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Abstract. A good data sampling scheme is important for diffusion MRI acquisi-
tion and reconstruction. Diffusion Weighted Imaging (DWI) data is normally ac-
quired on single or multiple shells in q-space. The samples in different shells are
typically distributed uniformly, because they should be invariant to the orientation
of structures within tissue, or the laboratory coordinate frame. The Electrostatic
Energy Minimization (EEM) method, originally proposed for single shell sam-
pling scheme in dMRI by Jones et al., was recently generalized to the multi-shell
case, called generalized EEM (GEEM). GEEM has been successfully used in the
Human Connectome Project (HCP). Recently, the Spherical Code (SC) concept
was proposed to maximize the minimal angle between different samples in sin-
gle or multiple shells, producing a larger angular separation and better rotational
invariance than the GEEM method. In this paper, we propose two novel algo-
rithms based on the SC concept: 1) an efficient incremental constructive method,
called Iterative Maximum Overlap Construction (IMOC), to generate a sampling
scheme on a discretized sphere; 2) a constrained non-linear optimization (CNLO)
method to update a given initial scheme on the continuous sphere. Compared
to existing incremental estimation methods, IMOC obtains schemes with much
larger separation angles between samples, which are very close to the best known
solutions in single shell case. Compared to the existing Riemannian gradient de-
scent method, CNLO is more robust and stable. Experiments demonstrated that
the two proposed methods provide larger separation angles and better rotational
invariance than the state-of-the-art GEEM and methods based on the SC concept.

1 Introduction

Diffusion MRI (dMRI) is a unique imaging technique to explore microstructure proper-
ties of white matter in the human brain by mapping local diffusion of water molecules.
In dMRI, one obtains a limited number of samples of the 3D diffusion signal attenuation
E(q) in q-space. Reconstruction in dMRI is to recover the continuousE(q) from these
scanned measurements and to estimate some meaningful quantities including the dif-
fusion tensor, the Ensemble Average Propagator (EAP), etc. An appropriate sampling
scheme in q-space is important for all dMRI acquisition and reconstruction applica-
tions in order to recover as much information as possible using a minimal number of
measurements. It is infeasible to develop a general optimal sampling scheme that works
best for all signal types and all reconstruction methods. However, a necessary property
for an optimal sampling scheme is that the samples should be spherically uniformly
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distributed with no directional preference, such that the sampling scheme is invariant to
the orientation of tissue structures, or the laboratory coordinate frame of scanner.

Uniform single shell sampling schemes are widely used in dMRI, where samples
in q-space are uniformly distributed in a sphere with a fixed b-value. The Electro-
static Energy Minimization (EEM) method proposed in dMRI by Jones et al., [1] is the
most popular way to generate a general single shell sampling scheme with an arbitrary
number of samples. EEM considers the samples as electrons in sphere, and estimates
the sample configuration by minimizing the electrostatic repulsive force based on the
Coulomb’s law, i.e., min{ui}K

i=1

∑
j<i

1
‖ui−uj‖2

2
+ 1

‖ui+uj‖2
2

, where antipodal symme-
try is considered because antipodal symmetric samples have the same role in dMRI data
reconstruction. Some solutions to the EEM problem with different numberK have been
collected in CAMINO [2]. Recently [4] generalized EEM from single shell to multiple
shell, called generalized EEM (GEEM), by considering the electrostatic energies both
in each individual shell and in the combined shell with all samples. The obtained multi-
shell schemes have been successfully used in the Human Connectome Project (HCP).
Although EEM and GEEM are widely used, the electrostatic energy formulation does
not directly maximize the angular separation between measurements. There is no study
to validate how the electrostatic energy is related with dMRI data reconstruction.

The Spherical Code (SC)1 was recently proposed to design single and multiple shell
sampling schemes [5]. The SC formulation directly maximizes the separation angles
between samples in each shell and in the combined shell for all samples, which is more
natural than the electrostatic energy formulation. In [5] three algorithms were proposed
based on the SC formulation. Although these three methods have larger separation an-
gles compared to GEEM, they have limitations which will be discussed later.

In this paper, we propose two novel methods based on the SC concept to design
single and multi-shell schemes. We propose a very efficient method, called Iterative
Maximum Overlap Construction (IMOC), to incrementally generate samples from a
given fine uniform sampling scheme. Although IMOC is a greedy method, it obtains
globally optimal solutions in S

1 for the 2D case and approximately globally optimal
solutions in S

2 for single shell scheme design in dMRI. The separation angles by IMOC
are much larger than EEM, GEEM and the incremental SC (ISC) in [5]. We also propose
Constrained Non-Linear Optimization (CNLO) to produce a local optimal solution from
a given initialization. CNLO is more stable and generates larger separation angles than
Riemannian gradient descent (RGD) in [5]. Experimental results demonstrate that the
proposed methods yield larger separation angles and better rotational invariance than
the state-of-the-art GEEM used in the HCP [4], and existing methods based on SC [5].

2 Methods

2.1 Spherical Code (SC) Formulation: Maximize the Minimal Separation Angle

The covering radius of a given sampling scheme {ui}Ki=1 is the minimal angular dis-
tance between samples, i.e.,

d({ui}Ki=1) = min
i�=j

arccos |uT
i uj |, (1)

1 http://mathworld.wolfram.com/SphericalCode.html
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where the absolute value operator is used because the antipodal symmetric samples
have the same role in dMRI data reconstruction. The SC formulation on a single shell
is to find K samples {ui}Ki=1 such that the covering radius is maximized [5], i.e.,

max
{ui∈S2}Ki=1

d({ui}Ki=1) (2)

The SC formulation is also called as Tammes problem2, which is well studied in the
mathematics literature. [6] proposed to iteratively optimize a continuous cost function
that approximates the original discontinuous cost function in Eq. (2), and the authors
also released a collection of best known solutions to the SC problem in S

2 [6]3.
[5] generalized SC problem from single shell case in mathematics to multiple shell

case in dMRI field by solving

max
{us,i∈S2}

wS−1
S∑

s=1

d({us,i}Ks
i=1) + (1− w)d({us,i}i=1,...,Ks;s=1,...,S), (3)

where S is the number of shells, Ks is the number of points on the s-th shell, us,i is
the i-th point on the s-th shell, and w is a weighting factor between the mean covering
radius of the S shells and the covering radius of the combined shell containing all
points from the S shells. It is normally set as 0.5. [5] proposed three algorithms to solve
the SC problem in Eq. (2) and Eq. (3), i.e., a greedy method called Incremental SC
(ISC), a Mixed Integer Linear Programming (MILP) method, a Riemannian Gradient
Descent (RGD) method. MILP selects globally optimal one or multiple subsets of points
from a given full set of points. However, MILP is known to be NP hard, thus it is
impractical to select samples from a very fine uniform sample set, and [5] obtains an
acceptable scheme by MILP within 10 minutes from 321 uniform samples generated
by sphere tessellation. RGD updates a given sampling scheme to a better local optimal
solution. However the cost functions in Eq. (2) and Eq. (3) are not continuous, and the
gradients of the cost functions which are determined by the sample pairs that have the
minimal separation angle are not continuous neither. Moreover, the implementation of
RGD needs a threshold to determine the sample pairs that can be considered to be equal
to the minimal separation angle, and a little change of the threshold can significantly
change the final results, which makes RGD unstable.

2.2 Constrained Non-Linear Optimization (CNLO)

Since RGD is not stable due to the reasons we discussed above, we propose a stable
method, called Constrained Non-Linear Optimization (CNLO), to obtain a local min-
imum. SC problem in Eq. (2) can be solved using CNLO in Eq. (4a), where Eq. (4b)
means all separation angles are larger than θ.

max
θ,{ui}Ki=1

θ (4a)

s.t. |uT
i uj | ≤ cos θ, ∀i < j ≤ K; (4b)

uT
i ui = 1, ∀i; (4c)

2 http://en.wikipedia.org/wiki/Tammes_problem
3 http://neilsloane.com/grass/dim3/
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Note that both cost function and constraints are continuous, considering |uT
i uj | ≤ cos θ

means− cos θ ≤ uT
i uj ≤ cos θ. CNLO does not need to determine the sample sets with

the minimal separation angle, which is more robust and avoids the threshold in RGD.
Multi-shell SC problem in Eq. (3) can be solved using CNLO in Eq. (5a):

max
{θs},θ0,{us,i}

w
1

S

S∑

i=1

θs + (1− w)θ0 (5a)

s.t. |uT
s,ius,j | ≤ cos θs, ∀s, ∀i < j ≤ Ks; (5b)

|uT
s,ius′,j | ≤ cos θ0, ∀s < s′, ∀i ≤ Ks, ∀j ≤ Ks′ ; (5c)

θs ≥ θ0, ∀s; (5d)

uT
s,ius,i = 1, ∀s, i; (5e)

Eq. (5b) means that the separation angles of samples in the s-th shell are larger than its
corresponding covering radius θs. Eq. (5c) means that the separation angles of samples
in two different shells are larger than the covering radius θ0 for the combined shell with
all samples. Eq. (5d) means that the covering radii for all single shells are always larger
than the covering radius for the combined shell. In other words, Eq. (5d) means that the
separation angles of samples in the same shell are larger than θ0, because of Eq. (5b).

CNLO in Eq. (4a) and Eq. (5a) are continuous non-convex constrained optimization
problems. We use sequential quadratic programming (SQP) to solve them. In each step,
SQP solves a quadratic programming problem which locally approximates the original
optimization problem. In practice, we use the SQP solver in NLOPT library [7]. CNLO
obtains a locally optimal solution with a given initialization. The initialization can be
set as a set of random samples, or the schemes provided by other methods.

2.3 Iterative Maximum Overlap Construction (IMOC)

Incremental sampling scheme design methods, i.e., incremental EEM [3], incremental
GEEM (IGEEM) [4], and incremental SC (ISC) [5], were proposed to obtain reasonable
uniform coverage when the acquisition is terminated and only a subset of the first sev-
eral samples is used. These incremental scheme design methods are all greedy methods.
In each step, they select the best sample from a fine uniform sample set based on the
chosen samples in previous steps. They have the same limitations. 1) Since they are de-
vised to work reasonably well for any subset with first several samples, the electrostatic
energy or covering radius of the full sample set is not good, compared to optimization
based methods. 2) If a finer uniform sample set is used, the electrostatic energy or cov-
ering radius of the obtained sampling scheme may not improve, which is beyond our
expectation.

Here we propose Iterative Maximum Overlap Construction (IMOC) to overcome
the above two limitations. See the IMOC algorithm in Alg. 1 for designing multi-shell
schemes, whose simplified version with S = 1 is for single shell case. IMOC uses
MOC in Alg. 2 to verify whether a candidate covering radius set (θ0, θ1, . . . , θS) is
able to construct an acceptable scheme with (K1, . . . ,Ks) samples for S shells. We
define the coverage set of a point x as C(x, θ) = {y | arccos(|yT x|) < θ}. With a
given candidate (θ0, θ1, . . . , θS), MOC constructs samples one by one. In the i-th step,
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Algorithm 1. IMOC for Multiple shell Scheme Design:

Input: number of samples for S shells: {Ks}Ss=1

Output: {us,i}Ks
i=1.

// binary search {θs} from {(0, θub
s )}. {θub

s }Ss=0 are the upper bounds of the covering radii;
θ0s = 0, θ1s = θub

s , ∀s = 0, 1, . . . , S ;
repeat

θs = (θ0s + θ1s)/2, ∀s = 0, 1, . . . , S ;
[IsSatisfied, {us,i}] = MOC({θs}Ss=0, {Ks}Ss=1);
if IsSatisfied then θ0s = θs, ∀s = 0, 1, . . . , S ;
else θ1s = θs, ∀s = 0, 1, . . . , S ;

until θs does not change, ∀s = 0, 1, . . . , S;

Algorithm 2. MOC for Multiple shell Scheme Design:

Input: {θs}Ss=0, {Ks}Ss=1

Output: IsSatisfied, {us,i}Ks
i=1.

Initialize coverage sets {CSs}Ss=0 as S +1 empty sets, and initialize Ns = 0, ∀s ∈ [1, S];

for n = 1 to
∑S

s=1 Ks do
if n == 1 then choose any point as u1,1, s ← 1, i ← 1;
if 1 < n ≤ S then s ← n, i ← 1, choose us,i in (S2 − CS0) such that the set
C(us,i, θ0) ∩ CS0 has the largest area ;
if n > S then

Set V as an empty set;
for s′ = 1 to S do

if Ns′ < Ks′ and (S2 − (CSs′ ∪ CS0)) is not empty then
choose vs′ in (S2 − (CSs′ ∪ CS0)) such that the overlap set
C(vs′ , θs′) ∩ (CSs′ ∪ CS0) has the largest area denoted as As′ ;
V ← V ∪ {vs′};

end
end
if V is empty then

IsSatisfied = False; return
else

choose s and vs ∈ V such that their corresponding area As is the largest one
among {As′}Ss′=1;
i ← Ns + 1, us,i ← vs;

end
end
CSs ← CSs ∪ C(us,i, θs); CS0 ← CS0 ∪ C(us,i, θ0); Ns ← Ns + 1;

end
IsSatisfied=True; return;

MOC searches the best point us,i for the s-th shell such that its coverage C(us,i, θs)
has the largest overlap with the existing total coverage set CSs∪CS0 among all possible
samples and possible shells, and then adds C(ui,s, θs) into CSs, C(ui,s, θ0) into CS0.
IMOC performs a binary search of the covering radii {θs}Ss=0 along the line segment
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determined by {θub
s }Ss=0, where θub

s = arccos

√

4− csc2
(

πKs

6(Ks−1)

)
is a upper bound

of the covering radius with Ks symmetric points [5,8]. The one dimension search pro-
vides good results in compromise for both individual shells and the combined shell.

Note that for single shell case, it is easy to see that IMOC yields the globally op-
timal solution for K samples in S

1 in the 2D case, while ISC and IGEEM cannot.
Similarly with ISC, IMOC can analytically select the best point in each iteration in
2D case from all points in S

1. However for S
2 IMOC requires a fine uniform dis-

cretization of the sphere to find the best point in each step with the largest overlap
area by counting the number of points in overlap sets. We consider several issues for
efficient implementation of IMOC. 1) KD-tree is used for efficient nearest neighbor
search. 2) In the (i + 1)-th step, the overlap area As(x) is different from the i-th step
and needs to be re-calculated only if the determined point us′,i in the i-th step satis-
fies arccos(|xTus′,i|) < θ0, if s �= s′, or arccos(|xTus′,i|) < θs, if s = s′. 3) In
MOC, the candidate points can be selected from a small “outside surface” of CS, i.e.,
{x | x /∈ CS, ∃y ∈ CS, s.t. arccos(|xT y|) ≤ δ}, instead of the whole complementary set
(S2 −CS). δ is set as twice of the covering radius of the fine uniform sampling set used
in IMOC. This modification does not change the results by IMOC in our experiments,
although we currently have no proof for this phenomenon. These three issues signifi-
cantly speed up MOC, because they reduce the time for each neighborhood search, and
reduce the number of neighborhood search. In our implementation, IMOC only requires
a few seconds on an ordinary laptop.

3 Experiments

Effect of Discretization in Incremental Methods. These incremental methods, i.e.,
Incremental EEM (IEEM) [3], IGEEM [4], ISC [5], and IMOC, all require a uniform
sample set as a discretization of S2 to determine the best sample in each step. We would
like to test whether a finer discretization in S

2 can obtain better schemes with larger
separation angles. Two uniform sample sets respectively with 81 samples and 20482
samples from sphere tessellation were used for comparison. With these two uniform
sets, IEEM, ISC, and IMOC were performed to generate single shell schemes with
K ∈ [5, 80]. The left subfigure of Fig. 1 shows the covering radii of schemes obtained
by different methods using two uniform discretization. It also shows the best known
single shell schemes using EEM in CAMINO [2]. Note that when K ∈ [50, 80] is close
to 81, covering radii by IEEM and ISC using finer discretization are actually smaller
than using coarse discretization, and only when K < 50 is far from 81, IEEM and
ISC obtain larger covering radii using finer discretization. When using finer discretiza-
tion, covering radii by IMOC are always improved, and are even larger than the well
optimized schemes by EEM in CAMINO. ISC and IMOC were performed to generate
schemes with 3 shells, K ∈ [5, 25] per shell. The right subfigure of Fig. 1 shows mean
of covering radii of three shells (θs) and the covering radii of the combined shell (θ0). It
also demonstrates that when K×3 is close to 81, covering radius of the combined shell
by ISC is not improved using the finer discretization, while IMOC has no such issue.
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Fig. 1. Effect of discretization. Covering radii of sampling schemes (K in left side, K × 3 in
right side) by different methods with two uniform discretization (81 samples and 20481 samples).

Table 1. Covering radii of multi-shell sampling schemes with 28×3 samples generated by various
methods. The best known schemes by EEM are individually for each single shell.

Shell 1 (28) Shell 2 (28) Shell 3 (28) Combined (28× 3)
GEEM [4] 22.2◦ 22.2◦ 22.0◦ 13.2◦

IGEEM [4] 19.2◦ 19.7◦ 19.3◦ 4.7◦

ISC (N = 20481) [5] 21.3◦ 19.3◦ 21.1◦ 10.5◦

MILP (N = 321) [5] 23.8◦ 23.8◦ 24.3◦ 13.3◦

MILP + RGD [5] 25.7◦ 25.7◦ 25.4◦ 13.6◦

IMOC (N = 20481) 24.3◦ 24.3◦ 24.3◦ 14.0◦

IMOC + CNLO 26.3◦ 25.9◦ 26.6◦ 14.6◦

EEM (CAMINO) [1,2] 25.7◦ 25.7◦ 25.7◦ 15.6◦

Covering Radii in Sampling Schemes. We evaluated the proposed method by gener-
ating a multi-shell scheme with 28 × 3 samples, which was also used for evaluation
in [5] and [4]. Table 1 shows the covering radii of the schemes obtained by different
methods, where MILP+RGD means RGD using the result by MILP as the initializa-
tion, IMOC+CNLO means CNLO using the result by IMOC as the initialization. The
results by GEEM, IGEEM in [4], and ISC, MILP, MILP+RGD in [5] were directly ex-
tracted from the papers. The single shell schemes with 28 and 28 × 3 samples using
EEM from CAMINO [2] were also listed as references. IMOC obtains better cover-
ing radii than existing incremental methods, and even better than MILP. IMOC+CNLO
obtains largest covering radii in both 3 individual shells and the combined shell, and
the covering radii by IMOC+CNLO in these 3 shells are even better than best known
scheme collected in CAMINO using EEM [1,2], similarly with Fig. 1.

Rotational Invariance in Reconstruction. We would like to test rotational invariance
of the schemes with 28× 3 samples by different methods in Table 1. We generated syn-
thetic diffusion signals from a mixture tensor model E(qu) = 0.5 exp(−q2uTD1u) +
0.5 exp(−q2uTD2u), where b = q2 = 1000, 2000, 3000 s/mm2, and these two tensors
have the same eigenvalues [1.7, 0.2, 0.2]× 10−3 mm2/s with a crossing angle of 55◦.
With each tested scheme, we rotated the model and generated signals 20481 times with
the rotation angles determined by the uniform sample set with 20481 samples. Then
we performed Spherical Polar Fourier Imaging with spherical order 6 and radial order
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Table 2. Angular differences between estimated directions and ground-truth fiber directions using
different schemes by various methods.

IGEEM [4] ISC [5] MILP [5] MILP + RGD [5] IMOC IMOC+CNLO
Angular Difference

3.56◦ ± 1.36◦ 2.72◦ ± 1.11◦ 2.46◦ ± 1.04◦ 2.45◦ ± 1.01◦ 2.43◦ ± 1.04◦ 2.37◦ ± 0.93◦
(55◦ crossing)

2 [9] to estimate the EAP profiles with radius of 15μm, detected the peaks of the EAP
profiles, and calculated the mean angular differences by comparing the detected peaks
with the ground-truth fiber directions in these 20481 tests. Table 2 lists the mean and
standard deviation of angular differences obtained by different schemes. IMOC+CNLO
yields the significantly lowest angular differences (paired t-test, p < 0.001) with the
lowest deviation, and IMOC has the lower mean and deviation than other incremental
methods.

4 Conclusion

We propose IMOC and CNLO based on the SC concept to design single and multiple
shell uniform sampling schemes. IMOC is a very efficient incremental method which
obtains globally optimal solutions in the 2D case. For the 3D case in dMRI, cover-
ing radii of IMOC schemes are even larger than EEM in CAMINO. IMOC obtains
better schemes when using a finer discretization, while existing incremental methods
(IEEM [3], IGEEM [4], ISC [5]) may have a worse result when using finer discretiza-
tion. CNLO is a local optimization method which has better theoretical properties than
RGD in [5]. The multi-shell scheme by CNLO using IMOC as initialization obtains
larger covering radii and better rotational invariance than existing methods [4,5] based
on electrostatic energy and the SC formulation. The codes and best known schemes will
be released in DMRITool package (https://github.com/DiffusionMRITool).
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