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Abstract. 3D ultrasound imaging has high potential for various clin-
ical applications, but often suffers from high operator-dependency and
the directionality of the acquired data. State-of-the-art systems mostly
perform compounding of the image data prior to further processing and
visualization, resulting in 3D volumes of scalar intensities. This work
presents computational sonography as a novel concept to represent 3D
ultrasound as tensor instead of scalar fields, mapping a full and arbitrary
3D acquisition to the reconstructed data. The proposed representation
compactly preserves significantly more information about the anatomy-
specific and direction-depend acquisition, facilitating both targeted data
processing and improved visualization. We show the potential of this
paradigm on ultrasound phantom data as well as on clinically acquired
data for acquisitions of the femoral, brachial and antebrachial bone.

1 Introduction

Tracked freehand 3D ultrasound (US) yields 3D information of the scanned
anatomy by acquiring 1D scanlines or 2D images, respectively, along with their
position and orientation in space. For further processing and visualization, the
data is then often interpolated with respect to a regular grid. This procedure
is commonly referred to as 3D reconstruction or compounding [10] and can be
performed in different ways, e.g. forward, backward or functional interpolation.
All these approaches reconstruct scalar intensity values per voxel,however, such
conventional compounding techniques suffer from two inconveniences.

First, they imply a significant loss of information and neglect the directionality-
dependent nature of ultrasound. Second, in order to avoid artifacts, they impose
acquisition protocols (e.g. straight probe motion) modifying the physician’s com-
mon practice (acquisition guided by interactive motion of the probe).

In this work we propose a novel paradigm for 3D US representation, called
Computational Sonography (CS), based on the the reconstruction of tensor fields
instead of the traditional intensity volumes, cf. Fig. 1. In our approach, at every
3D location a 2nd order tensor is optimized to compactly encode the amount
of reflected signal expected from each direction. In this way, both the anatomy-
and the acquisition-specific directionalities are preserved.
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The advantages of this novel reconstruction paradigm are as follows:

1. It preserves directional information while allowing for the retrieval of scalar
intensity volumes for arbitrary directions. This calls for novel (interactive)
visualization techniques which better reflect the directional nature of US.

2. The proposed reconstruction paradigm can be applied to arbitrary scanning
trajectories. Thus, the clinician is not subjected to strict scanning protocols.

3. The presented method is fast in terms of reconstruction time (easily paral-
lelizable), while leading to a compact representation (constant storage/voxel).

4. Beyond visualization, the preserved information in CS provides additional
value for tasks where 3D ultrasound is used for further processing, e.g. re-
gistration, segmentation or tracking [6,3,13]. Furthermore, CS also enables
using post-processing techniques specialized to tensor-valued data, e.g. [12].

The proposed method is inspired by computational photography, where light
fields instead of just intensities are stored and available to subsequent process-
ing steps [8]. Our vision is that tensor fields become the standard format for
freehand 3D US acquisitions, enabling a plenitude of novel computational tech-
niques. We demonstrate the potential of this new paradigm for both phantom
and in-vivo data and compare it to state-of-the-art compounding methods.

Related Work: A popular and successful example of tensor fields is Diffu-
sion Tensor Imaging (DTI), for which a vast literature addressing tensor fitting,

Fig. 1. Top: Reconstruction Comparison. (left) Conventional reconstruction from
arbitrarily sampled vascular ultrasound data obtained by backward-interpolation us-
ing median compounding. (middle) Absolute value of the trace of the reconstructed
tensors. (right) Tensors visualized as colored ellipses. Note that the trace image nicely
resembles the high intensities of the boundary and that tensors align with the global
orientation of the imaged structures. Bottom: Directionality of Tensors. Recon-
structed tensors allow for a reconstruction of directional B-Mode ultrasound informa-
tion in arbitrary directions, as indicated by red arrows.



Computational Sonography 461

visualization, etc. [7] exists. In contrast to DTI, compounding of freehand 3D
US data is today only considered in terms of reconstructing scalar intensity vol-
umes [10], which neglects most of the directional information acquired along the
trajectory of the scan. Recently, a method for incorporating directionality of
ultrasound acquisitions was proposed, clustering data from different directions
for 3D compounding [1]. While this method utilizes information from different
directions for a combined reconstruction, it still reconstructs only scalar values
per voxel, and thus directional information is not available for further processing.
In [9], the spatial coherence of ultrasound information observed for different ori-
entations and focal regions has been used for tensor reconstructions. While the
method is promising, it requires both a specialized hardware setup and a fixed
scanning protocol. In contrast, our approach can be seamlessly integrated into
the clinical workflow and applied directly to clinical 3D ultrasound acquisitions.
Furthermore, the reconstructed tensor fields result in a compact representation
of the directional information observed during the acquisition, which remains
available for subsequent processing tasks.

2 Computational Sonography for 3D Ultrasound

The basis for any 3D ultrasound reconstruction is a set of ultrasound samples
S = {si}Ni . The samples typically lie on rays (scanlines) that are more or less
arbitrarily distributed in 3D space based on the acquisition trajectory. Each
sample, denoted here by si, is given by a tuple si = {Ii, pi, vi} consisting of the
ultrasound intensity Ii, the sample position pi = (pi,x, pi,y, pi,z)

� and the corre-
sponding ray direction vi = (vi,x, vi,y, vi,z)

�. Current 3D ultrasound techniques
use only intensities Ii and positions pi to reconstruct 3D intensity volumes. Be-
cause the content of ultrasound images is direction-dependent, we argue that
preserving the directionality is both important and beneficial, which calls for
a paradigm change in US data representation. We propose here to rely on ten-
sors to encode such complex behavior, as this resembles the anisotropic nature of
ultrasound waves best, with varying visibility of structures and a change penetra-
tion depth using different scanning trajectories. The key idea of Computational
Sonography is thereby to reconstruct a 3D tensor field from the collection of
samples S, where each tensor will compactly and optimally encode the local in-
tensity for each viewing direction. In practice, to reconstruct tensor data from
the samples, a two-step approach is proposed, comprising of a selection of US
samples in proximity to the respective voxel, followed by the tensor reconstruc-
tion through least-squares minimization, cf. Fig. 2.

2.1 Sample Selection

At first, we select the subset of the ultrasound samples si ∈ S which contribute
to the tensor estimation at a specific volume point p = (px, py, pz)

� ∈ P . Here
P ∈ Z

3 denotes the lattice (set of positions) at which the tensors shall be re-
constructed. A proper selection of the respective subset of samples is important,
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Fig. 2. Reconstruction Process: (left) Ultrasound sample selection from a set of
samples close to the target volume position. (right) Reconstruction of a 2nd order
tensor from measurements originating from different ultrasound rays.

because (i) the selected samples should contain complementary information, i.e.,
the corresponding measurements should be independent, and ii) potential out-
liers should be removed in order to avoid a distortion of the subsequent tensor
estimation. In this regard and inspired by [2], all input samples S are traversed
and a sample si is selected if pi lies within an ellipsoid defined around the ultra-
sound sample, cf. left panel in Fig. 2:

(
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a

)2

+

(
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b

)2

+

(
pz − pi,z

c

)2

≤ 1, (1)

where a, b, c represent the maximum distances in the native sampling space in x-,
y-, and z-direction, respectively. This sample selection w.r.t. the coordinate sys-
tems of the original ultrasound rays (in a backward fashion) is of special interest
if physical parameters of an acquisition, such as frequency, probe element width,
height, pitch, or focus, are incorporated into the reconstruction approach. Based
on Eq. (1), multiple samples of each scan line would be selected depending on
the proximity of a ray to the target position p. As better tensor reconstructions
can be obtained from complementary information, only the nearest sample of
each ray is selected instead of all samples fulfilling (1), thus restricting the set
to contain only one sample per scanline.

2.2 Tensor Reconstruction

As a result of the sample selection, every voxel position p has an assigned set of
samples s1, . . . , sn ⊂ S, which can be used for the reconstruction of a tensor T ∈
R

3×3. In our CS conception, the 3D reconstruction should be able to reproduce
as faithfully as possible the directionality dependence of the acquisition. To this
end, we assume that for each sample si, ideally the following relationship holds:

v�i Tvi = Ii, where T =

⎡
⎣Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

⎤
⎦ . (2)
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This results in the recovery of the tensor that preserves the intensities for each
orientation best, given the sample subset assigned to the voxel. If estimated
properly, it will then be possible to retrieve an intensity volume for an arbitrary
viewing direction v ∈ R

3 by evaluating the tensor w.r.t. this direction, i.e., by
computing v�Tv at all voxel positions.

As T shall be symmetric, it is possible to rewrite (2) as follows:

[v2i,x, v
2
i,y, v

2
i,z , 2vi,xvi,y, 2vi,xvi,z , 2vi,yvi,z ]

[
Txx Tyy Tzz Txy Txz Tyz

]�
= Ii.

(3)
This means that we need at least six sampling points in order to compute the six
coefficients Txx, Tyy, Tzz, Txy, Txz, and Tyz. In practice, however, we use more
than six samples, typically between 12 and 500 samples. As a consequence, we
end up with a least squares problem

‖Ax− b‖22 , (4)

where the i-th entry of b ∈ R
n is given by Ii, the i-th row of A ∈ R

n×6 is given
by (v2i,x, v

2
i,y, v

2
i,z , 2vi,xvi,y , 2vi,xvi,z , 2vi,yvi,z)

�, and x ∈ R
6 denotes the solution

vector. We solve this least squares problem for all volume points simultaneously
using Cholesky decompositions implemented on a GPU.

At this point it is important to note that the symmetry of T is ensured by the
used parametrization (3). However, as intensities are expected to be positive,
T should be positive definite (v�Tv > 0), which is not yet enforced in our
scheme. This can partially result in erroneous tensor estimates, especially in
areas with severe shadows or almost no meaningful information. We suggest to
detect these areas by means of other approaches, e.g. by computing confidence
values as suggested by [4], and exclude them from further processing.

3 Experimental Evaluation

For evaluating the potential of computational sonography as a new paradigm for
3D ultrasound reconstruction, we performed experiments on both phantom and
in-vivo data. All 3D freehand image acquisitions were performed with an Ultra-
sonix RP system and a linear transducer (L14-5/38) tracked with an Ascension
EM system. For the relevant sample selection, we chose a = b = c = 1.5 mm.
Volumetric spacing can be chosen freely as a balance between reconstruction
quality (finer spacing) and speed (coarser); here all datasets were reconstructed
with a spacing of 0.5mm in accordance with previous work. One advantage of
computational sonography is the possibility to directly reconstruct information
w.r.t. any viewing direction v by evaluating all the tensors according to v�Tv,
yielding an intensity volume corresponding to the direction v. Storing an ac-
quired US sweep as a tensor volume thus facilitates the optimal resembling of
the directional nature of ultrasound in any kind of interactive visualization for
instance. As this possibility is conceptually similar to computational photogra-
phy and particularly light field imaging, where the focus plane can be chosen
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Fig. 3. Comparison of 3D Reconstructions - Real Data: Transverse (column
1) and longitudinal (column 3) slices for median compounding and similarly for the
absolute value of the tensor trace of our reconstruction (columns 2,4) from a rota-
tional scan of the Brachial bone. Note that conventional compounding depicts mainly
the bone structure, while our reconstruction better resembles the overall structures in
the volume.

and modified after the image acquisition process, we chose the term computa-
tional sonography. It can be observed in Fig. 3 and Fig. 4 that this procedure
yields high quality reconstructions. Considering the directional information thus
results in the possibility to retrieve texture information as it would be observed
from arbitrarily chosen directions, in comparison to conventional reconstruction
approaches which do not take directional information into account. In particular
for Fig. 3, the median-reconstructed frame does not show anatomical information
except for the shadowing/bone. Moreover, it is also distorted due to components
from different views. In contrast to this, computational sonography allows for
a reconstruction of directional information, preserving the original image infor-
mation. It should be noted that the lack of speckle patterns in both images is
mainly due to the large cell size (0.5mm with ∼500samples/voxel).

In order to demonstrate this effect also quantitatively, we reconstructed vol-
umes for different acquisitions using the orientations of the corresponding origi-
nal images. For evaluation, we compared the reconstructed intensity values with
the original ultrasound samples, where we used the Mean Absolute Distance
(MAD) to the original US image as well as the Peak Signal to Noise Ratio
(PSNR) as evaluation metrics. As a baseline method, we employed the median
compounding strategy, which is often recommended due to its preservation of
the original US image appearance [11]. We performed this evaluation on two
different sets of data: i) Five freehand scans of an in vitro silicone vessel phan-
tom immersed in gelatin (2% gelatin, 1% agar, 1% flour) in order to allow for
a scanning of realistic anatomies in a static environment, and ii) Ten freehand
scans of the Femoral bone as well as the Antebrachial and Brachial bones us-
ing varying trajectories to evaluate the feasibility in a realistic setup. For both
sets, we performed acquisitions using rotationally and overlapping trajectories,
where a target volume position is imaged several times from different directions
as this scenario well resembles the daily routine for US diagnostics. We perform
a quantitative evaluation on 5 datasets (avg. 167 ± 103 slices) for the silicone
phantom and 10 in-vivo datasets (avg. 243 ± 84 slices). Table 1 shows that CS
provides on average higher peak SNR values as well as slightly lower absolute
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Table 1. Quantitative results

Phantom In-vivo
Method MAD PSNR MAD PSNR

Median Compounding 17.70± 1.81 20.31± 0.91 20.79± 2.27 18.67± 0.97
Computational Sonography 17.46± 2.47 57.67± 8.79 19.64± 2.89 66.35± 9.43

Fig. 4. Consistency with Original Acquisitions - Phantom Data: (left) Orig-
inal B-mode image from a scan of the vessel phantom. (middle) Conventional re-
construction using median compounding. (right) Result computed from the proposed
tensor representation using the direction v corresponding to the original image. Note
the significant loss of original information in case of the regular compounding.

distances, while being partially susceptible to varying imaging conditions, as in-
dicated by increased PSNR variability for CS. Observed high PSNR values show
the potential of computational sonography as a new paradigm in 3D ultrasound
imaging. Our future work includes enforcing the positive definiteness of T [5]
to improve the results and developing a more efficient implementation (for a
spacing of 0.5mm, the computational time is about 4 minutes per volume).

4 Conclusion

In this work we presented computational sonography as new paradigm for 3D
ultrasound, reconstructing tensor fields from the acquired data instead of scalar
intensities being used in today’s practice. For tensor retrieval, we propose a two-
step approach with a sample selection performed first, followed by a tensor re-
construction through least-squares solution. Our results show that the approach
preserves the original (B-mode) ultrasound data better compared to state-of-art
methods and yields a high potential for utilization of tensor information in fur-
ther processing and visualization steps. With improved reconstruction schemes
such as tensor fitting with direct regularization, as used frequently in DTI, com-
putational sonography will hopefully evolve as a standard for reconstruction of
3D ultrasound data in the future. Applications that could benefit from our new
representation are: multi-modal registration, segmentation, tracking, free view-
point approximation (e.g. for educational simulation), online guidance of the
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acquisition to optimize the 3D reconstruction as well as analysis and compar-
ison of different acquisitions. The additional information can be further used
online to guide the current acquisition, e.g. acoustic window optimization, or
offline, enabling targeted image analysis by allowing different users to extract
different relevant information based on their technical or clinical objectives.
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