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Abstract. Optical colonoscopy is performed by insertion of a long flexible endo-
scope into the colon. Inspecting the whole colonic surface for abnormalities has 
been a main concern in estimating quality of a colonoscopy procedure. In this pa-
per we aim to estimate areas that have not been inspected thoroughly as a quality 
metric by generating a visibility map of the colon surface. The colon was modeled 
as a cylinder. By estimating the camera motion parameters between each consecu-
tive frame, circumferential bands from the cylinder of the colon surface were ex-
tracted. Registering these extracted band images from adjacent video frames pro-
vide a visibility map, which could reveal uncovered areas by clinicians from co-
lonoscopy videos. The method was validated using a set of realistic videos gener-
ated using a colonoscopy simulator for which the ground truth was known, and by 
analyzing results from processing actual colonoscopy videos by a clinical expert. 
Our method was able to identify 100% of uncovered areas on simulated data and 
achieved with sensitivity of 96% and precision of 74% on real videos. The results 
suggest that visibility map can increase clinicians’ awareness of uncovered areas, 
and would reduce the chance of missed polyps. 

Keywords: Optical colonoscopy, Visibility map, Colonoscopy Quality, Uncov-
ered area, Camera motion parameters. 

1 Introduction 

Colorectal or Bowel cancer is the second cause of cancer related death after lung can-
cer, in Australia and the Western world [1].  Early diagnosis of bowel cancer can 
increase the chance of survival for patients by up to 90%. Colonoscopy is the gold 
standard method for detection and removal of colonic polyps. The efficiency of a 
colonoscopy procedure is influenced by many factors, including the amount of the 
colon surface that is inspected for the presence of polyps by the clinician. Studies 
have reported that even experienced gastroenterologists can still miss up to 33% of 
polyps [2, 3]. This is in part due to polyps, in particular flat lesions such as sessile 
serrated adenomas, not being recognized even though they are in view, but also due to 
polyps not being viewed because they were never inspected by the camera.  



 Visibility Map: A New

 

One way to address this
another way is to provide a
ing assistive technologies. T
of a colonoscopy inspectio
formative frames [5], and 
identify colon folds to reco
determine their visible area
develop a technology that e
the flattened colon surface
hypothesized that circumfe
projecting a 3D cylinder on
3D cylinder, camera motio
through epipolar geometry
endoscope camera pose esti
techniques to increase the r
of extra computation time. F
the previous frame, and ras
A diagram of our method is

Fig. 1. M

2 Method 

2.1 Camera Motion Es

In this section, first we br
camera, then explain in det
camera location and orienta
 

Colonoscope Camera Mod
fisheye lens (190HD Olym
a mathematical model prop
era projection. Using this 
point (u,v) through the follo

ߣ  ൥ܽ଴ + ܽ
where λ is scaling fact

image center (ݑ଴,  ଴) andݒ

w Method in Evaluation Quality of Optical Colonoscopy 

s problem is to increase clinicians’ skills through traini
assistance to clinicians during the intervention by devel
There are several techniques which can measure the qua
on by metrics such as withdrawal time [4], number of 

uncovered areas [6]. Hoang et al. proposed a method
onstruct individual 3D colon segments for every frame 
as, without providing a combined feedback [6]. We aim
estimates uncovered areas by generating a visibility map
. To do this, we modeled the colon as a cylinder, and 
erential bands of the colon surface could be extracted
nto each frame. To know where on a frame to project 
on parameters between successive frames were estima
y analysis [7], which has demonstrated high accuracy
imation [8, 9]. Others have used a combination of differ
robustness of camera motion estimation [10] but at the c
Finally, each extracted band was registered to the one fr
tered to build a visibility map of the colon internal surfa
s shown in Fig. 1 and described in the next section.  

 

Main processing steps of our proposed method 

stimation 

riefly describe the mathematical model for a colonosc
tail the epipolar geometry based algorithm [7] to obtain 
ation relative to the colon lumen.  

del. The camera of the colonoscope used in our setup ha
mpus endoscope), introducing image deformation. We u
posed by Scaramuzza et al. [11] to model fisheye lens ca

model a 3D point (X,Y,Z) can be projected into  im
owing equation: ܽݒݑଵߩ + ڮ + ܽ௡ିଵߩ௡ିଵ൩ = ܴ. ൥ܼܻܺ൩ + ܶ
tor, ߩ = ඥ(ݑ − ଴)ଶݑ + ݒ) − ଴)ଶݒ  indicates distance fr
 ܽ଴, ܽଵ, … , ܽ௡ are intrinsic parameters used to correct 

397 

ing; 
lop-
ality 
f in-
d to 
and 

m to 
p of 
we 

d by 
the 

ated 
y in 
rent 
cost 
rom 
ace. 

ope 
the 

ad a 
used 
am-

mage 

(1) 

rom 
the 



398 M.A. Armin et al. 

 

deformation in the colonoscopy images. R and T represent extrinsic camera parame-
ters (rotation and translation). 

Since the colonoscopy camera motion is parallax in most of the scene (each con-
secutive frame pair can be assumed as a stereo pair), an epipolar geometry based algo-
rithm was employed to estimate the camera motion as follows: 

Camera Calibration and Distortion Correction. An offline calibration specific to 
each colonoscope was performed using a fisheye model described in [11] to obtain the 
intrinsic camera parameters and correct image deformation. To reduce the computing 
time, only features’ positions on the image were corrected for distortion.  

Feature Detection and Uninformative Frame Removal. A set of  feature points 
was automatically extracted and matched between each pair of consecutive frames 
using the Kanade-Lucas-Tomasi (KLT) algorithm [12]. Features consisted mostly of 
blood vessel patterns and soft tissue structures.  Frames with no features (e.g. blurry 
frames) were excluded from further computation and assumed to be uninformative. 

The RANdom Sample Consensus (RANSAC) [13] and deviation of distances  
between the corresponding points were employed to remove unreliable matches  
(outliers) and increase robustness of the motion estimation algorithm. 

Extrinsic Camera Parameters Estimation.  A combination of five and eight point 
algorithms explained in [7, 14] were used to calculate  extrinsic camera parameters.  

The 3D positions of tracked features were calculated using triangulation and ex-
trinsic camera parameters. The distance between the coordinate of 3D points project-
ed into the image plane and the feature points defined a reprojection error obtained by 

ܧ  = ∑ ∑ ห|݌௜௟ − ௜|หଶே௟ୀଵெ௜ୀଵ́݌  (2) 

where N is the number of features on M images and ́݌௜ is the projection of a 3D 
point ௜ܲ  estimated through triangulation and camera parameters to the image plane, 
and ݌௜௟  is the correspondence tracked feature on the image.  

First we estimated the reprojection error of camera parameters computed by five and 
eight point algorithms, then the camera parameters with a lower reprojection error were 
optimized using a Levenberg-Marquardt technique [15] by minimizing the cost function 
defined in Eqn. (2). The optimized extrinsic camera parameters (camera pose) inferred 
from consecutive frames was then concatenated to estimate camera position [16].   
 

Kalman Filtering. To predict the camera pose in presence of uninformative frames, it 
is assumed that acceleration was constant, and the standard Kalman filter (Eqn. (3)) 
was used to predict each camera pose ݔ௞   from previous optimized camera pose ݔ௞ିଵ  
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with A the state matrix similar to [17],  ݖ௞ିଵ the observation at time k, ܩ =  (଺ܫ ଺ܫ ଺ܫ)
and  ܪ = the driving and measurement matrices, where 0଺ (଺ 0଺ 0଺ܫ)  and ܫ଺  are  
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The orientation of the camera was updated by forcing its line of sight to go through 
the center of dark region (deepest area) of each frame, which was computed as bary-
center of the darkest class of a two class segmentation using Otsu thresholding similar 
to [18]. 

The cylinder model had two perimeters, defined between ܼ௖௜+1 cm and ܼ௖௜+3 cm, 
from the camera defining a band on the cylinder circumference. We chose those val-
ues based on testing using the simulator and feedback from clinicians as to where the 
image quality is best and the lighting optimal. These perimeters defined a circumfer-
ential band that was moved at each frame depending on the camera pose. For exam-
ple, when the camera was facing the wall, the perimeters could be seen on each side 
of the camera field of view. The image segment defined by that band was unwrapped 
and formed a rectangular patch (band image). The part of the band image outside the 
field of view was rastered in black. 
 

Visibility Map Generation. Each extracted band image was assumed to overlap with 
the one from the previous frame, and two consecutive band images were registered by 
Local Weight Mean (LWM) registration algorithm [19] and merged on a plan corre-
sponding to the internal colon surface that we call the visibility map. Fig. 4 shows an 
example of a visibility map.  

3 Experiments and Results 

3.1 Simulated Video 

First we validated our algorithm on videos generated by a colonoscopy simulator. The 
simulator consists of a computer simulation of the colon model and a haptic device 
that allows insertion of an instrumented colonoscope to drive the simulation [20]. The 
colon model designed for this simulator has a parametric mathematical model of the 
colon allowing the generation of realistic human colon geometry. The simulator could 
also generate the ground truth camera poses and uncovered areas that were used for 
validation. We validated our method on ten different realistic videos from different 
parts of the colon generated by the simulator (each video on average covered 20cm of 
a colon length). Errors of the extrinsic camera parameters (orientation and translation) 
were computed between the ones estimated from the videos and those used by the 
simulator. Errors were averaged over each of the ten videos resulting in 10 errors for 
each parameter shown as boxplot in Fig. 3.  

Translation errors between consecutive frames were less than 2 mm and rotation 
errors were less than 0.6 degrees. This corresponded to scenario without lens or colon 
obstructions, and in simulated videos using constant acceleration. It is expected that in 
real conditions, those errors might be higher. 

3.2 Extracted Visibility Map from Simulated Videos 

One example of implementation of our method is shown in Fig. 4, where dark spots rep-
resent uncovered areas. During any given actual colonoscopy the physician continuously  
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moves the colonoscope back and forth, naturally resulting in bands overlapping each 
other with different views (e.g. some might be darker/brighter due to lighting differ-
ences). Fig. 5 shows a case when the camera was moving forward and facing one side of 
the colon, and then moving backward while facing another side of the colon. The final 
composite image correctly filled in the internal surface, which Zc is the traveled distance 
along colon center line.    

 

Fig. 3. The root mean square (RMS) error of camera motion parameters estimated on realistic 
videos generated by the simulator. 

 

Fig. 4. Visibility map from a simulated colonoscopy video by our method (a), and its ground 
truth generated by the simulator (b), the black areas indicate uncovered areas.  

 

Fig. 5. Visibility map generated from a segment of the simulated colon: Parts of the colon are 
missed in forward motion (a), and backward motion in same place (b). Combination of two 
maps by max of pixel value shows the final coverage area (c).  

3.3 Application to Actual Colonoscopy Video 

We implemented our algorithm on nine segments of around 20 cm were inspected 
from five different videos of a 190HD Olympus endoscope, with 50 frame/sec and 
each frame sized 1856×1044 pixels. Two experiments were conducted. First, the  
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expert noted the uncovered areas from the video extracts. Second, the expert noted 
again the uncovered areas while seeing the visibility maps when the videos were 
shown. In the first case he identified nineteen uncovered areas, whereas in the second 
experi ment he noted twenty-four uncovered areas. The latter was used as the ground 
truth to validate our automated method by computing sensitivity and precision [21]. 
The sensitivity was 96% and precision was 74%. Fig. 6 represents the visibility map 
of a segment of a colon. Mean typical processing time was 1.5 min per frame using a 
standard PC, Matlab, and non-optimized scripts.  

 

Fig. 6. Visibility map generated from a segment of a real colon, which is fully covered (a), and 
a map from another part of colon with some dark spot as uncovered areas (b). 

4 Discussion and Conclusion 

In this paper, we present a new method to estimate uncovered areas during optical 
colonoscopy. To achieve this, we modeled the colon as a cylinder, the camera param-
eters were estimated using epipolar geometry analysis, a 3D cylinder projected into 
colonoscopy image. The band image that could be extracted was then rastered on a 
visibility map showing the internal colon wall. 

Estimating camera parameters from a colonoscopy video is challenging because of 
the non-rigidity of the colon anatomy, the presence of uninformative frames (e.g. a 
dirty lens), and low feature content of some tissue. Those issues were addressed in our 
technique by use of epipolar geometry to estimate camera pose, and a Kalman filter to 
estimate the camera parameters in the presence of uninformative frames. 

On the visibility map of the colon surface, uncovered areas, or areas with lack of 
focus (removed uninformative frames) showed up as black areas. However, errors in 
the camera parameters translated into error of the position of the band images on the 
visibility map. This was reduced by registering successive band images, but could be 
improved by correcting the camera parameters with the registration results, thereby 
reducing drift in estimating the camera position, for example. This will be part of our 
future work, which will also include the identification and characterization of haustral 
folds to detect suspicious folds where potential polyps could be hidden.  

Another challenge while extracting band images is the structure of colon that might 
depart from the cylinder model that we used. In our test this created problems at the 
flexure (high curvature). In future work, we will model the colon as a generalized 
cylinder around the center line defined by the camera trajectory.  
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By making the clinicians aware of uncovered areas post-procedurally, awareness of 
challenging areas as well as automated reports could lead to improved inspection 
efficacy and reduce the chance of missing polyps. This was already seen during our 
tests when the expert changed his opinion after seeing the visibility map and added 
uncovered areas that he thought he had missed before. The processing time of the 
proposed method is still too slow to achieve real-time assistance, however code opti-
mization was not the focus of our research, and processing time could be significantly 
accelerated by using compiled code, particularly for graphical processing unit (GPU). 
Real-time computation would allow providing feedback during the procedure.  
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