
Robust Prediction of Clinical Deep Brain

Stimulation Target Structures via the
Estimation of Influential High-Field MR Atlases

Jinyoung Kim1, Yuval Duchin2, Hyunsoo Kim1,3, Jerrold Vitek4,
Noam Harel2,5, and Guillermo Sapiro1,3

1 Department of ECE, Duke University, Durham, NC, USA
2 CMRR, University of Minnesota, Minneapolis, MN, USA

3 Department of Biomedical Engineering, Duke University, Durham, NC, USA
4 Department of Neurology, University of Minnesota, Minneapolis, MN, USA

5 Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA

Abstract. This work introduces a robust framework for predicting Deep
Brain Stimulation (DBS) target structures which are not identifiable on
standard clinical MRI. While recent high-field MR imaging allows clear
visualization of DBS target structures, such high-fields are not clinically
available, and therefore DBS targeting needs to be performed on the
standard clinical low contrast data. We first learn via regression models
the shape relationships between DBS targets and their potential pre-
dictors from high-field (7 Tesla) MR training sets. A bagging procedure
is utilized in the regression model, reducing the variability of learned
dependencies. Then, given manually or automatically detected predic-
tors on the clinical patient data, the target structure is predicted using
the learned high quality information. Moreover, we derive a robust way
to properly weight different training subsets, yielding higher accuracy
when using an ensemble of predictions. The subthalamic nucleus (STN),
the most common DBS target for Parkinson’s disease, is used to exem-
plify within our framework. Experimental validation from Parkinson’s
patients shows that the proposed approach enables reliable prediction of
the STN from the clinical 1.5T MR data.

1 Introduction

Deep brain stimulation (DBS) surgery is commonly used for symptom’s treat-
ment in neuro-degenerative diseases such as Parkinson’s disease (PD). Precise
placement of electrodes within crucial sub-cortical region (e.g., subthalamic nu-
cleus (STN)) leads to successful DBS procedures [1].

Standard DBS targeting approaches today refer to anatomical information
based on normalized atlases, particularly based on a single histology sample [1–3].
However, in such indirect methods, the variability in the position and size of the
DBS targets needs to be further analyzed in the context of large populations for
the reliability [2, 3]. To verify the target location, electrophysiological measure-
ments, such as microelectrode recording (MER), that are lengthy andmight result
in increased risks for hemorrhage are required during surgery [1–3].
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Direct visualization and localization of the targets on the individual patient
are needed for reliable, safe, and time-efficient DBS targeting. With advances
in high-field MR (e.g., 7 Tesla (7T)), the superior contrast and high resolution
imaging allow to directly identify and visualize the DBS targets, reducing the
need for MER and other lengthy intra-operative burdensome steps [1, 3–6]. How-
ever, such high-fields are limited in clinical use, and thus the targets need to be
localized on standard clinical low-field MR data. Unfortunately, clear visualiza-
tion of DBS targets is not feasible with such standard clinical MRI protocols.

The aim of this work is to predict the location and shape of the DBS targets
that are not normally identifiable on clinical 1.5T MRI. Recent studies have
introduced regression approaches to estimate limited shape information within
regions of interest from given predictors in the data [7–10]. In our scenario, it is
hard to even manually localize DBS targets on the clinical low-field MRI, and
thus it is still challenging to build high quality training data for such regression
models from just the standard clinical data. In addition, the large variability
of learned information from various training subsets might actually increase the
uncertainty of the prediction. Furthermore, the influence of such subsets to pre-
diction performance needs to be considered when developing reliable prediction.

In this work we propose a robust prediction framework for reliable DBS tar-
geting on clinical low-field MRI, automatically learning dependencies between
targets and predictors from more relevant high-field MR atlases. A key contribu-
tion of our work is how to learn shape relationships from high-field MR training
sets applicable for DBS targeting on clinical low-field MRI. High quality informa-
tion on the 7T MR training data is then transferred for DBS targeting onto the
1.5T MRI from a query patient. We apply bagging [11] in a regression model to
predict location and shape of anatomical targets, reducing the variability (un-
certainty) of learned relationships and obtaining confidence regions with high
value for the DBS procedure. The training subsets producing the most accurate
prediction are estimated via a machine learning approach. The robust prediction
model and its application to STN targeting are described in the next section,
followed by experiments demonstrating that our proposed framework enables
reliable prediction of the STN on clinical 1.5T MRI for Parkinson’s patients.

2 Methods

Target structures and their predictors, segmented from high quality 7TMR train-
ing sets, are first registered onto the 1.5T MRI pairs of the same subject [12], and
then non-linearly registered onto the 1.5T MRI of a different subject [13]. This
enables us to correctly extract features of predictors for the 1.5T MR test data
from 7T MR training shapes on the common coordinate space.

2.1 Ensemble Prediction

Our approach uses an ensemble of predictions exploiting learned dependencies
between targets and predictors from random subsets of 7T MR training sets. We
provide now details on the approach.
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Pose and Shape Parameterization. Three dimensional (3D) shapes of pre-
dictor and target structures for M random subsets of N 7T MR training sets are
represented as the coordinates of surface points, �i,j ∈ R

nx×3 and �i,j ∈ R
ny×3,

respectively, for i ∈ {1, ..., N} and j ∈ {1, ...,M}, where nx and ny are the num-
ber of surface points. To address the correspondence problem across training
shapes, we adopt a recent minimum description length based method [14].

The Procrustes analysis [15] is performed on predictors �i,j and targets �i,j

with respect to the mean of the surfaces, m�j = 1
N

∑N
i=1 �i,j and m�j =

1
N

∑N
i=1 �i,j , respectively, across the 7T MR training sets, yielding pose param-

eter vectors γx
i,j and γy

i,j that include translations, scaling factors, and entries

of a 3D rotation matrix. Poses for a predictor �(p) ∈ R
nx×3 on the 1.5T MR

test data are also parameterized as γx(p)

j with respect to m�j . Column vectors,

x̄i,j ∈ R
3nx and ȳi,j ∈ R

3ny are obtained by concatenating all the coordinates for
the surfaces aligned into m�j and m�j , respectively and then modeled in lower
dimensional space using kernel PCA in order to increase the predictive potential,
considering non-linear relationships between training shapes [16]. Kernel prin-
cipal components are denoted as βx

i,j for predictors, βy
i,j for targets on 7T MR

training sets, and βx(p)

j for predictors on the 1.5T MR test data.

Bagging Regression. A bagging procedure [11] is applied in the partial least
squares regression model [7, 9, 17] to learn shape relationships between targets
and predictors, reducing their variability and providing confidence regions for the
prediction. Regression coefficients Bβ

PLS,j and Bγ
PLS,j for the shape parameters

and poses, respectively, between targets and its predictors on the 7T MR training
sets are obtained by a non-linear iterative partial least squares approach [17].

Given shape parameters βx(p)

j and poses γx(p)

j for predictors on the 1.5T MR test

data, βy(p)

j and γy(p)

j for the target are predicted with the regression coefficients.

Pre-image estimation of �
(p)
est,j in the original space from βy(p)

j is ill-posed since
the kernel mapping is not invertible for non-linear functions [16]. We therefore
utilize a reconstruction approach using the feature space distance [16].

After iterating the prediction for M random subsets, a final probability map

is calculated as an ensemble of binary volumes, reconstructed from βy(p)

j and

then transformed by γy(p)

j : VPr =
1
M

∑M
j=1 V

(
�
(p)
j

)
. This, properly normalized,

gives a probability interpretation of the prediction confidence.

2.2 Robust Prediction Model

Properly chosen subsets in the training data, for a particular patient, might
contribute to further improvement of the prediction, reducing the bias from the
learned information. To estimate the influence of such subsets in the prediction,
we learn the dependency between features from random subsets and the predic-
tion accuracy using a machine learning approach. Fig. 1 represents our robust
prediction framework.
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Fig. 1. Robust shape prediction framework.

Estimation of Influential Atlases. During the training, prediction using L
random sets of N 7T MR training sets on K patients is performed, and pose

parameters (i.e., Bγ
PLS, γ

x(p)

, and γy(p)

) are selected as features f , since poses
for predictors and a predicted target are highly correlated to the prediction
accuracy. Each prediction is then evaluated, measuring an error score ε that
weighted averages distances from manually segmented targets,

ε = μg(εg/δg) + μl(εl/δl) + μo(εo/δo) + μv(εv/δv) + μDC((1 −DC)/δDC), (1)

where εg, εl, εo, and εv are errors between each prediction and manual seg-
mentation, respectively, for centers, radii, orientation angles, and volumes. DC
is the coefficients (

(
2
∣
∣V(p)

⋂
V(m)

∣
∣
)
/
(∣
∣V(p)

∣
∣+

∣
∣V(m)

∣
∣
)
), where V(p) and V(m)

are predicted and manual volumes, respectively. Also, μ and δ are weights and
upper-bounds for corresponding errors. We set μ = [0.35 0.15 0.1 0.15 0.25]
and δ =

[
1mm 1mm 30◦ 50mm3 40%

]
, in this paper, weighting more εg and DC

under acceptable error bounds for DBS targeting (ε <1).
To address the estimation problem of error scores, we utilize a regression forest

model [10], which uses an ensemble of binary trees, learning non-linear mappings
between features and error scores. Each tree optimally splits training samples,
maximizing information gain among the distribution of error scores, and learned
conditionals pt(ε | f) are stored on leaf nodes. Given a query patient and M
random sets snew,j of training sets, each feature fnew,j is pushed down on learned
trees and stops at leaf nodes, resulting in pt(ε(snew,j) | fnew,j). The distributions
are averaged over all Ntree trees, and finally error scores of each random subset

are estimated: εest,j = argmaxεj

(
1

Ntree

∑Ntree

t=1 pt(ε(snew,j) | fnew,j)
)
.

Weighted Ensemble of Prediction. For the M estimated error scores, nor-
malized to [0 1], a weighting function is defined as wj = exp(−(ε̄est,j)

3/σ2),
where σ is the mean of {ε̄est}. This allows an ensemble of predictions, more
weighting learned information from random subsets yielding lower error scores
(i.e., more influential atlases for prediction). A final probability map on a query
patient is computed by weighted averaging predictions from M random subsets:

V
(R)
Pr = 1

T

∑M
j=1 wj ·V(�(p)

j ), with T =
∑M

j=1 wj .
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2.3 Application: Prediction of the STN for Clinical Targeting

We apply our proposed framework in DBS targeting problem of the STN which
is critical for PD and potentially also for OCD [1, 6]. Predictors in sub-cortical
region are introduced by considering the spatial adjacency (high correlation [7])
with the STN and the visibility on the 1.5T MRI. All such structures are easily
detected on the 7T MRI [1, 4]. For comparison with the 1.5T MRI, see also [6].

3 Results

7T and 1.5T MR data sets were scanned from 46 patients. The 7T MR structures
were manually segmented by anatomical experts, see also [4, 5], and registered
onto the corresponding 1.5T MRI pairs, following [12]. We select 10 Parkinson’s
(PD) patients as 1.5T MR test sets. For each patient, 16 similar patients are
chosen, and the corresponding 7T MR structures (registered onto the 1.5T MRIs)
are then non-linearly transformed onto the 1.5T MR test data of the query
patient using Advanced Normalization Tools [13]. We build training sets with
size N=11 out of 16 patients and randomly generate M=10, 50, 100, 150, and
200 subsets. Predictors are automatically segmented on the 1.5T T2W MRI
of each query patient [5]. We perform forest training with Ntree=100, using
L=18000 random subsets of N=11 training sets from K=9 PD patients, leaving
one out and estimating error scores, given random subsets and predictors on
1 PD patient. Final probability maps are thresholded and then evaluated by
calculating errors in (1). Fig. 2 shows average error scores of the prediction
results and mean squared error (MSE) of estimated error scores {ε̄est} from true
ones for a different number of random subsets over the 10 PD patients. Average
centroid distances and DC values for prediction results from 100 random subsets,
as important measurements for DBS targeting, are also presented in Table 1.

Fig. 2. Average error scores and their variances for 7T MR atlases based mean STN,
ensemble prediction, and robust prediction (with estimated error scores and true ones),
using a different number of random subsets over the 10 PD patients for (a) left and
(b) right STN. Bars indicate MSE of estimated error scores from true ones.
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Table 1. Average centroid distances, DC values, and their variances for 7T MR atlases
based mean STN, ensemble prediction, and robust prediction using 100 random subsets.

Mean(atlases) Ensemble Robust(est.) Robust(true)

Left εg(mm) 1.69±2.18 1.49±0.73 1.41±0.63 1.29±0.6
DC(%) 54.7±5.4 60.4±2.1 60.9±2.2 62.4±2

Right εg(mm) 1.76±2.61 1.34±0.51 1.16±0.38 1.1±0.4
DC(%) 52.8±5.5 63.2±1.5 64.2±1.5 65.9±1.1

Fig. 3. (a) Robust prediction with estimated error scores (green) using 100 random
subsets on the 1.5T T2W MRI from a specific PD patient, and the manually segmented
STN (yellow). Contours on the axial plane (top left), the coronal plane (top right), and
the sagittal plane (bottom left) are shown, respectively, followed by their 3D surfaces
(bottom right). Arrows indicate anterior direction. (b) Post-operative placement of
electrodes on the DBS motor sub-region within the predicted STN (green), along with
the manually segmented STN (yellow) and the red nucleus (red) provided for validation
and ease of 3D orienteering.

Overall prediction results on the 1.5T MR datasets are much closer to the
manually segmented STN than the 7T MR atlases based mean STN (probability
maps of binary volumes fromm�j ), showing the prediction power of our proposed
framework. Particularly, learned shape relationships are more effective to the
prediction of the right STN, yielding lower error scores (the left STN have large
variability over patients). Moreover, predictions are improved with the large
number of random sets, showing the bagging effect (see differences in error scores
between 10 and over 50 subsets, especially, for the left STN in Fig. 2).

We also observe that the proposed robust prediction with estimated error
scores produces more accurate results than ensemble prediction (prediction re-
sults with true error scores are also presented for comparison). Particularly, for
the number of subsets over 50, robust predictions are further improved, and cen-
troid errors of the predicted right STN with 100 subsets are lowered over 10%
(Table 1). This illustrates that random subsets with lower error scores, mean-
ing more influential atlases for prediction, contribute to increasing the accuracy.
Additionally, the smaller the number of random subsets, the higher the MSE
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between estimated error scores and true ones. This might also explain why the
robust prediction is more effective with large enough number of subsets.

Low DC (<70%) might be attributed to thresholding an ensemble of predic-
tions. However, note that we provide the probability interpretation of confident
target regions rather than the whole shape. Additionally, although our proposed
robust prediction shows improvement in error scores, centroid distance, and DC,
for its practical use, it is required to validate if the prediction results are clinically
acceptable. For that purpose, we qualitatively investigated if small sub-regions
(posterior-lateral) of the predictions are completely inside the DBS target sub-
region (e.g., motor territory) of true STN and observed that 95% of the pre-
dictions (19 out of 20 – both sides of 10 patients) hit the target regions. Fig. 3
shows that our proposed robust prediction provides confident targeting regions
on the 1.5T MRI from a PD patient, with clinically feasible measurements
(ε=0.48 and 0.58, εg=0.27mm and 0.76mm, and DC=76.8% and 78.2% for left
and right STN, respectively). The DBS lead into the motor region of the STN
is accurately placed on sub-regions within our prediction (Fig. 3(b)).

4 Conclusion

We presented a shape prediction framework that enables direct targeting for
Deep Brain Stimulation (DBS) surgery based on standard clinical MR images.
This is obtained by ensemble learning spatial relationships between DBS targets
and their predictors using highly detailed information from 7T MR imaging. We
proposed a robust way to improve the prediction, estimating the contribution of
different training subsets. Given each subset on a patient, the influence to the
prediction is estimated based on error scores and weighted to produce the final
accurate and robust prediction.

Experimental results validated that our approach can fully predict the STN
on the clinical 1.5T MRI from PD patients, where it is not possible to directly
identify it. Ensemble prediction results were much closer to the ground truth
manually segmented STN from the 7T MRI than atlases based mean STN, show-
ing the predictive potential and further improved with large number of training
subsets, reducing the variability of the learned information. The proposed robust
prediction showed more accurate results, considering the contribution of random
subsets to the prediction accuracy that leads to bias reduction from atlases.
Moreover, small posterior-lateral regions of the predictions provided clinically
acceptable localization of the patient-specific DBS lead within true STN.

Accurate estimation of error scores as a measure for the influence to predic-
tion produces more reliable prediction, and thus relevant features need to be
further investigated. Additionally, improving quality of predictors on the 1.5T
MRI might considerably increase the prediction accuracy. Our ongoing efforts in-
clude the study of additional potential predictors and applications to other DBS
targets (e.g., internal globus pallidus and ventralis intermedius). Ultimately, to
reduce the need for MER in practice, it also remains challenging to minimize
registration errors within our prediction framework and validate the manually
segmented STN from 7T MRI using the MER mapping to address brain shift.
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