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Abstract. There is ample evidence for the heterogeneous nature of
diseases. For example, Alzheimer’s Disease, Schizophrenia and Autism
Spectrum Disorder are typical disease examples that are characterized
by high clinical heterogeneity, and likely by heterogeneity in the under-
lying brain phenotypes. Parsing this heterogeneity as captured by neu-
roimaging studies is important both for better understanding of disease
mechanisms, and for building subtype-specific classifiers. However, few
existing methodologies tackle this problem in a principled machine learn-
ing framework. In this work, we developed a novel non-linear learning
algorithm for integrated binary classification and subpopulation cluster-
ing. Non-linearity is introduced through the use of multiple linear hy-
perplanes that form a convex polytope that separates healthy controls
from pathologic samples. Disease heterogeneity is disentangled by im-
plicitly clustering pathologic samples through their association to single
linear sub-classifiers. We show results of the proposed approach from an
imaging study of Alzheimer’s Disease, which highlight the potential of
the proposed approach to map disease heterogeneity in neuroimaging
studies.

1 Introduction

Brain disorders often assume a heterogeneous clinical presentation: Autism Spec-
trum Disorder (ASD) encompasses neurodevelopmental disorders characterized
by deficits in social communication and repetitive behaviors [5]; Schizophrenia
can be subdivided into distinct groups by separating its symptomatology to dis-
crete symptom domains [2]; Alzheimer’s Disease (AD) can be separated into
three subtypes on the basis of the distribution of neurofibrillary tangles [8]; and
Mild Cognitive Impairment (MCI) may be further classified based on the type
of specific cognitive impairment [11].

Disentangling disease heterogeneity may greatly contribute to our understand-
ing and lead to more accurate diagnosis, prognosis and targeted treatment. How-
ever, most commonly used neuroimaging analysis approaches assume a single
unifying pathophysiological process and perform a monistic analysis to identify
it. These approaches aim to either identify voxels that characterize group dif-
ferences through mass-univariate statistical techniques [1], or reveal patterns of
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variability through high-dimensional pattern classification analysis, towards cat-
egorizing population with respect to the underlying pathology [10]. Thus, the
heterogeneity of the disease is completely ignored.

Contrarily, few research efforts have been focused on revealing the inherent
disease heterogeneity. These methods can mainly be classified into two groups.
The first class assumes an a priori subdivision of the diseased samples into co-
herent groups, based on independent criteria, and opts to identify group-level
anatomical differences using univariate statistical methods [7, 12]. Thus, mul-
tivariate effects are ignored, while the a priori definition of disease subtypes is
either difficult to obtain (e.g., from autopsy near the date of imaging), or noisy
and non-specific (e.g., cognitive or clinical evaluations). The second class focuses
on the diseased population and maps it to distinct anatomical subtypes by ap-
plying multivariate clustering driven by considering all image elements [11, 9].
Thus, disease heterogeneity may be confounded due to considering the whole
brain anatomy instead of the disease-specific information, and disentangling it
may not be possible.

In order to tackle the aforementioned limitations, it is necessary to develop a
principled machine learning approach that will allow for the simultaneous iden-
tification of a class of images with pathological changes and its separation to
coherent subgroups. To the best of our knowledge, only one approach has been
proposed in this direction [3], which makes strong assumptions regarding the
number of the existing disease subgroups (that there are exactly 2 subgroups).
Here, we propose a novel non-linear machine learning algorithm for integrated
binary classification and subpopulation clustering. The proposed approach is mo-
tivated by recent machine learning approaches that derive non-linear classifiers
through the use of multiple-hyperplanes [4, 6]. Multiple max-margin classifiers
are combined to form a convex polytope that separates healthy controls from
pathological samples, while heterogeneity is disentangled by implicitly clustering
pathologic samples through their association to single linear sub-classifiers. By
varying the number of estimated hyperplanes (faces of polytope), it is possible
to capture multiple modes of heterogeneity.

2 Method

In high dimensional spaces, linear Support Vector Machines (SVMs) are able to
separate by a large margin two classes. However, in the case that the one class
is drawn from a multimodal distribution (as in the presence of heterogeneity),
the classes may be still linearly separated, albeit with a smaller margin. This
may be remedied by the use of a non-linear classifier, allowing for larger margins
and thus, better generalization. However, while kernel methods, such as Gaus-
sian kernel SVM, provide non-linearity, they lack interpretability when aiming
to characterize heterogeneity. Instead, we introduce non-linearity by means of
using multiple linear classifiers that form a locally linear hyperplane whose lin-
ear segments separate the clusters of negative samples from the positive class
(Fig 1). In this way, subjects are explicitly clustered, giving rise to interpretable
directions of variability that may be useful in discovering heterogeneity.
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Fig. 1. Heterogeneity due to the presence of two clusters. Left: Result obtained by
linear SVM (small margin). Right: Result obtained by separately classifying each
cluster (large margin). Solid lines correspond to the classifier, dashed lines indicate
margin, while highlighted linear segments define the separating convex polytope.

Suppose that our dataset consists of n binary labeled d-dimensional data
points (D = (xi, yi)

n
i=1,xi ∈ R

d and yi ∈ {−1, 1}). Without loss of generality,
we assign the negative class to be pathologic whose heterogeneity we seek to
reveal.1 Our aim is twofold. First, we aim to estimate k hyperplanes that form
a convex polytope that separates the two classes with a large margin. Second,
we aim to assign each pathologic sample to the hyperplane that best separates
it from the normal controls. Towards fulfilling these aims, we introduce the
proposed approach by extending standard linear maximum margin classifiers.

2.1 Margin for Multiple Hyperplanes — Polytope

The hypothesis class of standard linear maximum margin classifiers comprises
the set of all linear classifiersw that separate the two classes by a halfspace. Here,
we extend the hypothesis class by considering the set of sets of K hyperplanes,
generalizing the geometry of the classifier to that of a convex polytope. Due to
the interior/exterior asymmetry of the polytope, it is necessary to confine one
class to its interior, while restricting the other class to its exterior. Without loss
of generality, we confine the positive class to the interior of the polytope. Thus,
the search space FK is defined as:

FK � {{wj , bj}Kj=1 | if yi = +1 ∀j,wT
j xi + bj ≥ 1, if yi = −1, ∃j : wT

j xi + bj ≤ −1}

In other words, FK comprises all sets of k classifiers such that all classifiers
correctly classify all members of the positive class, while for every member of
the negative class, there is at least one classifier that correctly classifies it. The
latter gives rise to an assignment problem, which can also be seen as a clustering

task. Thus, if S− = [si,j ] ∈ {0, 1}n−×K denotes the binary matrix that describes
the assignment of the negative class samples to the jth face of the polytope,
then the search space becomes:

FK(S−) �
{{wj , bj}Kj=1 | if yi = +1 ∀j,wT

j xi + bj ≥ 1, if yi = −1, si,j = 1 : wT
j xi + bj ≤ −1}

1 Label reversal would enable us to seek heterogeneity in the control samples.
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Given the assignment S−, there areK margins; each one corresponding to one
face of the polytope. Analogous to the SVM formulation, the margin for the jth
face of the polytope is 2

‖wj‖2
. However, due to the piecewise nature of the convex

polytope, there are multiple notions of margin for the surface of the polytope.
In this work, we aim to maximize the average margin across all the faces of the

polytope: m̄ = 1
K

∑K
j=1

2
‖wj‖2

in order to keep the problem tractable. Thus, for

a given dataset D and assignment S− for the negative class, the objective of
maximizing polytope margin becomes:

maximize
{wj ,bj}Kj=1

1

K

K∑

j=1

2

‖wj‖2 (1)

subject to wT
j xi + bj ≥ 1 if yi = +1

wT
j xi + bj ≤ −1 if yi = −1, si,j = 1

Note that given the assignments, the objective and the constraints are separable
into K independent subproblems. Each subproblem is analogous to the SVM
formulation after adding the slack terms ξi,j , or:

minimize
wj ,bj ,ξ

‖wj‖22
2

+C

n∑

i=1

ξi,j

subject to wT
j xi + bj ≥ 1− ξi,j if yi = +1

wT
j xi + bj ≤ −1 + ξi,j if yi = −1, si,j = 1

ξi,j ≥ 0

where C is a penalty parameter on the training error. If we now use the defi-
nition of the slack terms as ξi,j = max{0, 1 − yi(w

T
j xi + bj)}, and consider all

hyperplanes ({wj , bj}Kj=1) at the same time, we get the objective function:

minimize
{wj ,bj}Kj=1

K∑

j=1

‖wj‖22
2K

(2)

+ C
∑

i|yi=+1
j

1

K
max{0, 1−wT

j xi − bj}+C
∑

i|yi=−1
j

si,j max{0, 1 +wT
j xi + bj}

So far, we have assumed that the assignment matrix S− is known. However,
this is not the case in practice and S− has to be estimated too. We relax the
0-1 assignment to a soft assignment; si,j is allowed to be in the interval [0, 1],

satisfying the constraint that
∑K

j=1 si,j = 1 for all i. Given this relaxation the

problem becomes convex with respect to the blocks {W,b} and {S−}.
For S− fixed, the solution to W can be obtained using K calls to a modi-

fied version of LIBSVM2 that allows for adaptive sample weightings, where the
weights are given by

ci,j =

{
Csi,j if yi = −1
C
K

if yi = +1
(3)

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/weights/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/weights/
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Algorithm 1. — Max-Margin Multiple Hyperplane

Input: X ∈ R
n×d, y ∈ {−1,+1}n (training signals), C,K (parameters)

Output: W ∈ R
d×K (Classifier); S− ∈ R

n−×K (Soft Clustering Assignment)
Initialization: Set rows of S− with probability Dir(1K) (Dirichlet Assignment)
Loop: Repeat until convergence (or a fixed number of iterations)
• Fix S− — Solve for W by LIBSVM1 (sample weights set by equation (Eq. 3)
• Fix W — Solve for S− by equation (Eq. 4)

For W fixed, the problem of estimating S− is a linear program (LP) of assign-
ment which has infinite solutions when the loss function max{0, 1+wT

j xi + bj}
is equal to 0 for multiple classifiers j and for the same sample i. In this case, we
choose the solution that is proportional to the margin:

si,j =

⎧
⎨

⎩
0 if max{0, 1 +wT

j xi + bj} > 0
1+wT

j xi+bj
∑

j(1+wT
j
xi+bj)1(max{0,1+wT

j
xi+bj}≤0)

otherwise
(4)

where 1(·) is the indicator function. The previous steps are summarized in
Algorithm (1). Note that we don’t explicitly give solution for the bias terms bj .
This is because all data points xi can include a constant unitary component
that corresponds to the bias term. In this case, last element of wj contains the
solution for the bias term.

Once the polytope classifier [W,b] is trained, predicting the class y∗ of a new
instance x∗ is straightforward:

y∗ = sign(min
j

wT
j x

∗ + bj) (5)

In other words, if x∗ is in the interior of the polytope defined by W,b, then
wT

j x
∗ + bj > 0 for all faces of the polytope resulting in the prediction y∗ =

+1. Otherwise, if x∗ is in the exterior of the polytope defined by W,b, then
wT

j x
∗ + bj < 0 for at least one face of the polytope, resulting in the prediction

y∗ = −1. Analogously, the prediction score is simply min
j

wT
j x

∗ + bj . Also, the

clustering assignment s∗,j is done in the same manner as Eq. (4).

3 Experimental Validation

We validated our approach on both low dimensional synthetic data and clinical
data. For all of our experiments, the features were z-normalized and the default
parameter setting (C = 1) was used for the LIBSVM subroutine of the proposed
method. Thus, the only free parameter to be tuned was the number of polytope
faces K (note that K = 1 corresponds to linear SVM). Increasing K has two
effects on the performance of the algorithm: 1) the model complexity increases;
and 2) the number of subject clusters increases. To assess the performance of the
method, it is important to check for overfitting and clustering stability. These
two effects were examined by examining the out-of-sample classification accuracy
and the adjusted Rand clustering overlap index.
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Fig. 2. Sythetic data experiments: Left: Data, optimal polytope classifier and the
cluster assignments, Middle:Cross-validated adjusted Rand index across folds. Right:
Cross-validated classification accuracy. Note: K = 1 corresponds to linear SVM.

The first set of experiments consisted of classification of 2 dimensional syn-
thetic data with known ground truth about the underlying clusters. We simu-
lated two cases: 1) a single (+) group with 4 disjoint (−) groups, (Fig. 2 (Top));
and 2) a single (+) group with heterogeneous (−) group distributed along a
semicircle (Fig. 2 (Bottom)). The out-of-sample accuracy was computed using
10-fold cross-validation. The cross-validated Rand index was computed using
the cluster assignments of the common subjects between folds and taking the
average Rand index across all folds. Since only the (−) group was clustered, the
(+) samples were ignored in the Rand index calculation.

The synthetic data experiments revealed two key insights. First, it demon-
strated that our method is able to separate the two classes, while meaningfully
clustering the negative group when K equals the number of underlying sub-
groups (Fig. 2 (Left)). Second, its performance - as quantified by the Rand
index (Fig. 2 (Middle)) and the classification accuracy (Fig. 2 (Right)) - var-
ied smoothly for increasing K, reaching a maximum for the ideal number and
thus, allowing us to perform model selection. We note that our method is able
to capture heterogeneity in the presence of distinct patterns of variability (case
#1), while it provides reasonable estimates in more complex cases (case #2).

Having established a model selection strategy, we evaluate our method using
data from the Alzheimer’s disease neuroimaging initiative (ADNI3). The ADNI
dataset comprises the baseline scans of 190 controls (CN), and 133 AD patients.
The images were 1.5 Tesla T1-weighted MRI volumetric scans that were pro-
cessed using an in-house pipeline of 1) bias correction, 2) skull stripping, 3)

3 http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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a) CN vs AD b) CN vs Subgroups
1) CN vs G1 2) CN vs G2 3) CN vs G3

c) Subgroup Differences
1) G1 vs G2 2) G1 vs G3 3) G2 vs G3
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Fig. 3. Top: a) Gray Matter Group Differences (p<0.05) between CN and AD. Shape
glossary: pentagon=caudate, ellipse=insula, square=thalamus, triangle=left cuneus,
hexagon=right hippocampus b) Group differences (p<0.05) between CN vs. 3 subtypes
of AD c). Group differences (p<0.05) between 3 different AD subtypes. Color-map:
Right group compared to left group [Red: loses volume] / [Cyan: gains volume] —
Bottom: Left: Imaging features projected along the 3 faces of the polytope classifier,
CN, AD group 1, AD group 2, AD group 3. Middle: Cross-validated adjusted Rand
index across folds. Right: Cross-validated classification acccuracy.

tissue segmentation and 4) deformable registration that resulted in 151 cortical
and sub-cortical anatomical volumes for each subject.

For the ADNI dataset, setting 2 ≤ K ≤ 9 resulted in comparable out-
of-sample accuracies with statistically insignificant differences (Fig 3 (Bottom
right)). The fact that the cross-validation accuracy at K = 1 is > 0.80 sug-
gests that the data is already separable and introducing non-linearity will only
marginally improve separability. However, the clustering reproducibility analysis
revealed that setting K = 2, 3 results in stable clusterings (Fig 3 (Bottom mid-
dle)) despite the shuffling of samples across folds. This suggests that there may
be distinct patterns of variability between controls and these K AD subgroups.
The drop of the Rand index for K > 4 further strengthens this observation.

In order to investigate the previous observation, we fixed K = 3 and found AD
subgroups that differed in age composition. Subgroup 1 (G1) comprised younger
patients, while subgroups 2 and 3 (G2 and G3) comprised older patients. Then,
we performed Voxel-Based Morphometry (VBM) analysis between the CN group
and the whole AD population (Fig. 3a); between the CN group and each AD
subgroup (Fig. 3b) and between pairs of AD subgroups (Fig. 3c). The VBM anal-
ysis allows us to study the structural differences between the respective groups.
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Typical CN vs AD VBM analysis reveals a common AD pattern with reduced
gray matter in cortical and subcortical regions. However, when examining the
AD subgroups separately, we observe a heterogeneous behavior: G1 does not
exhibit thalamus or insula atrophy as it is observed for the other two groups; G2
differs from the typical AD pattern in caudate, cuneus and hippocampal regions;
and G3 shows a typical AD profile. The differences between the AD subgroups
are highlighted by the VBM results shown in Fig. 3c. To further illustrate the
heterogeneity of the disease patterns, we projected the imaging features for both
the CN and AD subgroups along the K = 3 polytope faces. The result is shown
in Fig 3 (Bottom left) and emphasizes the segregation of the three subgroups.

4 Conclusion
In this paper, we proposed a novel machine learning method for simultaneous
binary classification and subgroup clustering. The proposed method mapped
disease heterogeneity in a data-driven way, revealing distinct imaging subtypes
in a robust and generalizable fashion.
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