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Abstract. Respiratory motion presents significant challenges for PET/
CT acquisitions, potentially leading to inaccurate SUV quantitation. Non
Rigid Registration [NRR] of gated PET images is quite challenging due to
large motion, intrinsic noise, and the need to preserve definitive features
like tumors. In this work, we use non-local spatio-temporal constraints
within group-wise NRR to get a stable framework which can work with
few number of PET gates, and handle the above challenges of PET data.
Additionally, we propose metrics for measuring alignment and artifacts
introduced by NRR which is rarely addressed. Our results are quantita-
tively compared to related works, on 20 clinical PET cases.

1 Introduction

Patient respiratory motion is a key challenge for PET/CT imaging, which could
lead to blurring of clinically definitive features such as tumors. Such blurring in
turn affects detectability of tumors, accuracy of SUV values, and could lead to
sub-optimal radiation therapy planning. Motion compensation can be done by
factoring in CT/MR derived motion fields within PET reconstruction [1] or using
joint frameworks for motion/attenuation correction [2]. An alternative approach
is to reconstruct, non-rigidly register and then average [RRA] to get a higher SNR
PET image [3, 4]. Although the more sophisticated approaches where motion
compensation is treated within reconstruction such as [1, 2] are theoretically
preferable, the RRA method is simpler from a computational perspective. In
this work, we address PET motion correction within the RRA framework.

Fundamentally, this is the problem of non-rigidly aligning multiple 3D images.
The ’reference’ based approach as in [3,4] would be to pick one of the images as
reference and non-rigidly register the other images to it. Alternatively, one could
use groupwise NRR. Unlike pairwise formulations, group wise motion correction
is ’reference free’ and is not biased by the choice of the reference image. In
gated PET data, reconstruction artifacts e.g. due to PET-CT phase mismatch
or incorrect gating may occur in some of the gates. Thus, pronounced differences
in registration results occur with a different choice of the reference image.

Groupwise NRR [5–8] is used for aligning large populations of data without
the problem of reference bias. Simply put, group-wise registration iteratively
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estimates the ’reference image’ and the transforms to map the images to the
reference domain. The issue however is, the bare groupwise NRR formulation is
unstable and additional constraints are essential for stability especially for NRR
of small populations. Current works have enhanced groupwise NRR using spatial
constraints on the deformation [5,6], temporal constraints [9] and feature based
metrics [8]. Additionally, NRR of gated PET images is quite challenging due to
large motion, intrisic noise, and the need to preserve small features like tumors.
Large motion impacts structures such as small tumors leading to collapse, splits
etc. resulting in quantitation inaccuracies. Thus, group-wise NRR in addition to
handling the stabilty issue, has to robustly handle above data challenges.

Many of the previous groupwise NRR efforts have been in Atlas building where
these efforts typically work with large populations and there is no correlation
of motion expected across the population. The main challenge these works have
tried to address is multiple modes of variation in the population. However, the
problem here is different, gated PET data has frequently as few as 4 to 6 gates.
Thus, standard groupwise NRR formulations are unstable since, even locally,
there might be multiple solution pairs for the jointly estimated reference image
and transforms. Also, in 4D data having respiratory/cardiac motion, there is
strong correlation of motion across frames and across faraway regions. For ex-
ample, the effects of respiration can be seen as low as the pelvic region. The
above motion correlation, if modeled, could be effective in tackling the instabil-
ity issue of groupwise NRR, and the large motion/noise challenges of PET data.
Although not completely representative, non-local penalties on the motion fields
come close in modeling such correlations between faraway regions. Non-local reg-
ularization ( [10], [11]) of the motion fields is shown to give increased robustness
to large motion, noise, and small structures compared to local approaches.

In this work, we propose non-local spatio-temporal constraints within group-
wise NRR to get a stable 4D framework which can also handle above challenges
of PET data. The non-local penalties differentiates our work from above prior
groupwise NRR works, and is key in robust prediction of definitive PET features
under large motion. The reasoning is that at a location where a small struc-
ture exhibits large motion, a non-local neighbour such as lung/cardiac interface
where it is easier to capture the motion, can help in predicting the structure’s
motion. We also carefully address the important aspect of NRR validation using
lesion profile based metrics. These metrics measure two aspects of NRR qual-
ity, namely, alignment and artifacts. Alignment is a common attribute that is
measured in Registration works. Here, we additionally propose measures for ar-
tifacts introduced by NRR which is rarely addressed. We compare our results
to level set NRR which is part of ITK (Vemuri et al. [12], used for PET motion
correction [4]) and a Groupwise NRR algorithm similar to [6].

2 Methods

We assume a monomodal scenario since large intensity changes are not expected
in gated PET data. Intensity/contrast changes that could occur e.g. due to gating
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induced count variations, can be handled using preprocess normalization steps.
Given N PET gates {Ik}Nk=1 defined on Ω, we seek a reference image μ and
deformation fields {uk}Nk=1, u = [u1, u2, ..., uN ], which minimizes:

E[μ,u] =

N∑

k=1

∫

Ω

|Ik(.+ uk)− μ|2dx+ λ

∫

Ω

|∇uk|2dx (1)

The above objective function [GW] is the basic formulation of groupwise NRR,
posed on smooth motion fields and measures pixel level variance of the PET
images. [GW] can be minimized by iteratively updating μ = 1

N

∑N
k=1 Ik(.+ uk)

and motion fields u. It is however seen that the above formulation is illposed since
there might be, even locally, several solutions of μ,u with the same energyE. One
way to address this instability is to use a penalty that seeks,

∑N
k=1

∫
Ω ukdx = 0

as in [6], which is called the ’zero deformation’ penalty. We refer to the Groupwise
NRR framework with the zero deformation penalty as [GW-zD].

As highlighted in the introduction, we augment Eq. 1 with non-local spatio-
temporal penalties to give a stable framework, able to handle the data challenges
of PET modality. Specifically, we look at proposed energy [GW-NL]:

Enl[μ,u] =

N∑

k=1

∫

Ω

|Ik(.+ uk)− μ|2dx+ λs

∫

Ω

∫

Ω

w(x, y)|uk(x)− uk(y)|2dxdy

+λt

∫

Ω

∫

Ω

ŵ(x, y)|vk(x) − vk(y)|2dxdy
(2)

The first regularization term is a spatial penalty, on the motion fields u, which
captures correlations in the motion field between ’non-local ’ regions. The second
regularization is a temporal penalty term which captures the non-local spatial
correlations of velocity vk = uk+1−uk. The above term captures temporal trend
of motion across non-local pixels which would help NRR in the case of noise, large
motion, low contrast etc.. Also, the temporal penalty is less restrictive on the
motion fields than the spatial penalty since only spatial variations in velocity are
penalized. λs, λt are scalars that balance the terms. w(x, y), ŵ(x, y) are weight
functions that are used to set the active pixels y that are correlated with the
current pixel x. For simplicity, we have used a L2 metric for the regularization
term and a straight forward Gaussian choice for the weight functions w(x, y) =
Gσ(|x − y|), ŵ(x, y) = Gσ̂(|x − y|). To minimize Eq. 2, we use time descent
given by the EL and discretized using semi-implicit finite differences, in a multi-
resolution framework. For gaussian weights w, ŵ, the descent equation involves
just convolutions which is fast to compute. Also, the descent equation contains
linear terms which can be posed in simple implict schemes for fast convergence.

In Fig 1, we show experiments on two synthetic examples which have a com-
bination of noise, large motion and presence of small structures as in PET data.
The top row in both examples shows 4 images we want to register. The bottom
row shows the resulting mean using [GW], [GW-zD], and proposed [GW-NL].
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Fig. 1. Robustness comparison of [GW], [GW-zD], [GW-NL] in the presence of large
motion, noise and small structures. Resulting mean images are shown at the bottom
row with [GW-NL] giving the best results.

Fig. 2. Role of Temporal term in [GW-NL]: Better recovery of motion than just using
the spatial penalty term.

It is clear from the illustrations that [GW-NL] is able to preserve integrity of
small structures and handle the challenges of large motion/noise. Fig. 2 high-
lights the need for the temporal penalty term in [GW-NL]. With just the spatial
penalty term, i.e. λt = 0 in Eq. 2, we see in a case of extreme motion, the lesion
has collapsed.

3 Experiments

We present results on 20 datasets which were acquired using a GE Discovery 600
PET-CT system. These data were phase matched with acquired cine CT and
reconstructed to form gated PET images (typically 4 to 6 gates). Comparisons of
proposed approach [GW-NL] is performed with pair-wise NRR [PW] available
in ITK (Vemuri et al. [12], used for PETmotion correction [4]). Next, we compare
against Groupwise NRR with zero-deformation penalty (as in [6]) [GW-zD].
For [GW-zD], we have used the formulation, Eq 1, augmented with the zero-
deformation penalty, and minimized using steepest descent.

3.1 Illustrative Examples on Two PET Cases

In Fig. 3, we look at qualitative comparisons on 2 gated PET cases, each with 4
gates. For the first PET data example, the data is shown gate-wise (top row), the
mean of the gates is shown in the last column. This case exhibits a few challenges.
The right lung lesion exhibits large motion (relative to lesion size). The other
challenge is contrast variations which are seen in Gate 4. Also, features in the
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Fig. 3. Comparison on 2 PET example cases: [GW-NL] has handled the motion/data
challenges better than [PW], [GW-zD]. Artifacts are highlighted by the red circle.
The reference gate for [PW] is highlighted by the blue rectangle.

cardiac region are not consistently visible in all the gates. The second to fourth
rows shows results (registered gates and resultant mean) using [PW], [GW-
zD], and [GW-NL] respectively. The [PW] approach suffers from registration
artifacts in Gates 1 and 4. The effect of bias to reference for [PW] is clearly
seen in the 2nd gate where distinct features in the cardiac region have collapsed
since the reference image (the 3rd gate) does not have it. In the second PET
data illustration in Fig. 3, [PW] shows similar artifacts due to large motion
in the 2nd gate. The issue of bias to reference is also seen here, where in, the
lesion on the top of left lung looks more like the reference image (gate 4 in
this case). [GW-zD] has done reasonably well with minor artifacts due to large
motion (highlighted by the red circles). For both examples, as seen in Fig. 3, the
proposed approach [GW-NL] has handled the challenges highlighted above and
shows clean results in the registered gates and the resultant mean image.

A note on timing comparison between the methods. For a gated PET dataset
(126x128x47x6), [PW] took 90 sec, [GW-zD] took 65 sec, and [GW-NL] took
80 sec, for convergence. The timing for [GW-NL] is quite remarkable considering
the noticable improvement in results. Note that, [PW], [GW-zD], and [GW-
NL] are all implemented in C++, using standard libraries from ITK.



648 S. Thiruvenkadam et al.

Fig. 4. Top row: Alignment metric measures spread in extrema locations of gate profiles
(curves shown in the plot). Bottom row: Fidelity metrics (SUV peak, profile correlation)
used to measure closeness of lesion profile before and after NRR, to catch artifacts.
E.g. The lesion split results in a z-profile (blue curve) with 2 peaks and is captured by
the reduced correlation value with the gate profile (red curve)

3.2 Quantitative Validation

Here, we use validation based on lesions which are key clinical features in PET
data. For this purpose, lesion location was manually annotated on the RRA
(average of motion corrected gates) and on each of the original gates of 20
clinical datasets.

Most of validation of NRR is around measuring alignment and very few
works (e.g. NIREP, [13]) address artifacts introduced by NRR. Measuring the
fidelity/artifacts of registration is very challenging and use of general purpose
metrics such as Jacobian of the deformation field might not completely be rep-
resentative of NRR quality in noisy data as in PET. For gated PET NRR, as
discussed in the previous subsection, we want to look at 3 types of artifacts
(e.g. see results of [PW] in Fig 3), namely, a) stretch type artifacts due to large
motion, b) splits, collapse of lesions, and c) bias in results introduced due to ar-
tifacts in some gates (we term this as NRR bias). While it is difficult to measure
the above artifacts in general cases, it is relatively straightforward to do it for
lesions. Since lesions remain close to rigid under physiological motion, it is fair
to expect lesions to preserve their intensity and shape, post NRR. Thus, to mea-
sure both alignment and artifacts(fidelity), we introduce metrics linked to the
z-profiles of lesions. Since the motion in PET gates is mostly due to respiration,
the z-profile (a 1D profile of intensity values in z direction passing through the
lesion centroid) characterizes the lesion motion.

The alignment of the gates post NRR can be deduced by capturing the spatial
spread (using standard deviation) of high intensity values in the z-profiles across
all gates (Fig 4, Top row). The better the alignment, the tighter the spread
of high intensity values in the ensemble. To capture fidelity (Fig 4, Bottom
row), we first compute percentage difference between the z-profile peaks of gates
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Fig. 5. Quantitative comparison on 20 PET Datasets with ≈120 gates in total. Note
on metric values: Alignment: lower better, Correlation: higher better, SUV error: lower
better, Jacobian: lower better. Left column: Mean across gates for alignment values for
20 cases, Middle column: Mean across gates for fidelity metric values for 20 cases. Last
Column: scatter plot of the fidelity metric values across all gates from all cases. The
plots show similar alignment, and better fidelity values for [GW-NL].

before and after NRR (SUV peak error). The SUV peak error indicates whether
intensity values in the original gates have been flattened by NRR. Next, we
compute correlation of z-profiles of individual gates before and after NRR. The
correlation coefficient would be high if there is not much of a deviation in the
shape of the z-profile post NRR. The above metric can capture issues of lesion
splits/collapse and NRR bias to outlier gates. Lastly, to capture artifacts in
general at any location, we use Jacobian of motion fields to capture crossovers
and stretch artifacts (i.e. where Det(Jac) ≤ 0).

The quantitative results on 20 PET cases are shown in Fig 5. The data had
a good mix of cases with varying lesion motion and noise. A few cases showed
motion almost twice the lesion size, in addition to deviation in SUV values as
much as 40 % of the mean SUV value across gates. From the alignment plot
(Low value indicates good alignment), we see that [GW-zD](Magenta), [GW-
NL](cyan) show better alignment than [PW](Red). In the fidelity (correlation,
SUV, Jacobian) plots, the first column has the mean metric values across gates,
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for each PET case. The last column shows scatter plots of metric values for
all gates across the 20 PET cases. The correlation plots (High value indicates
good fidelity of lesion shape) show least lesion artifacts for [GW-NL]. The SUV
peak difference (measures change in SUV, post NRR) is comparable for [PW],
[GW-NL], and slightly higher for [GW-zD]. Finally, the Jacobian plot (showing
number of voxels with Det(Jac) ≤ 0), indicative of amount of crossovers and tears
is close to zero for [GW-NL], overwhelmingly lesser compared to [PW], [GW-
zD]. To summarize, [GW-NL] is seen to be comparable in alignment to the
other 2 methods, but has resulted in reduced NRR artifacts.

4 Conclusion

Robust NRR for gated PET is key to accurate quantitation. Here, we have
captured non-local correlations in motion within the group-wise NRR framework.
This has clearly resulted in stability of solutions, robustness to large motion,
noise and small structure challenges of PET data. Our results are quantitatively
compared with related works using lesion based validation metrics, on 20 cases.
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