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Abstract. Noninvasive inference of patient-specific intramural electrical
activity from surface electrocardiograms (ECG) lacks a unique solution
in the absence of prior assumptions. While 3D cardiac electrophysiologi-
cal models emerged to be a viable vehicle for constraining this inference
with knowledge about the spatiotemporal dynamics of cardiac excitation,
it is important for the inference to be robust to errors in these high-
dimensional model predictions given the limited ECG data. We present
an innovative solution to this problem by exploiting the low-dimensional
structure of the solution space – a powerful regularizer in overcoming the
lack of measurements – within the dynamic inference guided by physio-
logical models. We present the first Bayesian inference framework that
allows the exploration of both the spatial sparsity of cardiac excitation
and its complex nonlinear spatiotemporal dynamics for an improved in-
ference of patient-specific intramural electrical activity. The benefit of
this integration is verified in both synthetic and real-data experiments,
where we present one of the first detailed, point-by-point comparison of
the reconstructed electrical activity to in-vivo catheter mapping data.

1 Introduction

Despite significant advances in diagnostic imaging, a considered gap remains
between the way to assess cardiac electrical and mechanical functions. To date,
clinical assessment of cardiac electrophysiology remains at a gross view with
several electrocardiogram (ECG) traces, while a more detailed image requires a
invasive mapping using catheters. This gap has motivated the research in nonin-
vasive electrophysiological (EP) imaging that, in analogy to computed tomogra-
phy, collects ECG data external to the body and computationally reconstructs
patient-specific electrical activity [1]. It underscores a notoriously ill-posed in-
verse problem: surface ECG is not only limited in number but, more importantly,
different intramural electrical sources may produce identical ECG data [2].

To bypass the challenge of non-unique intramural solutions, a common ap-
proach has been to restrict the reconstruction to the surface of the heart [1].
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Therefore, to obtain a unique intramural solution, proper assumptions must be
made. In the few existing approaches, 3D excitation models have emerged to be
a useful constraint for ECG-based inference, containing rich physiological knowl-
edge about the spatiotemporal electrical dynamics within the myocardium [3].
However, since the ECG data is limited relative to the high-dimensional model
prediction, it becomes important for ECG-based inference to be robust to priori
model errors. In dynamic inference, a common solution is to augment the un-
known system state with auxiliary variables representing unknown model errors
[4]. Although this allows the prior model to adapt to measurement data, it leads
to an even higher-dimensional unknown space. Outside the traditional regime
of dynamic inference, the low-dimensional structure of a signal (i.e., its sparsity
in a certain basis) has become a powerful regularizer to overcome the lack of
measurements by focusing on the most important region of a high-dimensional
solution space [5]. Its use in noninvasive EP imaging was recently reported [6,1],
e.g., by extracting the sparsity of action potential in the gradient domain using
total-variation [6]. However, sparse reconstructions are mostly studied in a static
context in separation from dynamic inference. In the few recent efforts toward
dynamic sparse inference, a linear dynamic model is typically used to describe
the slow-changing property of the sparse signal in time [7].

In this paper, we present a hierarchical Bayesian approach to integrate dy-
namic physiological knowledge with sparse constraint in ECG-based inference of
transmural electrical activity. It allows the incorporation of: 1) complex phys-
iological knowledge produced by quasi Monte Carlo simulation of 3D cardiac
excitation models, which can be of arbitrary form and nonlinearity running as
a blackbox behind the inference; and 2) sparsity structure of intramural action
potential emphasizing its spatial gradient localized between active and inactive
regions. These two models are mutually complementary: while the former pro-
vides inference with complex domain knowledge about nonlinear spatiotemporal
dynamics, the latter addresses the inference robustness by emphasizing the low-
dimensional structure in the high-dimensional model prediction. The benefit of
this integration is first verified in synthetic experiments designed to test the
robustness of the inference to errors in a priori physiological knowledge. Its ca-
pacity in complex pathological applications is then demonstrated in a pilot study
on post-infarction ventricular tachycardia patients, where the reconstructed ex-
citation maps are quantitatively verified with in-vivo catheter mapping data.

2 Methods

Cardiac electrical excitation produces voltage data on the body surface fol-
lowing the quasi-static electromagnetism [2]. With numerical discretization of
the heart-torso anatomy of a given subject, a biophysical model φk = Huk can
be derived that relates transmural action potential uk to surface ECG data φk at
each time instant k. H is specific to each individual’s anatomy and typically as-
sumed time-invariant to simplify the inference problem. In the Bayesian setting,
the likelihood p(φk|uk, ε) can be modeled as a normal distribution N (Huk, εI),
where ε denotes the precision (inverse variance) of data error.
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Prior decomposition: To exploit the sparse structure of uk while utilizing
physiological knowledge regarding its spatiotemporal dynamics, we introduce
an extra layer into the Bayesian hierarchy to decompose uk into two indepen-
dent variables sk and tk, each incorporating the corresponding signal structure
of uk. We consider a simple decomposition model uk = sk ·tk+δ, where · denotes
dot product and δ is a zero-mean Gaussian residual with precision β. We obtain:

p(uk|sk, tk, β) = N (sk · tk, βI) (1)

Physiological dynamic prior: tk in (1) is a dimension-less descriptor of the
nonlinear temporal profile of action potential. Physiological knowledge regard-
ing its spatiotemporal behavior can be incorporated through a 3D cardiac EP
model. In general, the presented framework can incorporate models as a blackbox
running behind the inference. Here, the monodomain Aliev-Panfilov model [8]
will be used to balance physiological plausibility and computational complexity:{

∂t
∂t

= ∇ · (D∇t) + kt · (t− a) · (1− t)− t · v
∂v
∂t

= −e(v+ kt · (t− a− 1))
(2)

where v stands for recovery current and the diffusion tensor D is considered
anisotropic. The 3D myocardial fiber structure is mapped from an ex-vivo ven-
tricular fibrous model [9]. The rest of the parameters are adopted from literature
[8],so that no patient-specific pathological knowledge is assumed a priori.

Given posterior distribution of tk−1, the prior distribution of tk can be pre-
dicted according to (2). Due to the nonlinearity of this model, a close-form
prediction is not possible. Instead, simulation-based approach is used where a
set of samples is drawn from the posterior distribution of tk−1 and individually
passed through the excitation model; deterministic sampling based on the un-
scented transform [10] is used to reduce the number of samples needed for the
high-dimensional t (∼ 103). The mean t̄−k and covarianceP−

tk
of the new samples

are used to approximate the prior distribution of tk as:

p(tk|φ1:k−1) ∼ N (t̄−k ,P
−
tk

+Qk) (3)

where Qk is a pre-defined covariance matrix to account for errors in the prior
excited model (2) caused by factors such as heart motion, fiber model, etc.
Variable v is not modeled or inferred because it is not directly related to the
measurement. Note that the sampling and model simulation runs as a blackbox
behind the inference, allowing a flexible plug-and-play of different EP models.

Sparse prior: The error covariance Qk is only able to account for errors in
the prior excitation model (2) to an extent. Since the model prediction is much
higher in dimension than ECG data, additional structure of the solution space
should be explored to avoid the inference being dominated by model predictions.
Recent studies show that the sparsity of action potential in its gradient domain
(i.e., localized gradient between active and inactive regions) is an effective reg-
ularizer for ECG-based inference [6]. Thus, we define a spatial profile sk for
action potential and approximate the continuous form of its total-variation with
a numerical integration using Ng ∼ 105 Gaussian quadrature points:

TV(sk) =
∫
Ωh

|∇sk|dΩh ≈ Σ
Ng

i=1

√
sTk ∇ϕT

i ∇ϕisk (4)
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where ∇sk on each Gauss point is approximated by a linear combination of its
neighboring nodes in the discrete ventricular mesh using shape functions ϕi.

Accordingly, the sparsity prior can be written as:

p(sk|α) = cα2m exp(−αTV(sk)) = cα2m exp[−αΣ
Ng

i=1

√
sTk∇ϕT

i ∇ϕisk] (5)

where c is constant, m is the dimension of sk.
Hyperparameters: The precision parameters (α, β and ε) of the above distribu-

tions control their relative contributions to the inference. To reduce the reliance
on an ad-hoc tuning of these parameters, we assume them to be unknown with
Gamma distributions (the conjugate of Gaussian distributions) [11].

Hierarchical Bayesian model: Because the excitation model (2) involves a first-
order derivative in time, it is reasonable to assume tk to be a first-order Markov
process. The prior for sparsity and all hyperparameters can be assumed to be
not informed by the previous ECG data, i.e., independent with φ1:k−1:

p(sk|α, φ1:k−1) ≡ p(sk|α), p(θ|φ1:k−1) ≡ p(θ), θ ∈ {α, β, ε} (6)

Therefore, given ECG data φ1:N throughout N time instants in a cardiac cycle,
we can recursively compute the joint posterior distribution of all the unknowns
Θk = (uk, tk, sk, α, β, ε) given the data available up to the time instant k:

p(Θk|φ1:k) ∝ p(φk|Θk)p(Θk|φ1:k−1)
= p(φk|uk, ε)p(uk|tk, sk, β)p(tk|φ1:k−1)p(sk|α)p(α)p(β)p(ε) (7)

Fig. 1(a) outlines the hierarchical Bayesian model at one time instant.
Variational Bayesian inference: The posterior distribution in (7) is analyti-

cally intractable. We adopt the variational Bayesian method to seek a tractable
distribution q(Θk) with minimal Kullback-Leibler (KL) divergence to (7):

q̂(Θk) = arg min
q(Θk)

CKL(q(Θk)‖p(Θk|Φ1:k)) =

∫
q(Θk) log(

q(Θk)

p(Θk|Φ1:k)
)dΘ (8)

The solution to the above optimization problem is given by:

q(Θk,i) ∝ exp(EΘ\Θk,i
[ln p(Θk, Φ1:k)]) (9)

where EΘk\Θk,i
[·] denotes the expectation with respect to all variables in the

set of Θk except the variable of interest Θk,i. Because the total-variation prior
(5) prevents us from solving equation (9) analytically, we introduce an auxiliary

vector w and define p(sk,w|α) = cαγm exp(−α
2

∑Ng

i
sTk ∇ϕT

i ∇ϕisk+wi√
wi

). Because

p(sk,w|α) ≤ p(sk|α) given the geometric-arithmetic mean inequality, replacing
p(sk|α) with p(sk,w|α) in equation (8) gives us an upper bound of the KL
divergence. We can thus recursively minimize and monotonically decrease this
upper bound until convergence to the original solution to (8) [11]. We randomly
initialize u1 and then enter an iterative procedure. In each iteration, we cycle
through each variable in Θk to update its posterior distribution according to (9).
The main algorithm flow is illustrated in Fig. 1(b).
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(a) (b)

Fig. 1. Illustration of the hierarchical Bayesian model (a) and algorithm flow (b).

3 Experiments and Results

3.1 Simulation Study

Synthetic experiments are designed on pathological conditions to test the ro-
bustness of the inference to errors in a priori models. Experiments are conducted
on 3 realistic human heart-torso models derived from CT scans (heart: ∼ 2000
meshfree nodes; torso: 120 nodes). In all experiments, simulated time sequences
of 120-lead ECGs are corrupted with 20-db white Gaussian noise. We compare
the presented method with that constrained by 1) dynamic excitation model only
[3] and 2) sparse total-variation model only [6]. The accuracy is measured by cor-
relation coefficient (CC) between the reconstructed and simulated sequences of
action potential.

Myocardial infarction: 10 cases of myocardial infarction are test, where ven-
tricular action potential is simulated with the model(2) using parameters modi-
fied at the region of infarct scar [8]. It is noteworthy that the inference is guided
by models with standard parameters, invoking a priori model parameter errors.

Fig. 2(a) top row shows snapshots of the simulated propagation of action
potential during apical pacing with an infarct localized at the mid-basal lateral
region of the LV (labeled by purple line). Before the excitation encounters (a1)
or after it leaves the infarct region (a4), the a priori model error is minimal;
therefore, result constrained by the excitation model shows high consistence
with the ground truth (row 2 & 3). However, as the wavefront encounters and
gets disrupted by the infarct region (a2), prior model errors start to have a
visible impact on the solution accuracy (a2; row 3). In comparison, our method
accurately reconstructs the abnormal excitation caused by the anatomical block,
demonstrating an improved robustness to model errors brought by simultaneously
focusing on the sparse structure of the solution (a2; row 2). During ECG ST-
segment (a3), constrained by the dynamic model only, the inference is only able
to overcome the model error and to reflect the inactive necrosis to a certain extent
(a3; row 2); the exploit of sparse structure evidently improve this ability (a3;
row 3): two additional examples from ECG ST-segments on different infarcted
hearts are listed in Fig. 2(b). Inspection of the reconstructed temporal waveform
of action potential tells a similar story (Fig. 2(2-3)): when strong prior dynamic
knowledge is imposed, exploiting the low-dimensional structure of intramural
action potential helps the inference to better combat the error in this knowledge.
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Fig. 2. Snapshots of intramural action potential propagation on infarcted hearts: simu-
lated ground truth vs. inferences with physiological dynamic constraint only (Dynamic),
sparsity constraint only (Sparse), and combined constraints (Integration).

Fig. 3. Temporal morphology of simulated and reconstructed action potential.

Conversely, when only sparsity model is used, the inference is successful in
capturing a gross division between active versus inactive regions. However, the
excitation wavefront loses its intricate details (Fig. 2(a4)) and, more importantly,
temporal morphology of action potential cannot be reproduced (Fig. 2(4)).

Premature ventricular contraction (PVC): In another 5 set of experiments, we
consider abnormal ectopic foci that are not known a priori in the sinus-rhythm
excitation model. Thus, the relevant model error primarily occurs in the early
stage of ventricular excitation. As shown in Fig. 3.1(a), inference constrained by
the dynamic model shows erroneous activation at standard sinus-rhythm sites.
The integration with sparsity models is able to help correct this model error and
produce PVC sites close to the simulated ground truth.

Statistical analysis: Quantitative analysis on CC are summarized in all cases
across both settings. Fig. 3.1(b1) shows CC calculated on the complete tempo-
ral sequence of reconstructed action potential: in comparison to using sparsity
models only, the use of prior excitation models can significantly improve CC by
providing temporal morphology that is physiologically correct (p < 0.01, paired-
t). Fig. 3.1(b2) shows CC calculated on the first half sequence within the cardiac
cycle when less ECG data are available to the inference: in comparison to using
dynamic models only, the exploitation of sparsity significantly improves CC by
better overcoming model errors given limited data (p < 0.01, paired-t).
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Fig. 4. Snapshots of intramural action potential resulting from ectopic foci (a) and
correlation coefficients across n=15 synthetic cases (b).

Fig. 5. Comparison with invasive catheter mapping on a post-infarction patient.

3.2 Real-Data Study

A case study is conducted on a patient who underwent catheter ablation of
scar-related ventricular tachycardia. Transmural action potential is inferred from
120-lead ECG data on CT-derived anatomical model. In-vivo bipolar voltage
map (Fig. 5(a1)) was collected during invasive EP study, where two low-voltage
regions were revealed at lateral RV and lateral-basal LV (dense scar: blue, ≤
0.5mV; scar border: green, 0.5-1.5mV). Action potential reconstructed by our
method during ECG ST-segment exhibits low amplitude at the same regions
(Fig. 5(a2)). Fig. 5(b1) shows the invasive activation map acquired on the same
patient in stable rhythm: comparing activation (b1) and voltage maps (a1) side
by side, we can appreciate the intrinsic native-rhythm activation within the low-
voltage region. This is consistent with recent study that some critical isthmuses
may exist within low-voltage areas, underscoring the importance of an accurate,
high-resolution activation map in identifying culprit tissue for surgery planning
[12]. Fig. 5(b2) illustrates the activation map obtained from our method, which
exhibits similar pattern to the invasive map and is able to delineate intrinsic
electrical activity around low-voltage regions.

Statistical analysis on 208 epicardial points (Fig. 5(c)) verified a negative
association between the reconstructed activation time and bipolar voltage (p
= 0.0002, Spearman’s ρ), and a positive association between the reconstructed
action potential duration and bipolar voltage (p = 0.0001, Spearman’s ρ). With
decreasing voltage, significant differences are also found in three action potential
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features: delay of activation (p = 0.001, ANOVA), reduction of duration (p =
0.005, ANOVA), and increase of repolarization heterogeneity (p < 0.05, F-test
for standard deviation). These changes are consistent with documented action
potential biomarkers associated with ischemic hearts [12].

3.3 Conclusion

This paper has two major contributions: 1) the improved robustness of trans-
mural EP imaging will contribute to its reliable clinical use; this is also one of
the first studies to associate noninvasive solutions with in-vivo catheter maps
on human subjects; and 2) bridging the gap between dynamic inference and
sparse regularization, this is to our knowledge the first theoretical framework for
statistical inference that supports the use of the low-dimensional structure in
concurrence with its domain knowledge yielded by complex nonlinear dynamic
models. It provides a novel solution to the general challenge regarding the ro-
bustness of dynamic inference to a priori model errors. Future work will study
the robustness of this framework to additional model errors, i.e. cardiac motion,
cardiac fiber model and the setting of algorithm parameters. Note that, due
to the difficulty of invasive mapping, its discrepancy with noninvasive solutions
should be interpreted with caution.
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