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Abstract. Accurate acquisition of fetal ultrasound (US) standard planes
is one of the most crucial steps in obstetric diagnosis. The conventional
way of standard plane acquisition requires a thorough knowledge of fe-
tal anatomy and intensive manual labors. Hence, automatic approaches
are highly demanded in clinical practice. However, automatic detection
of standard planes containing key anatomical structures from US videos
remains a challenging problem due to the high intra-class variations of
standard planes. Unlike previous studies that developed specific methods
for different anatomical standard planes respectively, we present a gen-
eral framework to detect standard planes from US videos automatically.
Instead of utilizing hand-crafted visual features, our framework explores
spatio-temporal feature learning with a novel knowledge transferred re-
current neural network (T-RNN), which incorporates a deep hierarchi-
cal visual feature extractor and a temporal sequence learning model.
In order to extract visual features effectively, we propose a joint learn-
ing framework with knowledge transfer across multi-tasks to address the
insufficiency issue of limited training data. Extensive experiments on dif-
ferent US standard planes with hundreds of videos corroborate that our
method can achieve promising results, which outperform state-of-the-art
methods.

1 Introduction

Obstetric ultrasound (US) examination generally involves the procedures of im-
age scanning, standard plane selection, biometric measurement and diagnosis.
Accurate acquisition of US standard planes, e.g., fetal abdominal standard plane
(FASP), fetal face axial standard plane (FFASP) and fetal four-chamber view
standard plane (FFVSP) of heart, is one crucial step for the subsequent biometric
measurement and obstetric diagnosis. Clinically, US standard plane is manually
acquired by searching the view with concurrent presence of key anatomical struc-
tures (KASs) in the regions of interest (ROI) [1]. Fig. 1 illustrates the KASs for
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Fig. 1. Left: FFASP containing nose bone, eyes and lens; middle: FASP containing
stomach bubble (SB), umbilical vein (UV) and spine (SP); right: FFVSP containing left
atrium (LA), right atrium (RA), left ventricle (LV), right ventricle (RV) and descending
aorta (DAO) (green rectangles denote the ROIs).

FFASP, FASP and FFVSP, respectively. The manual acquisition of standard
planes heavily relies on clinical experience and is also very laborious. Hence,
automatic detection methods are highly demanded to boost the examination ef-
ficiency [2]. However, this computerized detection task is quite challenging due
to the high intra-class variations of US standard planes resulting from acoustic
shadows, deformations of soft tissues and various transducer orientations [3].

Over the past few years, several methods have been proposed to address this
challenging problem. Most of them either utilized hand-crafted features by ob-
servation [2,3,4] or incorporated component-based geometric constraints for a
specific standard plane detection task, e.g., the radial component model and
vessel probability map detection (RVD) method in [5]. However, these low level
features may not accurately represent the complicated characteristics of stan-
dard planes. In addition, the insufficiency of training data in the medical domain
usually leads to the overfitting problem in supervised learning based methods,
and hence degrades the generalization performance. Chen et al. [6] compared
the performance of randomly initialized convolutional neural network (R-CNN)
and that of transferred convolutional neural network (T-CNN) on FASP detec-
tion. The method of T-CNN achieved a high accuracy by using deep learning
based spatial feature representations with knowledge transfer from natural im-
ages. However, the cross-domain knowledge transfer may boost the detection
performance with limited improvement due to the larger domain gap. Besides,
only considering spatial features may not be the optimal solution, since temporal
information of consecutive sequences in US videos could provide extra contextual
clues for better discrimination.

Recently, the recurrent neural network (RNN), especially the long short-term
memory (LSTM) model, has achieved success in sequence learning tasks, such
as speech recognition [7] and video recognition [8]. In order to meet above
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challenges, we propose a knowledge transferred recurrent neural network (T-
RNN) by exploring spatio-temporal feature learning. The major contributions
of this paper are three-fold. First, to our best knowledge, this is the first work
that considers spatio-temporal feature representations under the framework of
deep learning for the detection of standard planes from US videos. Second, a
joint learning model for effective spatial feature learning across multi-tasks is
presented, which reduces the overfitting problem caused by the inadequacy of
training data. Third, the proposed T-RNN is a general framework and can be
easily extended to other US standard plane or anatomical structure detection
problems. Extensive experiments on different US standard plane detection tasks
with large scale datasets demonstrated the efficacy of our method.

2 Method

Fig. 2 (left) shows the architecture of the proposed T-RNN, which is a hybrid
model integrating deep convolutional neural networks (CNN) and recurrent neu-
ral networks (LSTM model). A ROI classifier is first trained based on the joint
learning of convolutional neural networks (J-CNN) across multi-tasks to locate
the most discriminative regions for US standard plane detection. Then, the tem-
poral information is explored via the LSTM model based on the features of ROIs
in consecutive frames extracted from the J-CNN model. Finally, the score of each
frame is obtained by averaging all predictions from the LSTM model and the
frame is classified as the standard plane when the output score is larger than a
threshold T0.
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Fig. 2. Left: architecture of the proposed T-RNN; right: the proposed J-CNN.
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2.1 Joint Learning with Knowledge Transfer across Multi-tasks

The basic structure of CNN includes several pairs of alternating convolutional
(C) and max-pooling (M) layers, followed by fully-connected (F) layers. Pre-
vious studies have indicated that the knowledge learned from one domain or
task via CNN could benefit the training for another domain or task with lim-
ited annotated data [6]. Inspired by these studies, it is reasonable to speculate
that leveraging the transferred knowledge across similar US detection tasks can
mitigate the challenge of insufficient training data for a specific task as well as
improve the generalization performance of the learning. To the end, we propose
a joint learning model with CNN across multiple detection tasks of US standard
planes, as illustrated in Fig. 2 (right).

In the figure, the matrix Ws denoting the parameters of layers from C1 to
M5 is trained from all training samples of the three detection tasks and shared
among these tasks. The Wm (m = 1, 2, 3 represents the task of FFASP, FFVSP
and FASP, respectively) denotes the parameters of F6 and F7 layers and is
trained individually on each task for the discrimination of different standard
planes. These parameters can be optimized by minimizing the following joint
max-margin loss function L1:

L1 =
λ

2
(
∑

m

||Wm||22 + ||Ws||22) +
∑

m

∑

k

max(0, 1− ymkFm(f s
mk;Wm))2 (1)

fs
mk = Fs(Imk;Ws) (2)

where the first part of L1 is the regularization penalty term and the second part
is the data loss term. The tradeoff between these two terms is controlled by the
hyperparameter λ, which is determined by cross-validation in our experiments.
The Fs denotes the shared feature extraction function while the Fm denotes the
discriminant function for different US standard planes individually. The Imk is
the kth input frame of mth task and fs

mk is the output of shared section (i.e.,
activations of M5 layer). The ymk ∈ {−1, 1} is the corresponding ground truth.
The architecture of J-CNN model can be seen in Table 1 (padding and non-linear
activation layers are not shown).

Table 1. Architecture of J-CNN

Layer Feature maps Kernel size Stride
input 227x227x1 - -
C1 55x55x24 11 4
M1 27x27x24 3 2
C2 14x14x24 5 2
M2 7x7x24 3 2
C3 7x7x24 3 1
C4 7x7x24 3 1
C5 7x7x24 3 1
M5 3x3x24 3 2
F6 100 - -
F7 2 - -
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Fig. 3. LSTM model
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2.2 US Standard Plane Detection via T-RNN

Temporal information in time-series videos could provide additional contextual
clues for the improvement of detection performance. In our T-RNN model,
spatio-temporal features in ROIs, which have been detected by the J-CNN
model, are further explored by the LSTM. Given the input frame Imk, the prob-
ability map of the ROI is computed by the J-CNN model in a sliding window
way and the center of the ROI is located at the position with maximal value in
the probability map. Features in the penultimate layer (i.e., activations of F6
layer) of the J-CNN model are then extracted from the ROI of each frame. Before
inputting features into the LSTM, we manually clip each video into separated
clips with the same number of T frames. Thus, each input video can be trans-
formed into sequenced samples, where each sample is represented by a vector
sequence x = {x1, ..., xt, ..., xT } and xt ∈ R

q (q = 100 in our experiments). The
corresponding labelling vector is y = {y1, ..., yt, ..., yT }, where yt ∈ {0, 1}.

In the traditional RNN, the back-propagation algorithm may result in van-
ishing or exploding gradients. The LSTM model tackles this problem by incor-
porating memory cells that allow the network to learn when to forget previous
hidden states and when to update hidden states given the new input [7]. A sim-
plified version of LSTM model is shown in Fig. 3. The element-wise nonlinear

functions σ(x) = 1
1+e−x and φ(x) = ex−e−x

ex+e−x squash their inputs into [0,1] and
[-1,1], respectively. The gates serve to modulate the interactions between the
memory cell ct and its environment. The input gate it can allow incoming input
xt to alter the state of the memory cell or block it. The output gate ot can allow
the state of the memory cell to have an effect on hidden neurons or prevent it.
The forget gate ft can modulate the self-recurrent connection of the memory
cell, allowing the cell to remember or forget its previous state ct−1. All the gates
and memory cells have the same vector size with hidden state ht ∈ R

H (H is the
number of hidden units). Specifically, they are updated with following equations:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

ct = ft � ct−1 + it � φ(Wxcxt +Whcht−1 + bc)

ht = ot � φ(ct)

where h0 = 0, W denotes the weight matrix (e.g., Wxi is the input-input gate
matrix and Whi is the hidden-input gate matrix), b is corresponding bias term,
and � denotes the element-wise multiplication. The predictions can be obtained
by feeding ht into a softmax classification layer. Thus, the parameters θ (in-
cluding all W and b) of the model can be trained by minimizing the negative
logarithm loss function with stochastic gradient descent method [9]:

L2 = −
N∑

n=1

T∑

t=1

log pn(yt|xt, ht−1; θ) (4)

where N is the total number of sequenced training samples after clipping.
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Fig. 4. Left: typical US standard plane detection results; middle: several feature maps
of ROIs in C1 layer; right: sequenced predictions in the video.

3 Experiments and Results

Materials. Ultrasound videos were acquired by performing a conventional US
sweep on the pregnant women (fetal gestational age from 18 to 40 weeks) in the
supine position using a Siemens Acuson Sequoia 512 US scanner. Each video
was acquired from one patient and contained 17-48 frames. They were manually
annotated by an experienced obstetrician. For training the ROI classifier under
the framework of J-CNN, training samples of FASP, FFASP and FFVSP were
generated from 300 videos with a total of 11,942, 13,091 and 12,343 US images,
respectively. In addition, 219 videos with 8718 US images of FASP, 52 videos
with 2278 images of FFASP and 60 videos with 2252 images of FFVSP were
used for the performance evaluation, respectively.

Qualitative Performance Evaluation. Fig. 4 (left) shows the typical de-
tection results of three US standard planes. All the detected standard planes
contained the KASs and the predicted scores were above the threshold T0 (de-
termined with cross validation). In addition, we input the ROIs of the detected
standard planes into the J-CNN and visualized their feature maps in C1 layer in
Fig. 4 (middle). It is observed that large responses of feature maps were excited
in the regions of KASs, revealing the model captured the discriminative struc-
tures. Furthermore, as shown in Fig. 4 (right), the whole sequenced predictions
of three videos by T-RNN demonstrated a good consistency with ground truth.
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Table 2. Results of Standard Plane Detection

Method
FASP FFASP FFVSP

A P R F1 A P R F1 A P R F1

T-RNN 0.908 0.748 0.747 0.747 0.867 0.634 0.598 0.615 0.867 0.770 0.612 0.682
J-CNN 0.902 0.729 0.739 0.734 0.854 0.605 0.513 0.555 0.835 0.718 0.611 0.660
T-CNN[6] 0.896 0.714 0.710 0.712 0.847 0.582 0.503 0.535 0.831 0.708 0.606 0.653
R-CNN[6] 0.857 0.594 0.681 0.635 0.831 0.530 0.443 0.482 0.826 0.688 0.608 0.651
RVD[5] 0.833 0.532 0.693 0.602 - - - - - - - -
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Fig. 5. The PR plane and ROC curves of different methods on FASP detection.

Comparison of Quantitative Performance. We compared our method with
state-of-the-art methods [5,6] and the J-CNN that relies only on the spatial fea-
ture representations from three detection tasks. The evaluation measurements
include accuracy (A), precision (P ), recall (R), and F1 score. The results of dif-
ferent methods are shown in Table 2. The four deep learning based methods
achieved better results than the method of RVD [5] on the FASP detection,
which evidenced the efficacy of exploiting deep learning based feature represen-
tations. The detection results of J-CNN and T-CNN [6] outperformed those of
R-CNN [6] on most measurements, demonstrating the advantages of the knowl-
edge transfer strategy on reducing overfitting caused by the inadequacy of train-
ing data. In addition, the results of J-CNN were better than those of T-CNN,
indicating that the knowledge transferred from images of the same domain re-
duced the gap between cross-domains (e.g., natural images used in the T-CNN).
Compared with other methods, our T-RNN achieved the best performance on
different measurements, which further highlighted the superiority of exploring
spatio-temporal feature learning with knowledge transfer in standard plane de-
tection from US videos. The precision-recall (PR) plane and receiver operating
characteristic (ROC) curves of different methods on FASP detection are shown
in Fig. 5, further demonstrating the advantages of the proposed T-RNN. The
T-RNN method generally took less than 1 minute to detect the standard planes
from a video containing 40 frames using a workstation equipped with a 2.50 GHz
Intel(R) Xeon(R) E5-2609 CPU and a NVIDIA Titan GPU.
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4 Conclusion

In this paper, we presented a knowledge transferred RNN to automatically detect
fetal standard planes from US videos by exploring spatio-temporal feature learn-
ing. Experimental results on three US standard planes demonstrate the efficacy
of our approach quantitatively on this challenging problem. Furthermore, our
approach is a general framework and can be extended to the detection of other
US standard planes or anatomical structures. In the future, we will accelerate
the detection process and apply it in clinical practice.
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