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Abstract. In this paper, we propose a novel compressive sensing model
for dynamic MR reconstruction. With total variation (TV) and nuclear
norm (NN) regularization, our method can utilize both spatial and tem-
poral redundancy in dynamic MR images. Due to the non-smoothness
and non-separability of TV and NN terms, it is difficult to optimize the
primal problem. To address this issue, we propose a fast algorithm by
solving a primal-dual form of the original problem. The ergodic con-
vergence rate of the proposed method is O(1/N) for N iterations. In
comparison with six state-of-the-art methods, extensive experiments on
single-coil and multi-coil dynamic MR data demonstrate the superior
performance of the proposed method in terms of both reconstruction
accuracy and time complexity.

1 Introduction

Dynamic magnetic resonance imaging (AMRI) is an important medical imaging
technique that has been widely used for multiple clinical applications. To reduce
scanning time, partial k-space data are typically required for reconstruction in-
stead of full sampling. However, when k-space is under sampled, the Nyquist
criterion is violated and the inverse Fourier transform will exhibit aliasing arti-
facts. Fortunately, dynamic MR sequences often provide both redundant spatial
and temporal information, which makes the use of Compressive Sensing (CS)
theory repeatedly successful [6,14,13].

There are two kinds of prior knowledge about dynamic MR images which can
be used by CS methods. First, a dynamic MR sequence has the piece-wise smooth
property in the spatial domain. In traditional CS-MRI reconstructions, the piece-
wise smooth property of MR images plays a very important role. With the
sparsity-induced regularization such as Wavelets [13] or Total Variation [9,8], it
is possible to reconstruct high quality MR images using far fewer measurements.
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Second, dynamic MR, images actually are temporally correlated due to very
slow changes of the same organ(s) through the whole image sequence. Such high
correlation in the temporal domain becomes another piece of important prior
knowledge for guiding dynamic MRI reconstruction.

In recent years, researchers have proposed two types of dMRI reconstruc-
tions based on temporal information of dynamic MR images. The first type of
methods applies a sparsity constraint in the temporal domain, e.g. Dictionary
Learning with Temporal Gradients (DLTG) [2] and Dynamic Total Variation
(DTV) [5]. Instead of using sparsity in the temporal domain, another type of
methods exploits the low-rank property of matrices. Based on rank minimiza-
tion, low-rank plus sparse decomposition methods are proposed for dMRI re-
construction [16,18]. Because these methods collect the data from all frames in
the reconstruction, they can exploit the redundancies of the whole dataset and
reconstruct more accurate results. However, drawbacks are their sensitivity to
noise. They may fail in recovering clean images when the acquired data are con-
taminated with noise because the sparse prior cannot exploit the local spatial
consistency or piece-wise smoothness of dynamic MR images.

In this paper, by exploiting redundancies in both the temporal and spa-
tial domains, we propose a Total Variation and Nuclear Norm Regularization
(TVNNR) model for dMRI reconstruction. In our TVNNR, nuclear norm (NN)
exploits the low-rank property of dynamic MR images while total variation en-
courages each MR frame’s intensities to be locally consistent which can enforce
the piece-wise smoothness constraint and make reconstruction more robust to
noise. The intuition of combining TV and NN terms is simple, but the joint
TV /NN minimization problem is actually difficult to solve because of the non-
separability and non-smoothness of the two terms. A fast algorithm (FTVNNR)
is then proposed to efficiently solve this problem. It can obtain a O(1/N) con-
vergence rate for N iterations. Extensive experiments on dynamic MR data
demonstrate its superior performance over all previous methods in terms of both
reconstruction accuracy and computational complexity.

2 Model

Here we assume zj,...,x7 as one dynamic MR sequence to be reconstructed.
At time t, xy € C™*"™ is one dynamic MR frame, the physical model for the
undersampled k-space measurement of x; can be formulated as

bt :Rt(F.’IIt —I-n), (1)

where b; is the measurement vector which may contain noise (n represents noise
in k-space); R; denotes the undersampling mask to acquire only a subset of
k-space and F' performs a 2D Discrete Fourier Transform (DFT).

With prior knowledge in the temporal and spatial domains, it is possible to
reconstruct x; with fewer k-space measurements b;. Based on a batch scheme,
the proposed TVNNR model for dMRI reconstruction is defined as follows

1
min  [[RFX — Bl|E + Ail|X[[rv + Ao X[, 2)
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where X € R™"** denotes the whole dynamic MR images. ||X]||. is the nu-
clear norm—the sum of singular values of the matrix X. ||X||ry denotes the
anisotropic total variation of the matrix X. It is defined as Zthl > i (V@i el +
|Vax; ;|) where V1 and V3 denote the forward finite difference operators on the
first and second coordinates, respectively. If we define V = [V, V3], || X||7v can
be simplified as ||VX| 1. B = [b1, b2, ...,br]T represents the collection of all the
measurements.

Although the problem (2) is the single coil case, it has the potential to process
multi-coil parallel MRI data. When the coil sensitivities are available, it can be
combined with SENSE in the k-t SPARSE-SENSE framework [17] by multiplying
coil sensitivities E after the undersampled Fourier transform, which means the
least square term in (2) will be ||RFEX — B||%.

3 Algorithm

Due to the non-smoothness and non-separability of both the TV and NN func-
tions, it is very difficult to efficiently solve the primal problem (2). Instead of
directly solving the primal problem, it is suggested in [3,4] that TV regularization
can be solved by its dual form. By using the Legendre-Fenchel transformation of
total variation (see Ref. [1], Example. 3. 26, p. 93), we can have the primal-dual
form of the primal problem (2) as

1
minmax [RFX = B3+ Xal| X[l + M (VX,Y) = Ip (V),  (3)

where Y is the dual variable and Ig__ (Y') is the indicator function of the £, unit
norm ball vl
0 Y| <1,
Ip.. (V) = { +o0o  otherwise. (4)

The min-max problem (3) can be solved by a splitting scheme [7] as

1 t
X = argmin ) | X - X7 + 21 IRFX — B|% + t:0 (VX,Y™) + t1 || X ||
()
1
Y = arg min  [[Y — Y% + I (V) — taXl (VX" — X™),Y), (6)
where X" Y™ are the primal and dual variables in the n-th iteration, respec-
tively. ¢1, to are the corresponding iteration step sizes.

First, for the X subproblem (5), it can be reduced to a de-noising problem
by [4] as

1 _

where

Xn— X" _ t1

T n __ o
1 +t1LA (AX™ - B)
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Here A = RF and L = Az (AT A). VT is the adjoint operator of V. Suppose

that X" = Udiag(c(X™))V# is any singular value decomposition of X™. Then

the solution of (7) can be obtained by the matrix shrinkage operator [15] as

Xt = G, (X™) = Udiag(ox(X™))VH where o\ (X") = maz(a(X") — A, 0)
Then we consider the Y subproblem in (6)

1
yrtl = argmin |V = Y"|2 + Ip_(Y) — to2 A (VX" — X™)Y),  (8)
After simplification, it becomes

1 _
Y = argmin ||V = Y73 + Ip (V). )

where -
Y =Y" 4t VX — X7,

The solution of (9) can be obtained by the Euclidean projection of Y™ onto a
{o, unit ball, which could be evaluated by

Y™ = sgn(Y™) - min(|]Y"], 1), (10)

where sgn(z) is the sign function; it outputs 1 if © > 0, -1 if z < 0 and zero
otherwise. All the operations in (10) are element-wise.

Now, the X, Y subproblems have been solved and we summarize the proposed
FTVNNR in Algorithm 1. A key feature of the FTVNNR is its fast convergence
performance. It can be proved that the ergodic convergence rate of FTVNNR is
O(1/N) for N iteration [4].

Algorithm 1. FTVNNR
input: A= RF, B, )\1, A2
initialization: Xo, Yo, t1,ta, A= tl)\z/(l + tlL)
while not converged do
1) Compute: X" = X" — | 1 AT(AX™ - B)— 121 VI'Y™ in (7)
2) Evaluate Matrix Shrinkage Operator: X"t = 5, (X")
3) Compute: Y™ = Y™ + 20 V(2X™ ! — X™) in (9)
4) Project Y™ onto £°° unit ball: Y™ = sgn(Y™) - min(]Y™|,1) (element-wise)
end while

4 Experiments

4.1 Reconstruction Accuracy

We first evaluate our method on two noisy dynamic MR sequences. To simulate
such noisy dynamic MR images, we use the in-vivo breath-hold cardiac perfusion
(128 x 128 x 40) and cine data (256 x 256 x 24) from [16] and then add Gaussian
white noise with standard derivation o = 0.05 in the k-space data followed by the
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equation (1). We apply the most practical Cartesian mask with 25% sampling
ratio as the undersampling mask in our experiments. For quantitative evaluation,
Peak Signal-to-Noise Ratio (PSNR) is adopted as the metric. All experiments
are conducted using MATLAB 2013b on a desktop with 3.4GHz Intel core i7
4770 3.4GHz CPU and 16.0 GB RAM.

We compare our method with four state-of-the-art methods, the undersampled
(k,t)-Space via Low-rank plus sparse prior (ktRPCA) [18], dictionary learning
based method DLTG [2], the dynamic Total Variation (DTV) [5] and k-t SLR
[12]. The source codes for these methods are downloaded from each author’s
website and we use their default parameter settings for all experiments. For the
proposed method, we set A\; = 0.001 and Ay = 3 for both sequences.

The undersampling mask

Full Sampling FTVNNR (32.24 dB) ktRPCA (28.52 dB)

DLTG (28.74dB) DTV (24.54dB)  ktSLR (25.41 dB)

Fig. 1. Results of the 21st frame of the perfusion sequence at sampling ratio 1/4.

Fig. 1 shows the 21st reconstructed frame of the perfusion data. Clearly visible
artifacts can be observed on the images by DTV and k-t SLR. Such results show
that both methods are very sensitive to noise. Although it is reported that DTV
gives very good performances [5], the method requires the reconstruction on the
first frame to be very accurate, therefore it may not recover good results when
there is no specific high sampling ratio for the first frame. Comparing the rest of
the two approaches, DLTG reconstructs better results than ktRPCA. However,
when looking at the time cost in Table. 1, one can see that DLTG requires nearly
2-3 hours for processing. Moreover, images obtained by both methods are still
not very clear. Compared with the other four methods, the proposed FTVNNR
can achieve the best reconstruction and cost the least amount of processing time.

Quantitative results of a whole sequence on two dynamic MR data are shown
in Fig. 2. From the figure, one can clearly see that the proposed FTVNNR
achieves the highest mean PSNR.
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Fig. 2. Bxplot of PSNR results for (a) Perfusion data and (b) for Cine data. The
proposed FTVNNR method outperforms all other methods being compared.

Table 1. The time cost of different methods

Time (Seconds) Proposed ktRPCA DTV k-tSLR DLTG
Perfusion (128 x 128 x 40) 38 527 55 252 6614
Cine (256 x 256 x 24) 92 1282 121 609 11462

4.2 Multi-coil Parallel Imaging

To further evaluate performances, we use two multi-coil pMRI data from [16];
the number of coils is 12 and the coil sensitivities were known. The perfusion and
cine data were acquired by Cartesian masks with 12.5% and 25% sampling ratio
for all frames, respectively. We compare the proposed method with three state-
of-the-art parallel MRI approaches including low-rank plus sparse reconstruction
(L+S) [16], dynamic Total Variation (DTV) [5] and k-t SPARSE-SENSE [17].
The running time of all methods on the Perfusion and Cine data can be found
in Table. 2. One can see that the proposed method has the fastest reconstruction
speed compared to others, due to its fewer iterations and faster convergence.

Table 2. The time cost of different methods. “ktSS” is k-t SPARSE-SENSE

Time (Seconds) Proposed L+S ktSS DTV
Perfusion (128 x 128 x 40) 44.3 66.5 155.9 112.8
Cine (256 x 256 x 24) 56.5 78.9 115.5 291.9

Reconstruction results on the Cine data are shown in Fig. 3. All methods were
able to reconstruct high quality images. However, when looking at details and
temporal cross sections in Fig. 4, it can be observed that FTVNNR presents less
noisy and lower residual aliasing artifacts on the cardiac surface. This is because
the FTVNNR can utilize the local consistency in the spatial domain while the
temporal FFT used in k-t SPARSE-SENSE and sparse prior in L+S can not
exploit the spatial sparsity.
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Fig. 3. Results of the 22nd frame of the Cine data. (a) DTV; (b) k-t SPARSE-SENSE;
(c) L+S; (d) The proposed FTVNNR.

Fig. 4. Zoomed in areas of interest. The bottom are temporal cross sections by the
yellow dashed line. From left to right are methods: (a) DTV; (b) k-t SPARSE-SENSE;
(c) L+S; (d) The proposed FTVNNR.

5 Conclusion

We have proposed an efficient algorithm for dynamic MRI. The contributions
of our work are as follows. First, the proposed FTVNNR achieves the best re-
construction performance when compared to four other state-of-the art methods.
Second, it can obtain an O(1/N) convergence rate and experiments demonstrate
that it is faster than other AMRI methods. These properties make the proposed
method more powerful than conventional dMRI methods in terms of both accu-
racy and time efficiency. Moreover, the proposed method can be easily extended
to parallel MRI. The parallel version of FTVNNR, can also share good properties
like fast convergence. Numerous experiments were conducted to show its better
performance. In our future work, we will introduce existing online learning tech-
niques [10,11] to further speed up the proposed FTVNNR and explore other
applications in medical imaging.
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