives to achieve a high detection sensitivity [7], or yield acceptable false pos-
itive rates but with only limited sensitivity levels [8,2,11] (see Table 1 for a detailed
performance comparison). We hypothesize that inadequate modeling of PEs based on
hand-crafted features results in suboptimal CAD performance, and therefore investi-
gate the use of a new image representation for PEs, coupled with CNNs, to improve
state-of-the-art performance.

3 Proposed Method

Given a CTPA dataset, our method first segments lungs and then generates a set of PE
candidates within the lung area using the tobogganing algorithm [5]. Our method then
uses our vessel-aligned multi-planar image representation to produce a 2-channel image
representation for each PE candidate. The resulting 2-channel patches are then fed to a
CNN to classify the underlying candidates into PE or non-PE categories. Please refer
to [5] for the tobogganing algorithm and to [4] for the CNN. In the following, we shall
focus on our suggested vessel-aligned multi-planar image representation.

3.1 Vessel-Aligned Multi-planar Image Representation

The success of CNNs for object detection in 3D volumetric datasets such as CT im-
ages heavily relies on the representation of the object of interest [9,10]. We have ex-
perimentally found that a suitable 3D image representation for CNNs must meet three
requirements: (1) compactness and efficiency, (2) consistency across instances, and (3)
expandability for data augmentation. With these requirements in mind, we propose an
image representation, called vessel-aligned multi-planar image representation, for PE,
which has these three critical properties. In the following, we first describe our unique
image representation and then explain how it meets the above requirements.

To obtain our image representation, we first estimate the orientation of the vessel
that contains the candidate. For this purpose, a 15x15x15mm neighborhood is extracted
around the PE candidate. In the resulting subvolume, the PE appears as a filling defect,
because PEs are relatively darker than the contrast-enhanced vessel. To minimize the
influence of the filling defect on vessel orientation estimation, the vessel-like intensity
value of 100 HU (Hounsfield units) is assigned to the PE voxels within the subvolume.
Note that the tobogganing algorithm [4] has already labeled the PE voxels associated
with each candidate. Next, a principle component analysis is performed in the connected
component (≥ 100 HU) that contains the PE. If v1, v2, v3 denote the eigen vectors of
the analyzed component (λ1 ≥ λ2 ≥ λ3), then interpolating the volume along {v1, v2}
or {v1, v3} results in the longitudinal view of the PE (the first channel of our image rep-
resentation) and interpolating the volume along {v2, v3} results in the cross-sectional
view of the PE (the second channel of our image representation).

Our image representation is compact because it concisely summarizes the 3D contex-
tual information around PEs in only 2 image channels. While it is theoretically possible
to train a CNN using subvolumes with an arbitrary number of slices, the performance
of such networks have been reported to be inferior to the CNNs that have been trained
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Fig. 1. The suggested 2-channel image representation characterizes emboli more consistently than
the original axial, sagittal, and coronal views. As seen, in nearly all cases, the suggested scheme
consistently captures PEs within the containing vessel as elongated and circular structures in the
first and second channels, respectively. The three standard views do not provide this property
given the varying orientation of the containing vessels. A consistent image appearance is the key
to training an accurate image classifier.

using samples with a fewer number of slices [9]. In fact, the information embedded in
the additional image slices has been shown to degrade classification performance [9].
This phenomenon is attributed to the curse of dimensionality, where a large number
of image channels corresponds to learning a far larger number of network parameters,
which in turn leads to over-fitting to the training samples and thus poor generalization
performance. It is therefore desirable to efficiently represent the 3D context around the
object of interest using a low dimensional image representation.

Our image representation consistently describes PEs and the containing vessels. In
general, emboli can can affect pulmonary arteries in any orientation. As a result, im-
ages extracted from the axial, sagittal, coronal planes exhibit a significant variation in
the appearance of emboli. This in turn complicates the classification task and hinders
effective utilization of CNNs. With the benefit of vessel alignment, our image represen-
tation allows for a consistent image representation whereby emboli consistently appear
as elongated structures in the longitudinal vessel view and as circular structures in the
cross-sectional vessel view. Fig. 1 illustrates variations in PE appearances using the sug-
gested vessel-aligned image representation and a standard image representation based
on sagittal, coronal and axial views.

Our image representation amenably supports data augmentation, which is essential
for effective training and testing of CNNs. In 2D applications, data augmentation is per-
formed by applying arbitrary in-plane rotations and then collecting samples at multiple
scales and translations. A 3D representation must also support the above operations to
enable data augmentation. While it is straightforward to extend translation and scale
to a 3D space, the rotation operation can be problematic. Our image representation is
based on longitudinal and cross-sectionals planes; however, rotating such planes along
a random axis will result in the arbitrary appearance of the same PE in the resulting
2-channel images (Fig. 2(a)). The major challenge is how to perform 3D rotation such
that the PE representation remains consistent. Our image representation accommodates
this need by rotating the planes around the vessel axis v1. By doing so, we obtain two
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Fig. 2. (a) Data augmentation using random rotation axes, as suggested in [10], results in incon-
sistent PE appearance. (b) The suggested image representation uses two envelopes of planes to
achieve consistency for data augmentation. (c) Consistent PE appearance after data augmentation
using the suggested envelopes of planes. The green double arrows and red ellipses represent the
shapes of PEs and the containing vessels.

envelopes of image planes (see Fig. 2(b)) where the first envelope contains the planes
that all intersect at the vessel axis and the second envelope contains the image planes
whose normals are the vessel axis. By selecting any pairs of planes from the two en-
velopes, one can generate a new PE instance while retaining the consistency. Fig. 2(c)
illustrates consistency in appearance of PEs after data augmentation using the suggested
envelopes of planes.

3.2 Convolutional Neural Networks (CNNs)

CNNs are deep learning machines that can potentially eliminate the need for designing
hand-crafted features—they learn the features and train the classifier simultaneously.
CNNs are so-named for their convolutional layers that learn discriminative patterns
of the training samples at multiple scales. In this work, we employ the GPU-based
open-source implementation of CNNs [4] and use the layout shown in Fig. 3. We have
experimented with more sophisticated network architectures but observed no significant
performance gain.

4 Experiments

We have evaluated our CAD system using 2 databases: (1) our private database consist-
ing of 121 CTPA datasets with a total of 326 emboli, and (2) the test datasets from the
PE challenge [1] consisting of 20 CTPA datasets with a total of 133 emboli.

Evaluations Using Our Database. The candidate generation module of our CAD sys-
tem produces a total of 8585 PE candidates in the 121 CTPA datasets, of which 7722
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Fig. 3. The layout of the CNN used in our experiments.

are false positives and 863 are true positives. It is possible for a CAD system to produce
multiple detections for a single large PE and that explains why the number of our true
detections is greater than the number of PEs in the database. According to the avail-
able ground truth, the candidate generation module achieves a sensitivity of 93% for PE
detection while producing, on average, 65.8 false positives per patient.

Our goal is to use CNNs to minimize the number of false positives while maintain-
ing a high sensitivity for PE detection. To train CNNs, we randomly split the collected
detections at the patient level into 3 groups, enabling a 3-fold cross validation of our
CAD system. We then used the false positive detections as negative candidates and
the true detections as positive candidates. Given the limited number of candidates, we
formed the training set by performing data augmentation. For this purpose, we collected
N = Nr ×Nt ×Ns samples from each candidate location based on our vessel-aligned
multi-planar PE representation, where Nr is the number of rotations, Nt is the number
of translations, and Ns is the number of image scaling. To produce rotated patches, we
rotated the longitudinal and cross-sectional vessel planes around the vessel axis Nr = 5
times. For scaling, we extracted patches at Ns = 3 different scales, resulting in 10mm,
15mm, and 20mm wide patches. In each scale, we have performed image interpola-
tion so that the resulting patches are all 32x32 pixels. For translation, we shifted the
candidate location along the vessel direction Nt = 3 times, up to 20% of the physical
width of the patches. With data augmentation, we can increase the size of the training
set by a factor of N = 45, which is sufficiently large to train CNNs. Given a test CTPA
dataset, we first obtain a set of candidates, and then apply the trained CNN on N 2-
channel image patches extracted from each candidate location. The confidence values
for the underlying candidate is then computed as the average of the resulting N confi-
dence values. Once all the test candidates are processed, we obtain an FROC curve by
changing a threshold on the corresponding confidence values.

Fig. 4 shows the FROC curve of the suggested system. For comparison, we have com-
puted the FROC curve of [5] using the prediction results provided by the corresponding
author. We have chosen [5] for performance comparison because their suggested system
has achieved the best performance reported in the literature on a reasonably large CTPA
database (see Table 1). For further comparison, we have replaced our suggested image
presentation with a 2.5D image representation as suggested in [10]. For fair comparisons,
we have kept all the other stages the same. As seen in Fig. 4, our system outperforms [5],
which is a CAD system based on a carefully designed set of hand-crafted features [6]
and a multi-instance classifier. In addition, we observed that the CNN trained using a
2.5D image representation results in a performance which is not only inferior to our sug-
gested image representation but also to the hand-crafted approach, demonstrating the
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Fig. 4. Our CAD system using the suggested
image representation outperforms the best
hand-crafted approach [5] and also a CNN
powered by a 2.5D approach [10].

Method Sensitivity FPs/vol #datasets #PEs

Liang et al. [5] 70.0% 2.0 132 716
Bouma et al. [2] 58% 4.0 19 116

Park et al. [8] 63.2 18.4 20 44
Ozkan et al. [7] 61% 8.2 33 450
Wang et al. [11] 62% 17.1 12 24

This work 83.4% 2.0 121 326
This work (2.5D) 60.4% 2.0 121 326

Liang et al. [5] 71.7% 2.0 121 326

Table 1. (top) Performance of the existing
PE CAD systems obtained through differ-
ent datasets. (bottom) Performance comparison
based on our database of 121 CTPA datasets.
Operating points are taken from Fig. 4.

significant contribution of our effective image representation in achieving the improved
performance. Table 1 contrasts the performance of our proposed CAD system with that
of the other CAD systems suggested in the literature.

Evaluations Using PE Challenge Database. We have further trained a CNN, powered
by our unique image representation, using all 121 CTPA datasets from our database
and then evaluated our CAD system using the test database from the PE challenge [1].
Since the ground-truth was not available on the website, our detection results were
evaluated by the organizers. At 0mm localization error, our CAD system achieves a
sensitivity of 34.6% at 2 FPs/vol, which outperforms the winning team (a commercial
CAD system designed MeVis Medical Solutions) with a sensitivity of 28.4% at the same
false positive rate. Our CAD system is, however, outperformed by MeVis’ at 2mm and
5mm localization errors. For more detailed comparisons, please refer to [1]. Despite
the demonstrated superiority at 0mm localization error, our CAD system exhibits a
notable performance degradation compared to the results obtained using our database.
We attribute this to faulty lung segmentation, which results in many PE candidates in the
colon and diaphragm. Since such false positives had not been observed in our training
sets, the trained CNN did not perform optimally in removing such false positives.

5 Conclusions and Discussions

In this work, we investigated the possibility of a unique PE representation, coupled
with CNNs, to produce a more accurate PE CAD system. Our system contrasts with
existing systems, wherein a traditional hand-crafted feature design is used for charac-
terizing PEs. We evaluated our system in comparison with the most robust hand-crafted
approach [5] and a learning-based approach using CNNs powered by a 2.5D PE rep-
resentation, demonstrating a marked performance improvement. Our method was also
tested using the test database from the PE challenge where it outperformed the academic
systems at the three localization errors and also outperformed a commercial CAD sys-
tem at 0mm localization error. Moving forward, we intend to improve the accuracy
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of our CAD system using additional training cases to address the issue of faulty lung
segmentation resulting from non-pulmonary candidates.
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