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Abstract. The tissue surface shape provides important information for both  
tissue pathology detection and augmented reality. Previously a miniaturised 
structured light (SL) illumination probe (1.9 mm diameter) has been developed 
to generate sparsely reconstructed tissue surfaces in minimally invasive surgery 
(MIS). The probe is inserted through the biopsy channel of a standard endo-
scope and projects a pattern of spots with unique spectra onto the target tissue. 
The tissue surface can be recovered by light pattern decoding and using paral-
lax. This paper introduces further algorithmic developments and analytical 
work to allow free-hand manipulation of the SL probe, to improve the light pat-
tern decoding result and to increase the reconstruction accuracy. Firstly the 
“normalized cut” algorithm was applied to segment the light pattern. Then an 
iterative procedure was investigated to update both the pattern decoding and the 
relative position between the camera and the probe simultaneously. Based on 
planar homography computation, the orientations of local areas where the spots 
are located in 3D space were estimated. The acquired surface normal informa-
tion was incorporated with the sparse spot correspondences to constrain the fit-
ting of a thin-plate spline during surface reconstruction. This SL system was 
tested in phantom, ex vivo, and in vivo experiments, and the potential of apply-
ing this system in surgical environments was demonstrated. 

Keywords: Structured light, Endoscopy, Light pattern decoding, Self-
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1 Introduction 

The measurement of tissue surface shape is important in medical applications since it 
may indicate tissue pathology and facilitate navigation in MIS. For instance, colonic 
polyp detection is aided by their morphological appearance [1]. Furthermore, intra-
operative information, which can be acquired by optical techniques for surface detec-
tion, may be combined with pre-operative information provided by imaging modali-
ties such as MRI and CT, facilitating augmented reality for surgical guidance [2, 3].  
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SL has demonstrated potential in challenging surgical environments due to its non-
reliance on salient features [3-5]. In SL a setup is designed to generate a pattern of 
light and project it through a probe onto the target object. According to the location of 
the projected light pattern recorded by a single camera, the object surface is estimated. 
Similar to stereoscopy a geometrical calibration should be applied to establish the 
spatial relationship between the projector and camera prior to 3D reconstruction. 

A unique system has been developed [6] using a 4W supercontinuum laser (420-
750 nm) dispersed by an SF-11 prism and focused onto a linear array of fibres. Those 
fibres, each carrying light of a unique narrowband spectrum, are converted into a 
random 1.9 mm diameter circular distribution at the distal tip, which is then imaged 
onto the tissue using a gradient refractive index (GRIN) lens. The system has many 
advantages, including the use of a narrow diameter flexible probe compatible with 
instrument ports, unique spectra for each fibre and high pattern brightness due to the 
use of a coherent laser source that can be focused into the 50 micron core diameters of 
the fibre array. The system schematic and the projected pattern are shown in Fig. 1(a). 
Despite its advantages SL systems have limitations, for instance, the calibration needs 
to be applied every time the flexible probe pose changes. Furthermore, SL systems do 
not generally provide a reconstruction result denser than the inter-spot spacing.  

A system specific software platform has been established previously for surface re-
covery by conventional calibration and pattern decoding methods [7]. New algo-
rithmic developments and analytical work is proposed to make full use of SL, empha-
sising two aspects: on-the-fly self-calibration which enables a free-hand manipulation 
of the probe; incorporation of local normal information in surface reconstruction. 
Both of these are general techniques that can also be applied to other SL systems. 
Self-calibration can be used whenever the relative positions of projector and camera 
are changed, and local normal incorporation can be used whenever light patterns with 
specific known shapes or sub-patterns are used. 

 

Fig. 1. (a). SL system schematic. (b). The projector model with probe centre (red circle), rays 
(blue lines), image plane (green), and features (red dots). (c). Virtual projector image plane. 

2 Methods 

Pre-calibration. Pre-calibration to estimate the intrinsic parameters of the SL system 
is applied prior to the experiment (Fig. 1 (b)) [7]. However, a virtual projector image 
plane, which provides a pixel-level description of the ellipse shapes, is also useful as it 
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allows 3D plane orientation estimation and denser reconstruction. A white planar target 
is used to generate the projector image plane. The probe projects light onto the target 
and the SL image is captured by the camera. Induced by a plane at a general position in 
3D space, a homography matrix estimated according to the spot centroid correspon-
dences links the projector and camera image planes. The pixels of each spot in the 
camera image plane are mapped to the projector image plane using this homography 
and, after interpolation, a virtual projector image plane is generated (Fig. 1 (c)). 

Pre-processing. Colour is the most important feature for light pattern decoding using 
this SL system. A colour vector, defined by the normalised magnitude of each colour 
component (red, blue and green), is used to represent pixel colour. The colour differ-
ence between two pixels can be quantified by the angle between their colour vectors. 
Due to strong light-tissue interaction pre-processing of SL images is required prior to 
light pattern decoding. This begins with specular highlight removal and includes high 
intensity and low saturation area detection, morphological transformation, and inter-
polation. Colour vectors for all pixels are calculated after Gaussian smoothing. 

Light Pattern Decoding. SL images acquired during surgery have a number of chal-
lenges. For instance inter-spot distances are small and, due to lateral diffusion at longer 
wavelengths, may overlap, causing “contamination”. In this work we use “normalized 
cut”, which formulates the segmentation problem as spectral clustering [8]. Prior to 
segmentation, a mask is firstly generated based on regional maxima detection and 
morphological transformation to cover the spots (foreground). Then spectral clustering 
is applied to the pixels inside this mask to cluster them into different spots.  

Spots on the SL image should be identified to find the correspondences between the 
projector image plane and camera image plane. In this work, by comparing the projec-
tor image with the captured SL image, unique labels are assigned to the spots. Firstly, 
neighbours for all the spots in both the projector and SL images are detected based on 
Delaunay triangulation. Then their colour vectors are computed and stacked in a 
clockwise sequence allowing some unique correspondences to be built. Next, the spot 
matching procedure is propagated to their neighbourhood from these initial matches 
until no more correspondences can be found and the projected spots are labelled. 

On-the-fly Calibration. Calibration is required whenever the relative position be-
tween the probe and the camera changes. We propose on-the-fly self-calibration to 
estimate the relative positions, enabling free-hand manipulation during surgery.  

In this SL system, the image plane of the projector can be regarded as the image 
plane of the second camera in a normal passive stereo system. The coordinates for all 
spot centroids  on the image plane are calculated in the pre-calibration procedure. 
On the camera image plane the image coordinates of corresponding spots , after 
distortion correction and normalisation by the camera matrix, are also available after 
pre-calibration. Assuming that  and  correspond to  in 3D space the projec-
tive matrices of the projector  and the camera , which satisfy =  and = , can be defined as = [ | ], = [ |0]. Here  stands for the rotation 
matrix of the projector, and =  − , where  is the position of the probe. The fun-
damental matrix  indicating the correspondences between these two image planes 
can be defined as 
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 = 0. (1) 

Together with the constraint that det = 0,  can be derived using the Maximum 
Likelihood (ML) estimation which minimizes the reprojection error [9]. In practice 
during the experiment, RANSAC [10] is applied to exclude wrong correspondences 
(outliers), and only those reliable correspondences are used to estimate . The essen-
tial matrix , which describes the relative position, is defined as = [ ]× .  can 
be estimated from  based on the SVD and the geometrical interpretation of four 
possible solutions. In this way, both the probe orientation  and position  can be 
acquired, and the 3D position of spot centres can be estimated up to scale. 

Feature Matching Refinement Using the Epipolar Constraint. Occasionally, due 
to strong optical scattering or absorption, the spot identification method fails to pro-
vide a perfect feature matching result. Therefore, the following iterative procedure is 
applied to refine both the epipolar geometry and spot identification: In each iteration, 
the fundamental matrix  is estimated with RANSAC outlier rejection and  opti-
misation. We then search for more correspondences using  as a constraint. A toler-
ance is set as the stopping criterion. Then  and correspondences are both updated.  

Incorporation of Local Normal Information in 3D Reconstruction. In two view 
geometry, points on one plane can be related to corresponding points on another plane 
by a homography uniquely induced by a plane at a general position in 3D space [9]. 
Given the projective matrices  and , and a plane defined by = 0  with = ( , 1)  in 3D space, a point  on the plane is projected as  and  on the 
projector and camera planes, respectively. Then =  , where  

 = − ∗ .  (2) 

Normally,  can be estimated according to at least four 2D to 2D point corre-
spondences. If  is known and  and  are calibrated beforehand, the normal of 
the plane  can be estimated. Based on this, we propose a method to estimate the 
orientation of the object surface at the reconstructed spot centres. Given that the indi-
vidual spots are very small in 3D space, we assume that all the pixels inside spot  
are located on one plane defined by = 0, with = ( , 1) , then the image 
coordinates of those pixels on two image planes can be linked by a homography . 
However, since pixelwise correspondences cannot be built between the two image 
planes in our SL system, another method is adopted to estimate . It is noticeable 
that the shapes of spots on the projector image plane, which represents the intersec-
tion between the cone-like rays and the image plane, are all ellipses. It can also be 
observed that the shapes of most spots on the camera image plane are similar to ellip-
ses, showing the feasibility of the assumption, since a conic can be transformed into 
another conic by a given homography. An ellipse on a 2D plane can be represented as  

 + 2 + + 2 + 2 + = 0. (3) 

    Eq. (3) can be written as = 0, where = [ , , 1] , and 
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 =  .     (4) 

    In our SL system, if a pair of corresponding conics  and  on two image 
planes are known, they can be related by a homography  [9]: 

  ~ . (5) 

    Combining eq. (2) and eq. (5),  

  ~ ( − ∗ ) ( − ∗ ), (6) 

Since eq. (6) defines an overdetermined system,  can be estimated through op-
timisation as long as the conics are non-degenerate. Based on the assumption that 
each pair of projected spots are located on one single plane in 3D space, correspond-
ing spots in the two image planes of the SL system can be seen as pairs of correspond-
ing conics  and . Therefore, we start with ellipse fitting for all the spots to ac-
quire the conic coefficient matrices, using the method proposed by Fitzgibbon et al. 
[11]. Based on the fitting cost, some spots are excluded since either they are not accu-
rately delineated or they are not located in single planes, hence do not affect the re-
construction. Because all the fitted ellipses are non-degenerate, the local normal  
where the spot is located can always be estimated by optimising eq. (6). The optimisa-
tion procedure is applied with the constraint that the estimated plane should always go 
through the 3D location of the spot centre, which is acquired in the previous self-
calibration step. The initial guess of a local normal can be estimated from the normal 
of plane determined by the three surrounding spot locations in 3D space. After opti-
misation, the estimated normals are filtered using the cost of the optimised objective 
function. Given the 3D locations of spot centres, the object surface is reconstructed 
using a thin-plate spline (TPS) [12]. A simple but effective method is used to con-
strain the surface orientation: for one point with estimated orientation, six new 
neighbouring points close to it on the estimated plane are added. All the points includ-
ing both the original and the newly added ones are used to fit the TPS model. In this 
way, those newly added neighbouring points constrain the local surface direction 
when TPS fitting takes place.  

3 Experiments and Results 

In order to evaluate the feasibility of the software platform, experiments on different 
objects have been carried out. Previous studies with this system have shown that, due 
to the narrowband spectra of the spots, pattern decoding is robust to changes in back-
ground hue and albedo [6]. Additional experiments have been carried out to measure 
the hue difference for the projected patterns on paper with different colours, finding 
an RMS difference of approx. 0.01. The accuracy of reconstruction and normal esti-
mation depend on pattern decoding results, which has been demonstrated in previous 
work on tissue of varying albedos and hues ex vivo and in vivo [7]. The following 
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section is divided into two parts: evaluation of self-calibrated reconstruction accuracy 
through comparison with corresponding manually calibrated results; observation of 
changes in 3D reconstruction brought by incorporating local normal information. 

Reconstruction Results Using Self-calibration. The accuracy of reconstruction with 
manual calibration has been demonstrated in previous work (0.65 mm error at ~100 
mm working distance) [7] and it was used to evaluate the self-calibration result.  
A silicon heart phantom was imaged as well as ex vivo porcine liver, kidney, heart, and 
in vivo porcine large bowel. In total 49 SL images were used and the result was evalu-
ated by registering surfaces from manual and self-calibration. Since the surfaces are 
reconstructed up to scale, the scaling factor along line-of-sight rays is the only variable 
used in registration. The average and maximum distances between the two surfaces in 
percentages are used as indicators of reconstruction error (Fig. 2) (Table 1).  

Table 1. Reconstruction errors using the self-calibration technique on benchmark data 

Object Mean distance Median of 

mean distance

Max. distance Median of Max. 

distance 
Heart phantom 0.32% ± 0.13% 0.28% 1.03% ± 0.51% 0.88% 

Liver 2.36% ± 5.26% 0.80% 3.84% ± 2.54% 2.68% 

Kidney 0.40% ± 0.37% 0.20% 1.76% ± 1.70% 0.88% 

Heart 0.81% ± 0.68% 0.44% 2.93% ± 2.39% 1.43% 

Large Bowel 3.58% ± 4.38% 2.07% 16.70% ± 23.29% 7.55% 

 

Fig. 2. (a). Liver under white light. (b). Liver under SL. (c). Reconstructed surface using self-
calibration where colour indicates the surface depth (in mm). (d). Relative error map on the 
reconstructed surface using self-calibration where colour indicates the reconstruction error (%). 

The mean and median values of both the average and maximum distance show 
promise for tissue reconstruction using the self-calibration technique. But it is notice-
able that according to the maximum distance, despite generally good performance for 
the case of porcine large bowel, large errors still occur in some areas. This phenome-
non was caused by the poor light pattern imaging due to strong scattering of light at 
long wavelengths and absorption of light at short wavelengths. But the performance 
does show the potential of the self-calibration technique in surgical environments.  

Incorporation of Local Normal Information. The estimated local normals provide 
additional surface detail. The TPS interpolation is able to provide a reconstruction 
with high quality for objects with smooth surfaces. However, adding normal informa-
tion helps to improve the surface detail when the object surface is more complex.  



 Tissue Surface Reconstruction Aided by Local Normal Information 411 

We tested the normal estimation algorithm on a rectangular box, a cylinder, and a 
liver phantom. Fig. 3 (b), (d), (f) demonstrate the reconstruction of an area around one 
edge of a rectangular box, a cylinder, and the liver phantom, respectively. The local 
normals (red arrows) are well estimated using the proposed method. 

Since local normals do not benefit the reconstruction much on relatively smooth 
surfaces, a small object consisting of two steps was used to intuitively show the im-
provement of surface reconstruction after incorporating normal information. Light 
patterns were projected onto the object, and Fig. 3 (g) and (h) show the reconstructed 
surfaces before and after addition of local normal information. The step shape is only 
accurately defined when incorporating normal information, demonstrating that this 
method could improve the reconstruction when a sparse light pattern is projected on a 
non-smooth object surface. Images were acquired using 33 ms exposure times and it 
took ~50 s to process a single frame using Matlab (Intel i7-3770, 8 GB RAM). 

 

Fig. 3. (a). Rectangular box edge under white light and SL. (b). Reconstructed rectangular box 
edge (blue) aided by normals (red). (c). cylinder under white light and SL. (d). Reconstructed 
cylinder (blue) aided by normals (red). (e). Liver phantom under white light and SL. (f). Recon-
structed liver phantom (blue) aided by normals (red). (g). Reconstructed step surface (blue) 
without normal information. (h). Reconstructed step surface (blue) aided by normals (red). 

4 Discussion and Conclusion 

In this paper we have developed an SL system that is capable of estimating 3D depth 
as well as inferring information about the surface normal at each SL point. We pro-
pose an on-the-fly self-calibration technique along with an iterative algorithm to up-
date both the epipolar geometry and feature matching to enhance SL inference of 3D 
structural information. Comparison between the resulting reconstruction and that from 
manual calibration exposes the feasibility and robustness of this technique in object 
surface reconstruction. But further studies are needed to localise depth in metric 
space. This method is appropriate for fibre-based SL systems that rely on point pro-
jection. Based on the assumption that some projected spots are located on one plane in 
3D space, local normal information is estimated according to the homography be-
tween two corresponding ellipses. Our experiments show that the improvement of 
incorporating normal information is notable and that this technique can also be 
adapted in other SL systems using light patterns with specific known shapes. Future 
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work will focus on further hardware improvements to reduce ambiguities in pattern 
decoding and development of implementations where real-time robust and dense tis-
sue surface reconstruction is possible through algorithm design and parallelisation 
architectures. This would allow dynamic tissue imaging on a per-frame basis. 
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