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Abstract. Glaucoma, Pathological Myopia (PM), and Age-related Mac-
ular Degeneration (AMD) are three leading ocular diseases worldwide.
Visual features extracted from retinal fundus images have been increas-
ingly used for detecting these three diseases. In this paper, we present
a discriminative feature selection model based on multi-task learning,
which imposes the exclusive group lasso regularization for competitive
sparse feature selection and the graph Laplacian regularization to embed
the correlations among multiple diseases. Moreover, this multi-task linear
discriminative model is able to simultaneously select sparse features and
detect multiple ocular diseases. Extensive experiments are conducted to
validate the proposed framework on the SiMES dataset. From the Area
Under Curve (AUC) results in multiple ocular diseases classification, our
method is shown to outperform the state-of-the-art algorithms.

1 Introduction

Many of the leading causes of vision impairment and blindness worldwide are
irreversible and cannot be cured [1]. Glaucoma, Pathological Myopia (PM),
and Age-related Macular Degeneration (AMD) are three leading ocular diseases
worldwide. Early detection of these ocular diseases utilizing effective visual fea-
tures is highly needed [2][11].

With the advancement of retinal fundus imaging, several computer-aided diag-
nosis (CAD) methods and systems have been developed to automatically detect
these three leading ocular diseases from retinal fundus images [6][4]. However,
current work mainly focus on detecting Glaucoma, PM, and AMD individually.
Classifying these three leading diseases simultaneously is still an open research
direction. There are some correlations among these three leading ocular diseases.
In recent decades, the problem of low vision and blindness in elderly people
became a major and socially significant issue. The number of patients having
age-related macular degeneration (AMD) in association with glaucoma is grow-
ing all over the world [8], which attaches great medical and social value to this
multiple diseases diagnosis problem. Moreover, in a recent study, myopic eyes
are less likely to have AMD and diabetic retinopathy (DR) but more likely to
have nuclear cataracts and glaucoma [9].
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Fig. 1. System overview of our proposed discriminative feature selection scheme for
multiple ocular diseases classification. Here “Sub1” stands for a sub-type disease of
a leading ocular disease. As indicated within red dashed borders in the right of the
figure, a sparse feature will be learned for each disease. For better viewing, please see
the color pdf file.

In this paper, we adopt a Multi-task Learning (MTL) based method for dis-
criminatively selecting sparse features, harmoniously integrating the correlation
information of multiple diseases, and investigating the problem of learning to
simultaneously diagnose them for a given fundus image. Different from previous
algorithms that detect ocular disease independently, the proposed method for-
mulates the correlation information of different diseases by a graph Laplacian
regularizer and models the sparse feature selection by an exclusive group lasso
regularizer. It then utilizes a multi-task linear model to learn a linear mapping
from features to diseases. Since a patient may have two or three ocular diseases
at the same time, multiple ocular diseases detection is well suited for real-world
diagnosis scenarios.

2 Discriminative Feature Selection by Graph Regularized
Group Lasso

2.1 Graph Regularized Group Lasso Multi-task Learning

For a multiple ocular disease dataset {xi, li}Ni=1, xi ∈ Rd is the feature vector
of the i-th fundus image and li = {lki }Kk=1 is the associated disease label. For
simplicity and clarity, we set K = 2 and denote the Cartesian product of L1

and L2 as L = L1 × L2, as done in [10]. In addition, yi ∈ R|L| is the zero-one
disease label vector (|L| = |L1|× |L2|) indicating whether xi is jointly labeled as
l1 ∈ L1 and l2 ∈ L2. For the case of multiple ocular diseases, |L1| is equal to the
number of types of ocular diseases and |L2| stands for the number of sub-types of
each disease. For example, since AMD is classified into dry AMD (non-exudative



Discriminative Feature Selection for Multiple Ocular Diseases Classification 13

AMD) and wet AMD (exudative AMD), |L2| is equal to 2. Given the training
feature-label set {xi, yi}Ni=1, the disease label of a test image can be predicted
via learning a linear model y = Mx. Our employed learning model is based on
the following basic MTL formulation [5]:

Θ(M) =
1

2

|L|∑

j=1

‖Yj −MjX‖2, (1)

where Yj ∈ R
n and Mj ∈ R

d are the j-th row of Y and M , respectively. X =
[x1, ..., xn] ∈ R

d×n is the feature matrix with each column representing a training
image feature, Y = [y1, ..., yn] ∈ R

|L|×n is the label matrix with each column as
a training image label vector, and M ∈ R

|L|×d is the parameter to be estimated.
We are to learn |L| different linear regression models (tasks) Yj = MjX , j =
1, ..., |L|. In this naive formulation, the tasks are learned independently of each
other.

In order to learn the discriminative features for multiple diseases detection,
we consider the relationships across tasks by imposing two regularizers (Exclu-
sive Group Lasso Regularizer and Graph Laplacian Regularizer) to the objective
Θ(M) in (1) as in [10]. Before we start to utilize the improved objective Θ(M),
let us introduce some notation for group lasso and graph Laplacian. Let G1 of
size |L1| be a group of label index sets in L constructed as follows: each element
g ∈ G1 is an index set of combinational labels (l1, l2) ∈ L which share a common
l1 ∈ L1. And G2 of size |L2| is constructed with label set L2. Given a similarity
matrix S ∈ R

|L|×|L| that stores the pairwise similarity scores between concepts,
the larger Sjk is, the more similar two concepts j and k are, and vice versa.
Hence, the objective Θ(M) in (1) can be written as:

Θ(M) =
1

2

|L|∑

j=1

‖Yj −MjX‖2 + μ

d∑

i=1

(‖M i
G1‖22,1 + ‖M i

G2‖22,1
)

+ η

|L|∑

j,k=1

Sjk ‖ Mj −Mk ‖2, (2)

where
∑d

i=1

(‖M i
G1‖22,1 + ‖M i

G2‖22,1
)
is the Exclusive Group Lasso Regularizer

(denoted as Γ (M)) and
∑|L|

j,k=1 Sjk ‖ Mj −Mk ‖2 is the Graph Laplacian Reg-

ularizer. ‖M i
Gk‖22,1 =

(∑
g∈Gk ‖M i

g‖2
)2

, k = 1, 2, and M i ∈ R
|L| is the i-th

column of M , and M i
g ∈ R

|L| is the restriction of vector M i on the subset g by

setting M i
j = 0 for j �= g.

According to [13], ‖M i
Gk‖22,1 is sparseness inducing and it encourages exclusive

selection of features at the level of group g ∈ Gk. Hence, for each feature i, it tends
to assign larger weights to some important groups while assigning small or even
zero weights to the other groups. Different from the Exclusive Group Lasso Regu-
larizer that describes the negative correlation among tasks, the Graph Laplacian
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Regularizer models the positive correlation among tasks by transferring the weight
information among multiple ocular diseases.

2.2 Solution

The objective Θ(M) in (2) is convex but non-smooth since all the three compo-
nents are convex whereas the Exclusive Group Lasso Regularizer Γ (M) is non-
smooth. The non-smooth structure of Γ (M) makes the optimization of problem
minM {Θ(M)} a non-trivial task. The subgradient method as used in [13] is ap-
plicable but it typically ignores the structure of the problem and suffers from a
slow rate of convergence. As indicated in [14], the optimization can be achieved
by approximating the original non-smooth objective by a smooth function, and
then solving the latter by utilizing some off-the-shelf fast algorithms. Here, we
introduce a Nesterov-like smoothing optimization method [3] to achieve this pur-
pose. Once the optimal parameter M∗ is obtained, the multiple diseases labels of
a test fundus image with feature x are learned by y = M∗x. The whole algorithm
of the proposed feature selection and multiple diseases detection is described in
Algorithm 1.

For any vector z ∈ R
n, its �2-norm ‖z‖2 has a max-structure representation

‖z‖2 = max‖v‖2≤1〈z, v〉. Based on this simple property and the smoothing ap-
proximation techniques originally from [3], function Γ (M) can be approximated
by the following smooth function:

Γδ(M) =
1

2

d∑

i=1

(
z2G1,δ(M

i) + z2G2,δ(M
i)
)
, (3)

where zGk,δ(M
i) := max‖V i,k

Gk
‖2,∞≤1〈M i, V i,k〉 − δ

2‖V i,k‖22, and δ is a parameter

to control the approximation accuracy. We use the following Theorem [10] to
show that Γδ(M) is differentiable and its gradient can be easily calculated.

Algorithm 1. Discriminative Feature Selection for Multiple Ocular Diseases
Detection

Input: Feature matrix of training data X ∈ R
d×n, diseases label matrix Y ∈ R

|L|×d,
groups G1 and G2, parameters μ, η, δ.
Output: Learned feature selection matrix M t ∈ R

|L|×d

Initialization: Initialize M0, V0 and let α0 ← 1, t ← 0.
repeat

Ut = (1− αt)Mt + αtVt,
Calculate ∇Γδ(Ut) based on (4), (5), and obtain Lδ according to (6).
Vt+1 = Vt − 1

αtLδ

(−(Y −MX)XT + μ∇Γδ(Ut) + ηLδM
)
,

Mt+1 = (1− αt)Mt + αtVt+1,
αt+1 = 2

t+1
, t ← t+ 1.

until Convergence
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Table 1. The Baseline Algorithms.

Name Methods

KNN k-Nearest Neighbors
SVM Support Vector Machine
LNP Linear Neighborhood Propagation [10]
MTL Naive Multi-task Learning in (1)
SPM State-of-the-art algorithm for PM Detection [4]
SAMD State-of-the-art algorithm for AMD Detection [15]
SGL State-of-the-art algorithm for Glaucoma Detection [2]
GRML State-of-the-art algorithm for Multiple Ocular Diseases Detection [7]

Theorem 1. Function Γδ(M) is well defined, convex and continuously differ-
entiable with gradient

∇Γδ(M) =
[∇Γδ(M

1), ...,∇Γδ(M
d)
]
, (4)

where for i = 1, ..., d,

∇Γδ(M
i) = qG1,δ(M

i)V i,1(M i) + qG2,δ(M
i)V i,2(M i). (5)

Moreover, ∇Γδ(M) is Lipschitz continuous with the constant

Lδ =

(
2
√
2R

δ
+ |L1|2 + |L2|2

)
d. (6)

3 Experiments

3.1 Dataset and Evaluation Criteria

We conduct the experiments on the SiMES dataset [12], in which the detection
of Glaucoma, AMD, and PM have been made by clinicians. We choose a subset
of SiMES for experiments, which contains 2,258 subjects. In this subset dataset,
there are 100 with glaucoma, 122 with AMD, and 58 with PM. For each disease,
the distribution of the subjects who contracted the disease in the selected dataset
is representative of the disease prevalence in the population. We extract three
different types of visual features (popular global and local features as adopted
in [7]) for conducting experiments, and study the performance of the proposed
approach with a total of four settings: 1) global features; 2) grid-based features;
3) bag of words; 4) global features + grid-based features + bag of words. The
notation + indicates a combination of four types of features in the corresponding
setting. We utilize the area under the curve (AUC) of the receiver operation
characteristic curve (ROC) to evaluate the performance of classification.

3.2 Experiment Analysis

In order to evaluate the performance of our proposed algorithm, we provide a
quantitative study on SiMES, with an emphasis on the comparison with eight
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state-of-the-art related methods as listed in Table 1. Below are the parameters
and the adopted values for each method:

– For the SVM algorithm, we adopt the RBF kernel. For its two parameters γ
and C, we set γ = 0.6 and C = 1 in the experiments after fine tuning.

– For KNN, there is only one parameter k for tuning, which stands for the
number of nearest neighbors and is set to 150.

– For SGL, SPM, SAMD and GRML, we use the same settings as in their
papers.

– For our proposed approach, we set |L1| = 3 and |L2| = 1 because the selected
dataset lacks ground truth labels of the sub-types of each ocular disease for
each fundus image. For the control parameters, we set μ = 0.5, η = 0.2,

The AUCs of the baseline methods for detecting the three leading ocular
diseases on the SiMES dataset are illustrated in Table 2. The combined visual
features (global features + grid-based features + bag of words) are utilized for

Table 2. The AUCs of different algorithms for simultaneously detecting Glaucoma,
PM and AMD on the SiMES dataset. The combined visual features (global features
+ grid-based features + bag of words) are utilized by the eight baseline methods. The
AUC results marked in boldface are significantly better than the others.

Methods KNN SVM LNP MTL SGL SPM SAMD GRML Our Proposed

Glaucoma 74.2 % 76.7 % 78.8% 80.0% 81.0% - - 82.5% 85.3%

PM 86.5 % 89.1 % 90.1% 90.6% - 91.0% - 92.3% 94.4%

AMD 72.9 % 75.0% 76.6% 77.0% - - 77.8% 79.3% 81.8%

Table 3. The AUCs of different algorithms under four settings of features on the SiMES
dataset for Glaucoma diagnosis. The AUC results marked in boldface are significantly
better than the others.

Methods KNN SVM LNP MTL GRML Our Proposed

Global Features 71.2 % 73.5 % 75.2% 77.5% 78.7% 79.6%

Grid based Features 69.1 % 71.2 % 73.0% 75.4% 76.7% 78.0%

Bag of Words 68.4 % 70.9% 72.6% 73.9% 75.0% 76.6%

Combined Features 74.2 % 76.7% 78.8 % 80.0% 82.5% 85.3%

Table 4. The AUCs of different algorithms under three settings of features on the
SiMES dataset for AMD diagnosis. The AUC results marked in boldface are signifi-
cantly better than the others.

Methods KNN SVM LNP MTL GRML Our Proposed

Global Features 70.2 % 72.5% 73.9 % 75.0% 76.4% 76.9%

Grid based Features 69.3 % 71.8 % 72.5% 73.8% 75.1% 75.8%

Bag of Words 68.1 % 70.3% 71.6% 72.1% 73.5% 74.9%

Combined Features 72.9 % 75.0% 76.6 % 77.0% 79.3% 81.8%
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Table 5. The AUCs of different algorithms under three settings of features on the
SiMES dataset for PM diagnosis. The AUC results marked in boldface are significantly
better than the others.

Methods KNN SVM LNP MTL GRML Our Proposed

Global Features 81.5 % 84.1% 85.6 % 86.4% 87.3% 89.1%

Grid based Features 79.3 % 82.3 % 83.7% 84.2% 85.2% 87.3%

Bag of Words 83.8 % 86.5% 87.9% 88.4% 89.5% 91.6%

Combined Features 86.5 % 89.1% 90.1 % 90.6% 92.3% 94.4%

Fig. 2. Sample diagnosis results from our proposed algorithm.

all methods in this experiment. Our proposed algorithm performs the feature
selection on the combined visual features, which outperforms the other baseline
algorithms significantly. For example, our proposed method has an improvement
of 11.2% over SVM, 15.0% over KNN, and 8.2% over LNP for detecting Glau-
coma. For PM, our proposed method has an improvement of 5.9% over SVM,
9.1% over KNN, and 4.2% over LNP. For AMD, Ours has an improvement of
9.1% over SVM, 12.2% over KNN, and 6.8% over LNP. Compared with the
state-of-the-art algorithms of individual disease detection, the proposed method
outperforms SGL, SPM, and SAMD by achieving an AUC of 85.3%, 94.4%,
81.8%, respectively. The improvement stems from the fact that our proposed al-
gorithm encodes the exclusive group lasso regularization for competitive sparse
feature selection, and the graph Laplacian regularization to impose the corre-
lations among multiple ocular diseases. GRML considers inter-label constraints
but does not model the exact correlations of diseases in the objective formu-
lation. Moreover, GRML is based on genetic features and is not able to select
discriminative features for each disease.

The comparison results for detection performance under the four feature set-
tings are listed in Table 3, 4, 5. Since the state-of-the-art detection algorithms
(SGL, SPM, SAMD) of individual ocular diseases are based on their own spe-
cial visual features and retinal structures, the AUC results are not given in
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these tables. From Table 3, we are able to observe that, for glaucoma detection,
our proposed algorithm outperforms the five baseline algorithms based on the
combined features. The AUC of the receiver operating characteristic curve in
glaucoma detection is 85.3%. Similar results are shown in Table 4 and 5 for
AMD and PM detection respectively. Figure 2 gives four sample results by our
proposed algorithm. Each fundus image is presented with the ground truth diag-
nosed by clinicians and the predicted labels with probabilities by our algorithm.
GL stands for Glaucoma. Though the second row has low image quality, our
method still detects the glaucoma, PM, and AMD, indicating its robustness and
stability.

4 Conclusion

In this paper, we develop a discriminative feature selection scheme for multi-
ple ocular diseases classification. We formulate this challenging problem as a
multi-task discriminative analysis model, where individual tasks are defined by
learning the linear discriminative model for each disease. We considered all the
tasks in a joint manner by utilizing two types of regularization on parameters,
namely the graph Laplacian regularization and exclusive group lasso regulariza-
tion. A Nesterov-type smoothing approximation method is adopted for model
optimization. In the future, we will attach a few sub-categories to each category
of the three leading ocular diseases to expand our classification range.
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