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Abstract. The amount of coronary artery calcification (CAC) is a
strong and independent predictor of cardiovascular events. Non-contrast
enhanced cardiac CT is considered a reference for quantification of CAC.
Recently, it has been shown that CAC may be quantified in cardiac CT
angiography (CCTA). We present a pattern recognition method that au-
tomatically identifies and quantifies CAC in CCTA. The study included
CCTA scans of 50 patients equally distributed over five cardiovascular
risk categories. CAC in CCTA was identified in two stages. In the first
stage, potential CAC voxels were identified using a convolutional neu-
ral network (CNN). In the second stage, candidate CAC lesions were
extracted based on the CNN output for analyzed voxels and thereafter
described with a set of features and classified using a Random Forest.
Ten-fold stratified cross-validation experiments were performed. CAC
volume was quantified per patient and compared with manual reference
annotations in the CCTA scan. Bland-Altman bias and limits of agree-
ment between reference and automatic annotations were -15 (-198–168)
after the first stage and -3 (-86 – 79) after the second stage. The results
show that CAC can be automatically identified and quantified in CCTA
using the proposed method. This might obviate the need for a dedicated
non-contrast-enhanced CT scan for CAC scoring, which is regularly ac-
quired prior to a CCTA scan, and thus reduce the CT radiation dose
received by patients.

Keywords: Automatic coronary artery calcium scoring, Cardiac CTA,
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1 Introduction

Cardiovascular disease (CVD) is the global leading cause of death. The amount
of coronary artery calcification (CAC) is a strong and independent predictor
of CVD events, which can be identified and quantified in cardiac CT [1]. In
clinical practice, CAC is routinely quantified using non-contrast enhanced, cal-
cium scoring CT (CSCT) [2]. Recently, it has been shown that CAC may also be
quantified in contrast-enhanced cardiac CT angiography (CCTA). Consequently,
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a dedicated CSCT scan, which is often routinely acquired prior to CCTA, might
potentially be omitted. This could reduce the radiation dose of a typical cardiac
CT examination by 40-50% [3]. CAC in CSCT can be identified manually by
an expert or automatically [4,5]. In both situations, a threshold of 130 HU is
used to identify connected voxels representing CAC. This method is not gener-
alizable to CCTA. The coronary artery lumen is typically enhanced beyond 130
HU, which makes differentiation of CAC and lumen challenging. Other global
attenuation thresholds for manual CAC scoring in CCTA have therefore been
proposed [6,7]. However, a global threshold might limit the applicability of the
method to scans acquired with different protocols, scanners or contrast agents.
Alternatively, patient-specific attenuation thresholds were proposed, based on
HU values taken from an ROI in the ascending aorta [8] or the proximal coro-
nary arteries [9]. A drawback of these thresholds is the limited repeatability
of user-defined ROIs. Furthermore, the large number of image slices in CCTA
(> 200) makes routine manual scoring of CAC in CCTA time-consuming.

To overcome these limitations, automatic methods have been proposed. Pre-
viously published automatic methods were based on a (semi)-automatically ex-
tracted segmentation of the coronary arteries. This segmentation was used to
identify CAC as deviations from a trend line through the lumen intensity [10,11],
deviations from a model of non-calcified artery segments [12], or as voxels in the
extracted arteries with intensities above a patient-specific HU threshold [13].
These methods have shown good performance, but depend on successful coro-
nary artery extraction. This might fail in patients with complex anatomy, in the
distal segments of the coronary arteries or in scans with motion or noise artifacts.
In addition, severe CAC deposits affect the performance of artery extraction al-
gorithms, restricting their applicability in CAC identification [14]. Failure of the
extraction step would result in failure of the automatic CAC scoring method.

Therefore, we propose a novel pattern recognition based method, which iden-
tifies CAC in CCTA without artery extraction. The method uses a convolutional
neural network (CNN) for the identification of potential CAC voxels and subse-
quently a Random Forest for the identification of CAC lesions. Previous work has
demonstrated that CNNs can provide insights via automatically derived feature
hierarchies leading to highly accurate results [15,16]. In this paper, we combine
texture features that the CNN automatically derives from image patches with
basic location features that are extracted from the input image. Automatically
derived CAC scores are compared with manual annotations in CCTA and CSCT.

2 Material and Methods

2.1 Data

We retrospectively inspected 116 CT examinations of consecutively scanned pa-
tients for whom both a CCTA and a CSCT scan were available. CAC scores
(Agatston scores) had previously been manually determined in the CSCT scans
by experts. Based on these scores, ten consecutively scanned patients from each
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of five CVD risk categories (I:0, II:1-10, III: 11-100, IV:101-400, V:>400) [1] were
included in the data set. The CCTA of one additional patient with CAC score
zero was included as an atlas. All CCTA scans were acquired on a 256-detector
row scanner (Philips Brilliance iCT, Philips Medical, Best, The Netherlands) us-
ing 120 kVp and 210-300 mAs, with ECG-triggering and contrast enhancement.
Reconstructed sections had 0.45 mm spacing, 0.90 mm thickness and 0.4-0.5 ×
0.4-0.5 mm in-plane resolution.

To train and evaluate the method, manual reference annotations in the CCTA
scans were obtained as follows. A region of interest in the ascending aorta was
manually defined. The mean HUaorta and standard deviation SD of the intensi-
ties in this region were used to compute a patient-specific threshold HUaorta +
2 SD [8]. This threshold was locally adjusted to correct for erroneous inclusion
of contrast-enhanced lumen. CAC lesions were manually annotated with region
growing in the thresholded image.

2.2 Automatic CAC Scoring

The proposed method for automatic CAC scoring consisted of two stages: a voxel
classification stage and a lesion classification stage. In the voxel classification
stage, potential CAC locations were identified using a CNN. Based on the output
of the CNN, 3D-connected voxels with a high probability of being CAC (pCAC)
were extracted as lesions. These lesions were described by a set of features and
classified as CAC or non-CAC using a Random Forest classifier. Identified CAC
volume and Agatston score were quantified per patient.

Candidates in the voxel classification stage were voxels with intensity above
a patient-specific threshold θPS , the 98th percentile of the CCTA HU intensity
histogram. This is a conservative threshold which correlated well (Spearman’s
ρ 0.89) with that proposed in [8]. Determination of this threshold required no
user interaction. Each voxel was represented by three 24 × 24 patches from
orthogonal planes centered at the voxel [15,16]. The patch size was chosen to
be large enough to contain CAC lesions of moderate size or the surrounding
coronary artery lumen, while remaining within the computational limitations
of our hardware. Figure 1 shows an example candidate with orthogonal patches
(bottom left). Because patches were small, they did not convey much anatomical
information. Therefore, images were registered to the atlas CCTA using affine
and elastic registration with elastiX [17] and parameters as in [5], and voxel x,
y and z-coordinates in the atlas image were computed as location features.

A CNN with two convolutional and max-pooling layers, two fully connected
hidden layers and a softmax output layer was used (Figure 1). Features were
derived from the orthogonal input patches in the convolutional layers and com-
bined with the three location features as input to the first hidden layer. All
units used the rectifier activation function [18]. The network was trained with
mini-batch learning and RMSprop, which uses a moving average of recent gra-
dients to normalize the gradient in each iteration [19]. We sought to obtain
translation invariant features by max-pooling after each convolutional layer. To
prevent overfitting, Dropout was used to simulate the training of a large number
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Fig. 1. Top CNN architecture. The CNN had two convolutional layers with max-
pooling, two fully connected hidden layers and one softmax output layer. Location
features (x, y, z) were additional input to the first hidden layer. Bottom Example
input CAC voxel representation: three orthogonal input patches of size 24×24. Convo-
lutional filters for axial (Ax), sagittal (Sa) and coronal (Co) input patches. Rendering
of thresholded output for candidate and neighboring voxels.

of thinned networks [20]. The softmax output layer of the CNN returned pCAC :
the probability of a candidate voxel to belong to a CAC lesion.

In the lesion classification stage, pCAC was first thresholded to consider only
voxels that were likely CAC. The threshold value (pCAC ≥ 0.75) was set based
on precision-recall analysis of the voxel classification, so that most CAC voxels
were retained and individual lesions could be extracted by 3D-connected compo-
nent labeling. Each extracted lesion was described by 14 features. The following
statistics of the pCAC values of the voxels in the candidate lesion were features:
minimum, maximum, range, average and standard deviation. These features were
supplemented with features that have been shown to benefit CAC detection in
CSCT [4,5]: lesion volume and the minimum, maximum, range, average and
standard deviation of intensity values of voxels in the lesion. Furthermore, x, y
and z-coordinates of lesions in the atlas image were used as location features.
All features were used as input to a Random Forest classifier [21].

3 Experiments and Results

For both CNN and Random Forest classification, experiments were performed
using stratified ten-fold cross validation. Each fold contained one patient in each
of five CVD risk categories.

To train and test the CNNs, approximately 800, 000 candidate voxels were
extracted per patient. From these, 15,000 candidates were selected for training,
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Fig. 2. Bland-Altman plots comparing reference and automatic per patient CAC vol-
ume in CCTA. Automatic results after (a) CNN output thresholding and (b) Random
Forest lesion classification. In (c), Random Forest lesion classification is compared with
reference CAC volume in CSCT. Patients are color-coded according to their CSCT-
based CVD risk category.

including all positives (CAC) and a random selection of negatives. Hence, for
each fold a CNN was trained with 45×15, 000 = 675, 000 candidates using mini-
batch training with batches of 512 samples. The Dropout retention probability
was 0.5 for all units. CNNs were implemented in Theano [22] and run on single
Nvidia GRID K520 GPUs. For each fold, a separate CNN was trained for 30
epochs with a training time of 4,5 hours. Voxel classification for a single scan
took approximately ten minutes. Figure 1 shows convolution filters trained in
the first layer of one of the trained CNNs.

To train and test the Random Forest a total of 2268 candidate lesions were
extracted by thresholding at pCAC ≥ 0.75 and 3D-connected component labeling
of the thresholded image. Among candidates, 253 were positives, constituting
30% of candidate volume. All extracted candidates were used for training. Hence,
for each fold a Random Forest was trained with approximately 2041 candidates.
The four most important features in the Random Forest classification were the
mean, maximum and standard deviation of voxel intensities and the minimum
CNN output value pCAC in a candidate.

The output of the CNN (pCAC) may be directly thresholded for voxel clas-
sification and CAC quantification. Thresholding at pCAC ≥ 0.95 resulted in
Bland-Altman mean and limits of agreement of -15 (-198–168) (Figure 2a). Le-
sion extraction and Random Forest classification improved these values to -2 (-86
–79) (Figure 2b). However, CAC volume was overestimated for several patients
in the lower two CVD risk categories, including one patient with a calcified me-
diastinal lymph node and one patient with a CAC-like lesion near the sternum.

Figure 2c shows a comparison of automatically determined CAC volumes
in CCTA and reference CAC volumes in CSCT. CAC volume and Agatston
scores were substantially lower in CCTA than in CSCT, which agrees with pre-
viously published studies on manual CAC scoring in CCTA [8,23]. Neverthe-
less, CAC quantification in CCTA can differentiate between patients with zero
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Fig. 3. Output of three CNNs on example image slice. (a) Using only location informa-
tion, candidates near the center of the scan were favored. (b) Using only patch values,
ribs were erroneously identified as CAC. (c) Using both patch values and location in-
formation, only true CAC in the right and left circumflex coronary artery (arrows) was
detected.

CAC and non-zero CAC. Namely, the method correctly identified 8/10 patients
with zero CAC according to CSCT and 36/40 patients with non-zero CAC as
determined with CSCT. In addition, the method correctly identified 9/10 pa-
tients at very high risk of a CVD event (Agatston score > 400) according to
CSCT and 40/40 patients at low or intermediate risk of a CVD event (Agatston
score ≤ 400).

The CNNs used features derived from the input patches, as well as informa-
tion about the location of candidates. To evaluate the effect of these location
features on CAC identification, we trained two additional CNNs for one fold. One
CNN was trained with patch values set to zero, but location features preserved.
A second CNN was trained with location features set to zero, but patch values
preserved. Figure 3 shows that the CNN that only used location features (Fig-
ure 3a) favored candidates in the heart, but made no distinction between true
CAC and attenuated blood. The CNN that only used patch input (Figure 3b)
identified calcific objects, but made no distinction between CAC and ribs. The
full CNN (Figure 3c) used both location and texture information to correctly
identify two CAC lesions in the right and left circumflex coronary arteries.

4 Discussion and Conclusion

A pattern recognition method for the automatic identification of CAC in CCTA
has been described. The method uses CNNs to locate likely CAC voxels and
Random Forests to classify extracted CAC lesions. To our knowledge, this is the
first application of CNNs to CAC scoring in CT. In contrast to other automatic
CAC scoring methods, it does not rely on automatic coronary artery extraction.

The results showed that CNNs were able to identify voxels likely to be CAC.
Combining automatically derived patch-based texture features and candidate
location features proved advantageous. However, the use of a single atlas for
location determination might introduce bias towards a single image. In future
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work, we will investigate a multi-atlas based coordinate space, which could also
aid candidate voxel extraction. Extraction was now based on HU thresholds,
similar but not equal to those for manual reference scoring. Hence, this could
cause discrepancies between reference and automatic volumes. Furthermore, in
the current study, candidate voxels were represented by three orthogonal patches
instead of a full 3D representation. A comparable full 3D representation with 24
voxels along each dimension might contain more information, but also increases
the input size eight-fold. The size of the model increases accordingly, posing
memory requirements which we found could not be met by our hardware. In ad-
dition, the larger number of weights might require more training samples than
provided in the current study. It has previously been shown that smaller 3D rep-
resentations can be outperformed by larger sparse orthogonal patches [15]. The
voxel classification output of the CNNs was enhanced by Random Forest classi-
fication of extracted lesions. This resulted in good agreement between reference
and automatic per patient CAC volumes.

In conclusion, CAC can be automatically identified and quantified in CCTA
using the proposed pattern recognition method. This might obviate the need
for a dedicated CSCT for CAC scoring, which is regularly acquired prior to a
CCTA, and thus reduce the CT radiation dose received by patients.
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