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Abstract. Recently, deep learning has demonstrated great success in computer
vision with the capability to learn powerful image features from a large training
set. However, most of the published work has been confined to solving 2D prob-
lems, with a few limited exceptions that treated the 3D space as a composition
of 2D orthogonal planes. The challenge of 3D deep learning is due to a much
larger input vector, compared to 2D, which dramatically increases the computa-
tion time and the chance of over-fitting, especially when combined with limited
training samples (hundreds to thousands), typical for medical imaging applica-
tions. To address this challenge, we propose an efficient and robust deep learning
algorithm capable of full 3D detection in volumetric data. A two-step approach
is exploited for efficient detection. A shallow network (with one hidden layer)
is used for the initial testing of all voxels to obtain a small number of promising
candidates, followed by more accurate classification with a deep network. In addi-
tion, we propose two approaches, i.e., separable filter decomposition and network
sparsification, to speed up the evaluation of a network. To mitigate the over-fitting
issue, thereby increasing detection robustness, we extract small 3D patches from
a multi-resolution image pyramid. The deeply learned image features are fur-
ther combined with Haar wavelet features to increase the detection accuracy. The
proposed method has been quantitatively evaluated for carotid artery bifurcation
detection on a head-neck CT dataset from 455 patients. Compared to the state-of-
the-art, the mean error is reduced by more than half, from 5.97 mm to 2.64 mm,
with a detection speed of less than 1 s/volume.

1 Introduction

There are many applications of automatic anatomical landmark detection in medical
image analysis. For example, they can be used to align an input volume to a canoni-
cal plane on which physicians routinely perform diagnosis and quantification [1, 2]; A
detected vascular landmark provides a seed point for automatic vessel centerline ex-
traction and lumen segmentation [3]. Various landmark detection methods have been
proposed in the literature. Most of the state-of-the-art algorithms [1–3] apply machine
learning on a set of handcrafted image features. However, in practice, we found some
landmark detection problems (e.g., carotid artery bifurcation landmarks in this work)
are still too challenging to be solved with the current technology.

Recently, deep learning [4] has demonstrated great success in computer vision with
the capability to learn powerful image features from a large training set. However, several
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challenges are present in applying deep learning to 3D landmark detection. Normally,
the input to a neural network classifier is an image patch, which increases dramatically
in size from 2D to 3D. For example, a patch of 32 × 32 pixels generates an input of
1024 dimensions to the classifier. However, a 32 × 32 × 32 3D patch contains 32,768
voxels. Such a big input feature vector creates several challenges. First, the computation
time of a deep neural network is often too slow for a real clinical application. The most
widely used and robust approach for object detection is the sliding-window based ap-
proach, in which the trained classifier is tested on each voxel in the volume. Evaluating
a deep network on a large volume may take several minutes. Second, a network with
a bigger input vector requires more training data. With enough training samples (e.g.,
over 10 million in ImageNet), deep learning has demonstrated impressive performance
gain over other methods. However, the medical imaging community is often struggling
with limited training samples (often in hundreds or thousands) due to the difficulty to
generate and share images. Several approaches can tackle or at least mitigate the issue
of limited training samples. One approach is to reduce the patch size. However, a small
patch may not contain enough information for classification. Alternatively, instead of
sampling a 3D patch, we can sample on three orthogonal planes [5] or even a 2D patch
with a random orientation [6]. Although they can effectively reduce the input dimension,
there is a concern on how much 3D information is contained in 2D planes.

In this work we tackle the above challenges in the application of deep learning for
3D anatomical structure detection (focusing on landmarks). Our approach significantly
accelerates the detection speed by about 20 times, resulting in an efficient method that
can detect a landmark in less than one second. We apply a two-stage classification strat-
egy (as shown in Fig. 1). In the first stage, we train a shallow network with only one
small hidden layer. This network is applied to test all voxels in the volume in a sliding-
window process to generate 2000 candidates for the second stage classification. The
second network is much bigger with three hidden layers (each has 2000 nodes) to ob-
tain more discriminative power. The weights of a node in the first hidden layer are often
treated as a filter (3D in this case). The response of the first hidden layer over the volume
can be calculated as a convolution with the filter. Here, a neighboring patch is shifted
by only one voxel; however, the response needs to be re-calculated from scratch. In
this work we approximate the weights as separable filters using tensor decomposition.
Therefore, a direct 3D convolution is decomposed as three one-dimensional convolu-
tions along the x, y, and z axis, respectively. Previously, such approximation has been
exploited for 2D classification problems [7, 8]. However, in 3D, the trained filters are
more difficult to be approximated as separable filters. We propose a new training cost
function to enforce smoothness of the filters so that they can be approximated with high
accuracy. The second big network only applies on a small number of candidates that
have little correlation. Separable filter approximation does not help to accelerate classi-
fication. However, many weights in a big network are close to zero. We propose to add
L1-norm regularization to the cost function to drive majority of the weights (e.g., 90%)
to zero, resulting in a sparse network with increased classification efficiency.

The power of deep learning is on the automatic learning of a hierarchical image rep-
resentation (i.e., image features). Instead of using the trained network as a classifier, we
can use the responses at each layer (including the input layer, all hidden layers, and the
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Fig. 1. Training procedure of the proposed deep network based 3D landmark detection method

output layer) as features and feed them into other state-of-the-art classifiers (e.g., boost-
ing). After years of feature engineering, some handcrafted features have considerable
discriminative power for some applications and they may be complimentary to deeply
learned features. In this work we demonstrate that combining deeply learned features
and Haar wavelet features, we can reduce the detection failures.

2 Efficient Detection with Neural Networks

Training Shallow Network with Separable Filters. A fully connected multilayer
perceptron (MLP) neural network is a layered architecture. Suppose the input is a n0-
dimensional vector [X0

1 , X
0
2 , . . . , X

0
n0
]. The response of a node X1

j of the first hidden
layer is

X1
j = g

( n0∑
i=1

W 0
i,jX

0
i + b0j

)
, (1)

for j = 1, 2, . . . , n1 (n1 is the number of nodes in the first hidden layer). Here, g(.) is a
nonlinear function, e.g., the sigmoid function in this work. W 0

i,j is a weight and b0j is a
bias term. If we denote X0 = [X0

1 , . . . , X
0
n0
]T and W0

j = [W 0
1,j , . . . ,W

0
n0,j

]T , Eq. (1)
can be re-written as X1

j = g
(
(W0

j )
TX0 + b0j

)
. Multiple layers can be stacked together

using Eq. (1) as a building block. For a binary classification problem as this work, the
output of the network can be a single node X̂ . Suppose there are L hidden layers, the
output of the neural network is X̂ = g

(
(WL)TXL + bL

)
. During network training,

we require the output to match the class label Y (with 1 for the positive class and 0 for
negative) by minimizing the squared error E = ||Y − X̂ ||2.

In object detection using a sliding window based approach, for each position hy-
pothesis, we crop an image patch (with a pre-defined size) centered at the position
hypothesis. We then serialize the patch intensities into a vector as the input to calculate
response X̂ . After testing a patch, we shift the patch by one voxel (e.g., to the right)
and repeat the above process again. Such a naive implementation is time consuming.
Coming back to Eq. (1), we can treat the weights of a node in the first hidden layer as
a filter. The first term of the response is a dot-product of the filter and the image patch
intensities. Shifting the patch over the whole volume is equivalent to convolution using
the filter. Therefore, alternatively, we can perform convolution using each filter W0

j for
j = 1, 2, . . . , n1 and cache the response maps. During object detection, we can use the
cached maps to retrieve the response of the first hidden layer.

Although such an alternative approach does not save computation time, it gives us a
hint for speed-up. With a bit abuse of symbols, suppose Wx,y,z is a 3D filter with size
nx × ny × nz . Let’s further assume that Wx,y,z is separable, which means we can find
three one-dimensional vectors, Wx,Wy,Wz , such that
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Wx,y,z(i, j, k) = Wx(i).Wy(j).Wz(k) (2)

for any i ∈ [1, nx], j ∈ [1, ny], and k ∈ [1, nz]. The convolution of the volume with
Wx,y,z is equivalent to three sequential convolutions with Wx, Wy , and Wz along its
corresponding axis. Sequential convolution with one-dimensional filters is much more
efficient than direct convolution with a 3D filter, especially for a large filter. However,
in reality, Eq. (2) is just an approximation of filters learned by a neural network and
such a rank-1 approximation is poor in general. In this work we search for S sets of
separable filters to approximate the original filter as

Wx,y,z ≈
S∑

s=1

Ws
x.W

s
y.W

s
z. (3)

Please note, with a sufficient number of separable filters (e.g., S ≥ min{nx, ny, nz}),
we can reconstruct the original filter perfectly.

To achieve detection efficiency, we need to cache n1 × S filtered response maps. If
the input volume is big (the size of a typical CT scan in our dataset is about 300 MB)
and n1 is relatively large (e.g., 64 or more), the cached response maps consume a lot
of memory. Fortunately, the learned filters W0

1, . . . ,W
0
n1

often have strong correlation
(i.e., a filter can be reconstructed by a linear combination of other filters). We do not
need to maintain different filter banks for each W0

i . The separable filters in reconstruc-
tion can be drawn from the same bank,

W
0
i ≈

S∑
s=1

ci,s.W
s
x.W

s
y.W

s
z. (4)

Here, ci,s is the combination coefficient, which is specific for each filter W0
i . However,

Ws
x, Ws

y, and Ws
z are shared by all filters. Eq. (4) is a rank-S decomposition of a 4D

tensor [W0
1,W

0
2, . . . ,W

0
n1
], which can be solved using [9].

Using 4D tensor decomposition, we only need to convolve the volume S times (in-
stead of n1.S times using 3D tensor decomposition) and cache S response maps. Sup-
pose the input volume has Nx × Ny × Nz voxels. For each voxel, we need to do
nxnynz multiplications using the original sliding window based approach. To calcu-
late the response of a hidden layer with n1 nodes, the total number of multiplications is
n1nxnynzNxNyNz. Using the proposed approach, to perform convolution with S set
of separable filters, we need do S(nx + ny + nz)NxNyNz multiplications. To calcu-
late the response of n1 hidden layer nodes, we need to combine the S responses using
Eq. (4), resulting in n1SNxNyNz multiplications. The total number of multiplications
is S(nx + ny + nz + n1)NxNyNz . Suppose S = 32, n1 = 64, the speed-up is 103
times for a 15× 15× 15 patch.

To achieve significant speed-up and save memory footprint, we need to reduce S as
much as possible. However, we found, with a small S (e.g., 32), it was more difficult to
approximate 3D filters than 2D filters [7, 8]. Non-linear functions g(.) are exploited in
neural networks to bound the response to a certain range (e.g., [0, 1] using the sigmoid
function). Many nodes are saturated (with an output close to 0 or 1) and once a node is
saturated, its response is not sensitive to the change of the weights. Therefore, a weight
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can take an extremely large value, resulting in a non-smooth filter. Here, we propose to
modify the objective function to encourage the network to generate smooth filters

E = ||Y − X̂||2 + α

n1∑
i=1

||W0
i − W0

i ||2. (5)

Here, W0
i is the mean value of the weights of filter W0

i . So, the second term measures
the variance of the filter weights. Parameter α (often takes a small value, e.g., 0.001)
keeps a balance between two terms in the objective function.

The training of the initial shallow network detector is as follows (as shown in the
left dashed box of Fig. 1). 1) Train a network using Eq. (5). 2) Approximate the learned
filters using a filter bank with S (S = 32 in our experiments) sets of separable filters
to minimize the error of Eq. (4). The above process may be iterated a few times (e.g.,
three times). In the first iteration, the network weights and filter bank are initialized with
random values. However, in the following iterations, they are both initialized with the
optimal values from the previous iteration.

Training Sparse Deep Network. Using a shallow network, we can efficiently test all
voxels in the volume and assign a detection score to each voxel. After that, we preserve
2000 candidates with the largest detection scores. The number of preserved candidates
is tuned to have a high probability to include the correct detection (e.g., hypotheses
within one-voxel distance to the ground truth). However, most of the preserved candi-
dates are still false positives. In the next step, we train a deep network to further reduce
the false positives. The classification problem is now much tougher and a shallow net-
work does not work well. In this work we use a big network with three hidden layers,
each with 2000 nodes. Even though we only need to classify a small number of candi-
dates, the computation may still take some time since the network is now much bigger.
Since the preserved candidates are often scattered over the whole volume, separable
filter decomposition as used in the initial detection does not help to accelerate the clas-
sification. After checking the values of the learned weights of this deep network, we
found most of weights were very small, close to zero. That means many connections in
the network can be removed without sacrificing classification accuracy. Here, we apply
L1-norm regularization to enforce sparse connection

E = ||Y − X̂||2 + β

L∑
j=1

nj∑
i=1

||Wj
i ||. (6)

Parameter β can be used to tune the number of zero weights. The higher β is, the more
weights converge to zero. With a sufficient number of training epochs, part of weights
converges exactly to zero. In practice, to speed up the training, we periodically check
the magnitude of weights. The weights with a magnitude smaller than a threshold are
set to zero and the network is refined again. In our experiments, we find that 90% of
the weigths can be set to zero after training, without deteriorating the classification
accuracy. Thus, we can speed up the classification by roughly ten times.

The proposed acceleration technologies can be applied to different neural network
architectures, e.g., a multilayer perceptron (MLP) and a convolutional neural network
(CNN). In this work we use the MLP. (We also tried the CNN and achieved similar,
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Table 1. Quantitative evaluation of carotid artery bifurcation detection accuracy on 455 CT scans
based on a four-fold cross validation. The errors are reported in millimeters.

Mean Std Median 80th Percentile
Haar + PBT 5.97 6.99 3.64 7.84

Neural Network (Single Resolution) 4.13 9.39 1.24 2.35
Neural Network (Multi-Resolution) 3.69 6.71 1.62 3.25

Network Features + PBT 3.54 8.40 1.25 2.31
Haar + Network + PBT 2.64 4.98 1.21 2.39

but not superior, detection accuracy.) The shallow network is trained directly with back-
propagation and the deep network is trained using the denoising auto-encoder criterion [4].
The right dashed box of Fig. 1 shows the training procedure of the sparse deep network.

3 Robust Detection by Combining Multiple Features

To train a robust neural network based landmark detector on a limited training samples,
we have to control the patch size. The optimal patch size was searched and we found a
size of 15× 15 × 15 achieved a good trade-off between detection speed and accuracy.
However, a small patch has a limited field-of-view, thereby may not capture enough
information for classification. In this work we extract patches on an image pyramid
with multiple resolutions. A small patch in a low-resolution volume has a much larger
field-of-view at the original resolution. To be specific, we build an image pyramid with
three resolutions (1-mm, 2-mm, and 4-mm resolution, respectively). The intensities of
patches from multiple resolutions are concatenated into a long vector to feed the net-
work. As demonstrated in Section 4, a multi-resolution patch can improve the landmark
detection accuracy.

Deep learning automatically learns a hierarchical representation of the input data.
Representation at different hierarchical levels may provide complementary informa-
tion for classification. Furthermore, through years’ of feature engineering, some hand-
crafted image features can achieve quite reasonable performance on a certain task. Com-
bining effective hand-crafted image features with deeply learned hierarchical features
may achieve even better performance than using them separately.

In this work we propose to use probabilistic boosting-tree (PBT) [10] to combine all
features. A PBT is a combination of a decision tree and AdaBoost, by replacing a weak
classification node in the decision tree with a strong AdaBoost classifier. Our feature
pool is composed of two types of features: Haar wavelet features (h1, h2, . . . , hm) and
neural network features rji (where rji is the response of node i at layer j). If j = 0, r0i is
an input node, representing the image intensity of a voxel in the patch. The last neural
network feature is actually the response of the output node, which is the classification
score by the network. This feature is the strongest feature and it is always the first
selected feature by the AdaBoost algorithm.

4 Experiments

The carotid artery is the main vessel supplying oxygenated blood to the head and neck.
The common carotid artery originates from the aortic arch and runs up toward the head
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Fig. 2. Carotid artery bifurcation landmark detection in head-neck CT scans. The first column
shows a 3D visualization of carotid arteries with white arrows pointing to the left and right
bifurcations (image courtesy of http://blog.remakehealth.com/). The right columns show a few
examples of the right carotid artery bifurcation detection results with the ground truth labeled as
blue dots and detected landmarks in red.

before bifurcating to the external carotid artery (supplying blood to face) and inter-
nal carotid artery (supplying blood to brain). Examination of the carotid artery helps
to assess the stroke risk of a patient. Automatic detection of this bifurcation landmark
provides a seed point for centerline tracing and lumen segmentation, thereby making
automatic examination possible. However, as shown in the left image of Fig. 2, the in-
ternal/external carotid arteries further bifurcate to many branches and there are other
vessels (e.g., vertebral arteries and jugular veins) present nearby, which may cause con-
fusion to an automatic detection algorithm.

We collected a head-neck CT dataset from 455 patients. Each image slice has 512×
512 pixels and a volume contains a variable number of slices (from 46 to 1181 slices).
The volume resolution varies too, with a typical voxel size of 0.46×0.46×0.50mm3. A
four-fold cross validation is performed to evaluate the detection accuracy and determine
the hyper parameters, e.g., the network size, smoothness constraint α in Eq. (5), sparsity
constraint β in Eq. (6). There are two carotid arteries (left vs. right) as shown in Fig. 2.
Due to the space limit, we only report the bifurcation detection accuracy of the right
carotid artery (as shown in Table 1) with different approaches. The detection accuracy
of the left carotid artery bifurcation is similar.

For each approach reported in Table 1, we follow a two-step process by applying
the first detector to reduce the number of candidates to 2000, followed by a boot-
strapped detection to further reduce the number of candidates to 250. The final detection
is picked as the candidate with the largest vote from other candidates. Previously, Liu et
al. [3] used Haar wavelet features + boosting to detect vascular landmarks and achieved
promising results. Applying this approach on our dataset, we achieve a mean error of
5.97 mm and the large mean error is caused by too many detection outliers. The neural
network based approach can significantly improve the detection accuracy with a mean
error of 4.13 mm using a 15× 15× 15 patch extracted from a single resolution (1 mm).
Using patches extracted from an image pyramid with three resolutions, we can further
reduce the mean detection error to 3.69 mm. If we combine features from all layers
of the network using the PBT, we achieve slightly better mean accuracy of 3.54 mm.
Combining the deeply learned features and Haar wavelet features, we achieve the best
detection accuracy with a mean error of 2.64 mm. We suspect that the improvement
comes from the complementary information of the Haar wavelet features and neural
network features. Fig. 2 shows the detection results on a few typical datasets.
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The proposed method is computationally efficient. Using the speed-up technologies
presented in Section 2, it takes 0.92 s to detect a landmark on a computer with a six-core
2.6 GHz CPU (without using GPU). For comparison, the computation time increases to
18.0 s if we turn off the proposed acceleration technologies. The whole training procedure
takes about 6 hours and the sparse deep network consumes majority of the training time.

5 Conclusions

In this work we proposed 3D deep learning for efficient and robust landmark detec-
tion in volumetric data. We proposed two technologies to speed up the detection using
neural networks, namely, separable filter decomposition and network sparsification. To
improve the detection robustness, we exploit deeply learned image features trained on a
multi-resolution image pyramid. Furthermore, we use the boosting technology to incor-
porate deeply learned hierarchical features and Haar wavelet features to further improve
the detection accuracy. The proposed method is generic and can be re-trained to detect
other 3D landmarks.
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