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Abstract. This paper presents a novel tensor-based feature learning ap-
proach for whole-brain fMRI classification. Whole-brain fMRI data have
high exploratory power, but they are challenging to deal with due to large
numbers of voxels. A critical step for fMRI classification is dimension-
ality reduction, via feature selection or feature extraction. Most current
approaches perform voxel selection based on feature selection methods. In
contrast, feature extraction methods, such as principal component analy-
sis (PCA), have limited usage on whole brain due to the small sample size
problem and limited interpretability. To address these issues, we propose
to directly extract features from natural tensor (rather than vector) rep-
resentations of whole-brain fMRI using multilinear PCA (MPCA), and
map MPCA bases to voxels for interpretability. Specifically, we extract
low-dimensional tensors by MPCA, and then select a number of MPCA
features according to the captured variance or mutual information as
the input to SVM. To provide interpretability, we construct a mapping
from the selected MPCA bases to raw voxels for localizing discriminating
regions. Quantitative evaluations on challenging multiclass tasks demon-
strate the superior performance of our proposed methods against the
state-of-the-art, while qualitative analysis on localized discriminating re-
gions shows the spatial coherence and interpretability of our mapping.

1 Introduction

Over the past decades, functional Magnetic Resonance Imaging (fMRI) has
emerged as a powerful instrument to collect vast quantities of data for measur-
ing brain activities. It becomes a popular tool in applications such as brain state
encoding/decoding and brain disease detection, including Alzheimer’s disease,
Mild Cognitive Impairment, and Autism Spectrum Disorder [2,14]. Most exist-
ing studies on fMRI classification restrict the analysis to specific brain regions
of interest (ROIs). However, ROI analysis is labor-intensive, subject to human
error, and requires the assumption that a functionally active brain region will be
within an anatomically standardized index [10]. In contrast, whole-brain fMRI
data have higher exploratory power and lower bias (with no prior user-dependent
hypothesis/selection of spatial voxels) [5,17], and recent works reported promis-
ing results on whole-brain-based classification [1,16,17]. Inspired by these works,
this paper focuses on whole-brain fMRI classification.
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It is challenging to analyze all voxels in the whole brain. The number of whole-
brain voxels usually far exceeds the number of observations available in practice,
leading to overfitting [17]. We need to perform dimensionality reduction first,
through either feature selection or feature extraction [12].

Feature selection methods are more popular for fMRI classification, partly
due to their good interpretability. There are two main approaches: univariate
and multivariate feature selection [14]. For the univariate approach, mutual in-
formation (MI) is a popular choice [3,15], e.g., Chou et al. [3] select informative
fMRI voxels with high MI values individually for brain state decoding and report
good improvement in classification accuracy. In contrast, the multivariate meth-
ods consider interactions between multiple features, e.g., Ryali et al. [17] and
Kampa et al. [7] present sparse optimization frameworks for whole-brain fMRI
feature selection and demonstrate the effectiveness of logistic regression (LR)
with the elastic net penalty, which outperforms LR with �1-norm regularization
and recursive feature elimination [16], and serves as the state-of-the-art.

The other dimensionality reduction approach is feature extraction. Principal
component analysis (PCA) is arguably the most popular linear feature extrac-
tion method. To apply PCA to whole-brain fMRI, we need to concatenate all
voxels into a very high-dimensional vector, making the small sample size prob-
lem more severe. Moreover, though individual PCA bases can be well interpreted
[6], a group of PCA bases are seldom interpreted together effectively [12,13]. On
the other hand, multilinear feature extraction methods, such as the multilinear
PCA (MPCA) [9], are getting popular recently. They represent multidimen-
sional data as tensors rather than vectors, with three key benefits : preserved
multidimensional structure, lower computational demand, and less parameters
to estimate. For example, for 3D 128 × 128 × 64 volumes, a PCA basis needs
128 × 128 × 64 = 1, 048, 576 parameters, while an MPCA basis needs only
128 + 128 + 64 = 320 parameters [8]. fMRI data are multidimensional so it
is more intuitive to analyze them using tensor representations [1,8].

In this paper, we propose a novel tensor-based feature learning approach via
MPCA for whole-brain fMRI classification and a new mapping scheme to localize
discriminating regions based on MPCA features. We perform evaluations on a
challenging multiclass fMRI dataset [11]. Our contributions are twofold:

– Our methods directly extract features from tensor representations of fMRI
using MPCA for the three key benefits mentioned above. The extracted
MPCA features are then selected according to variance or mutual informa-
tion to be fed into the Support Vector Machine (SVM). Superior performance
on both binary and multiclass tasks is achieved without requiring vectoriza-
tion or a priori identification of localized ROIs.

– Our mapping scheme localizes discriminating regions in the voxel space via
MPCA bases for interpretability. It is different from the scheme in [12] of
mapping the coefficients of the optimal hyperplane in linear SVM, which
tends to be noisy and fragmented, as pointed out in [4]. We can obtain spatial
maps with good spatial coherence and good interpretability for neuroscience.
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2 Methods

Our proposed methods use the fMRI data represented by the mean percent signal
change (PSC) over the time dimension [11] as input features and model them di-
rectly as third-order tensors (3D data). We use MPCA to learn multilinear bases
from these tensorial input to obtain low-dimensional tensorial MPCA features.
We then select the most informative MPCA features to form feature vectors for
the SVM classifier. We present the key steps of our methods in detail below.

Notations and Basic Operations. Following [8], we denote vectors by lower-
case boldface letters, e.g., x; matrices by uppercase boldface, e.g., X; and tensors
by calligraphic letters, e.g., X . An index is denoted with a lowercase letter, span-
ning the range from 1 to the uppercase letter of the index, e.g., i = 1, . . . , I. We
denote an Nth-order tensor as A ∈ R

I1×···×IN and their elements with indices in
parentheses A(i1, . . . , iN). The n-mode index is denoted with in, n = 1, . . . , N .
The n-mode product of a tensor A by a matrix U ∈ R

Jn×In , is written as
B = A×n U, with its entries obtained as [8]:

B(i1, . . . , in−1, jn, in+1, . . . , iN) =
∑

in

A(i1, . . . , iN)U(jn, in), jn = 1, . . . , Jn.

(1)
The scalar product of two tensors 〈A,B〉 ∈ R

I1×I2×···×IN is defined as:

〈A,B〉 =
∑

i1

· · ·
∑

iN

A(i1, . . . , iN)B(i1, . . . , iN). (2)

A rank-one tensor U equals to the outer product of N vectors [8]:

U = u(1) ◦ · · · ◦ u(N), where U(i1, . . . , iN) = u(1)(i1) · · ·u(N)(iN ). (3)

MPCA Feature Extraction.MPCA [9] is an unsupervised learning method to
learn features directly from tensorial representations of multidimensional data.
Thus, we represent our M training fMRI samples as third-order tensors {X1, . . . ,
XM ∈ R

I1×I2×I3} as input to MPCA. MPCA then extracts low-dimensional
tensor features {Y1, . . . ,YM ∈ R

P1×P2×P3} through three (N = 3) projection
matrices {U(n) ∈ R

In×Pn , n = 1, 2, 3} as follows:

Ym = Xm ×1 U
(1)T ×2 U

(2)T ×3 U
(3)T ,m = 1, . . . ,M, (4)

where Pn < In. In this way, the tensor dimensions are reduced from I1 × I2 × I3
to P1 × P2 × P3. The solutions for the projection matrices {U(n)} are obtained

via maximizing the total tensor scatter ΨY =
∑M

m=1 ‖ Ym − Ȳ ‖2F , where Ȳ =
1
M

∑M
m=1 Ym is the mean tensor feature and ‖ · ‖F is the Frobenius norm [9].

This problem is solved through an iterative alternating projection method in
[9]. Each iteration involves N modewise eigendecompositions to get the n-mode

eigenvalues and eigenvectors. We denote the inth n-mode eigenvalue as λ
(n)
in

.
There are two parameters to set in MPCA. One is Q for determining the

tensor subspace dimensions {P1, P2, P3}. Specifically, the first Pn eigenvectors
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Fig. 1. Illustration of three selected eigentensors (MPCA features), where each row
corresponds to an eigentensor with the third (depth) dimension concatenated

are kept in the n-mode so that the same (or similar) amount of variances is kept
in each mode: Q(1) = Q(2) = Q(3) = Q, where Q(n) is the ratio of variances

kept in the n-mode defined as Q(n) =
∑Pn

in=1 λ
(n)∗
in

/
∑In

in=1 λ
(n)∗
in

, and λ
(n)∗
in

is the
inth n-mode eigenvalue in the full projection [9]. The second parameter is the
maximum number of iterations K, which can be safely set to 1 following [9].

MPCA Feature Selection. The MPCA projection matrices {U(n), n = 1, 2, 3}
can be viewed as P1 × P2 × P3 eigentensors [9] using (3):

Up1p2p3 = u(1)
p1

◦ u(2)
p2

◦ u(3)
p3

∈ R
I1×I2×I3 , pn = 1, . . . , Pn, (5)

where u
(n)
pn is the pnth column of U(n). Each eigentensor Up1p2p3 is an MPCA

feature and it can be mapped to the voxel space. Figure 1 illustrates three
eigentensors capturing the most variance of the fMRI data studied in this paper.
Each eigentensor is shown in a row by concatenating the third dimension. It is
rich in structure because it is a rank-one tensor. Since our objective is whole-
brain fMRI classification, it will be beneficial to select the P most informative
(rather than all) features to be fed into a classifier such as the SVM [9].

Therefore, we further perform feature selection based on an importance score
using either the variance or the MI criterion. We arrange the entries in {Ym}
into feature vectors {ym} according to the importance score in descending order.
Only the first P entries of {ym} are selected as SVM input. We can determine
the optimal value for P via cross-validation. For convenience, we denote the
eigentensor corresponding to the pth selected feature as Up so the pth feature yp
can be written as yp = 〈X ,Up〉 using (2).

The variance is an unsupervised criterion. We obtain the variance Sp1p2p3

captured by the eigentensor Up1p2p3 using a scatter measure as

Sp1p2p3 =
M∑

m=1

[Ym(p1, p2, p3)− Ȳ(p1, p2, p3)
]2

. (6)

The MI is a criterion to quantify statistical dependence between two discrete
random variables A and B (for example) as [3]:

MI(A;B) =
∑

a∈A

∑

b∈B

p(a, b)log
p(a, b)

p(a)p(b)
, (7)

where p(a, b) is the joint probability distribution, and p(a) and p(b) are the
marginal probability distribution. In feature selection, we can use MI in a super-
vised way to measure the relevancy between a feature Y(p1, p2, p3) and the class
label c. A higher MI indicates a greater dependency or relevancy between them.
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Table 1. Details of the four classification tasks for experimental evaluation

#Class #Sample Semantic categories (classes)

2 120 Animals (animal+insect) / tools (tool+furniture) [7]
4 120 Animal/insect/tool/vegetable [7]
6 180 Animal/insect/tool/vegetable/building/vehicle
8 240 Animal/insect/tool/vegetable/building/vehicle/buildingpart/clothing

Mapping for Interpretability. It is often useful to localize regions in the origi-
nal voxel space of the brain for interpretation. Good features for classification are
expected to be closely related to discriminating regions. Since yp = 〈X ,Up〉, we
can view yp as a weighted summation of the voxels in X , where the weights are
contained in Up. Therefore, we propose a scheme to map the selected MPCA fea-
tures (the eigentensors) to the voxel space. We perform a weighted aggregation of
the selected eigentensors first and then determine theDmost informative voxels to
produce a spatial map M by choosing an appropriate threshold T (depending on

D): M =
∑P

p=1 wp |Up| > T , where wp is the weight for the pth eigentensor, and
| · | denotes the absolute value (magnitude). Note that M is actually a low-rank
tensor (rank P ) since it is a summation of P rank-one tensors {Up} [8].

3 Experiments and Discussions

Data. We choose a challenging multiclass dataset, the CMU Science 2008 fMRI
data (CMU2008) [11]. It aims to predict brain activities associated with the
meanings of nouns. The data acquisition experiments had 9 subjects viewing 60
different word-picture stimuli from 12 semantic categories, with 5 exemplars per
category and 6 runs per stimulus. The acquisition matrix was 51 × 61 with 23
slices, with the numbers of brain voxels for 9 subjects ranging from 19,750 to
21,764. The mean PSC values over time are extracted as input fMRI features.1

Multiclass Tasks. We study four classification tasks: the binary (2-class) and
4-class tasks with the same settings as [7], and two additional, more challenging,
6-class and 8-class tasks. Table 1 summarizes the details.

Algorithms.2 We evaluate seven feature selection/extraction algorithms in Ta-
ble 2 on the four tasks above: the MI-based univariate feature selection (MI) [3],
variance-based univariate feature selection (Var), LR with the elastic net penalty
(LR+ENet) for multivariate feature selection [5,7]; PCA-based feature extrac-
tion followed by MI-based and variance-based feature selection (PCA-MI and
PCA-Var), and the proposed methods of MPCA with MI-based and variance-
based feature selection (MPCA-MI and MPCA-Var).

1 http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
2 We have also tested MPCA alone and MPCA with Lasso-based feature selection.
They have similar accuracy as MPCA-MI/Var, but using much more features. In
addition, replacing PCA with its popular extension, kernel PCA, gives only slightly
better results than PCA-MI/Var.

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
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Table 2. The classification accuracy in percentage (Acc) and average numbers of fea-
tures selected (#Features) by five competing methods and the proposed two methods
for the four tasks. The top two results in accuracy are highlighted in bold font.

Task 2-Class 4-Class 6-Class 8-Class

Method Acc #Features Acc #Features Acc #Features Acc #Features

MI 72.78 2276 42.59 3472 37.65 4157 33.94 4208
Var 73.43 5120 39.26 5795 35.31 5405 33.52 5662
LR+ENet 72.13 629 42.78 3058 40.19 1441 34.58 3136

PCA-MI 71.30 65 36.85 59 34.14 78 30.19 102
PCA-Var 71.39 58 37.31 56 34.20 78 31.30 98

MPCA-MI 75.83 701 44.35 995 40.86 968 36.06 1088
MPCA-Var 77.41 910 44.81 973 40.06 1165 34.68 1034

Experimental Settings.We follow [7] to arrange testing, validation, and train-
ing sets in the format of (1 : 1 : 4) for the six runs in all the experiments. Fol-
lowing [3], we use the SVM classifier with the linear kernel to classify selected
features for all methods except LR+ENet which serves as a classifier itself [7,17].
We use the average classification accuracy as the evaluation metric.

Algorithm Settings. Parameters for LR+ENet are set following [7] and the
number of selected features is determined according to the weight matrix in LR
[17]. Other methods use the validation set to determine the number of selected
features with the same steps as in [3]. For our MPCA-MI and MPCA-Var meth-
ods, we set the parameter Q = 80 in MPCA to report the results. Empirical
studies to be shown in Fig. 2(a) show that the classification performance is not
sensitive to Q as long as it is not too small (e.g., for Q ≥ 70).

Classification Accuracy. As shown in Table 2, our proposed methods, MPCA-
MI and MPCA-Var achieve the top two overall accuracy (highlighted in bold
font), with MPCA-Var achieving the best results on 2-class and 4-class tasks
and MPCA-MI achieving the best results on 6-class and 8-class tasks. MPCA-
Var and MPCA-MI outperform the state-of-the-art (LR+ENet) by an average
of 1.82% and 1.86%, respectively. Though inferior to our methods, LR+ENet
indeed outperforms the other existing methods on the whole. In particular,
LR+ENet achieves the second best result on 6-class task, slightly better than
MPCA-Var. PCA gives the worst results.

Number of Selected Features. The number of features selected varies for
different methods in Table 2. It fluctuates drastically (from 629 to 3,136) for
LR+ENet. It is stable for the Var method but exceeds 5,000. It increases mono-
tonically with the class number for the MI method. PCA can extract only (M−1)
features, e.g., M = 150 for the 6-class task. MPCA-Var and MPCA-MI use fewer
features in general than MI, Var, and LR+ENet, and the number is relatively
stable in contrast.

Parameter Sensitivity. Figure 2(a) plots the average accuracy against the Q
values for each task. The four curves share a similar trend. The accuracy increases
monotonically with Q till Q = 70 and then remains almost constant for Q ≥ 70.
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Fig. 2. Sensitivity against Q: (a) average accuracy of MPCA-Var (MPCA-MI has simi-
lar trends), and (b) average number of extracted (for MPCA) and selected (for MPCA-
MI/MPCA-Var) features on the 2-class task (other tasks share similar trends).

(a) Subject 1 (b) Subject 5

Fig. 3. Discriminating regions localized by MPCA-MI for a 2-class task

Thus we choose Q = 80 to report the results. In addition, as shown in Fig. 2(b),
the Q value has a greater effect on the number of features, which affects the
efficiency in turn. The number of features extracted by MPCA increases almost
exponentially with Q, while that by MPCA-MI or MPCA-Var increases with Q
at a much slower rate for Q > 60.

Mapping and Interpretation. Since raw fMRI data are not provided in the
CMU2008, we overlay the regions localized by our mapping scheme on a properly
scaled and cropped version of the MRI template in “mri.mat” (Matlab R2013b).
We set the weight wp = 1/p to give higher weights to MPCA features with
higher importance scores. The regions localized with D = 2000 voxels are high-
lighted in red in Fig. 3 for the 9th-11th slices of two subjects for MPCA-MI on
the 2-class task. The localized regions are spatially coherent and largely consis-
tent between different subjects. Moreover, the localized discriminating regions
of Subject 5 have significant overlap with the interpretable regions of the same
subject depicted in Fig. 3(B) of [11], indicating good interpretability.

4 Conclusion

In this paper, we propose to learn features directly from tensor representations
of whole-brain fMRI data via MPCA for classification. We use a variance-based
or an MI-based criterion to select the most informative MPCA features for SVM
classification. In addition, we propose a novel scheme to localize discriminating
regions by mapping the selected MPCA features to the raw voxel space. Experi-
mental results on challenging multiclass tasks show that our methods outperform
the state-of-the-art methods. Furthermore, the proposed mapping scheme can
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localize discriminating regions that are spatially coherent and consistent cross
subjects, with good potential for neuroscience interpretation.
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