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Abstract. Interventional C-arm CT has the potential to visualize brain
hemorrhages in the operating suite and save valuable time for stroke pa-
tients. Due to the critical constitution of the patients, C-arm CT images
are frequently affected by patient motion artifacts, which often makes the
reliable diagnosis of hemorrhages impossible. In this work, we propose a
geometric optimization algorithm to compensate for these artifacts and
present first results. The algorithm is based on a projection data con-
sistency measure, which avoids computationally expensive forward- and
backprojection steps in the optimization process. The ability to estimate
movements with this measure is investigated for different rigid degrees
of freedom. It was shown that out-of-plane parameters, i. e. geometrical
deviations perpendicular to the plane of rotation, can be estimated with
high precision. Movement artifacts in reconstructions are consistently
reduced throughout all analyzed clinical datasets. With its low compu-
tational cost and high robustness, the proposed algorithm is well-suited
for integration into clinical software prototypes for further evaluation.

1 Introduction

The soft tissue contrast resolution of C-arm based computed tomography (CT)
has been continuously improved over the past decade. Recent publications al-
ready demonstrate good visibility of brain hemorrhages [11]. However, the appli-
cation of the interventional C-arm for the acute stroke assessment, providing the
ability for stroke diagnosis in the operating room, requires a reliable detection
of even very small bleedings also in the vicinity of bones. In order to meet these
requirements, one has to overcome image quality disturbances caused by beam
hardening, poor scatter compensation and particularly motion of the patients
during the long acquisition times.

We are targeting a motion compensation method for C-arm CT which nei-
ther depends on additional measurements nor requires assumptions or informa-
tion about the object’s shape. Various methods can be found in the literature
discussing geometric calibration and motion compensation, which are closely
related. Certain approaches are based on volumetric reconstructions in the op-
timization processes. Either the objective function determines the similarity of

© Springer International Publishing Switzerland 2015
N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 298–306, 2015.
DOI: 10.1007/978-3-319-24553-9_37



Rigid Motion Compensation in Interventional C-arm CT 299

simulated and measured projections (2D-3D registration) [8] or operates in the
volume domain quantifying geometric misadjustment with an artifact measure
(“symptomatical approach”) [5]. Other approaches, like the proposed, operate
only on the redundancies in the projection images. Therefore, computationally
intensive reconstruction within the optimization procedure becomes obsolete,
allowing for very short overall processing time. Epipolar geometry is typically
used to identify redundancies [12,7]. Debbeler et al. [3] introduced a novel online
geometric calibration approach for industrial CT using a global optimization
of several geometric parameters of the CT alignment (e. g. detector shift). This
approach was extended in Maass et al. [6] to a local adaption of the geom-
etry of each projection image. It benefits from a robust consistency measure,
which exploits redundancies in the complete acquired projection data based on
Grangeat’s fundamental relation for cone-beam CT [4]. A reformulation of this
consistency measure for the context of epipolar geometry is provided by Aichert
et al. [2,1]. Therein, a simulation study was performed for the compensation of
artificial geometry shifts in small sets of cone-beam projections. In this work,
we adapt this strategy to real C-arm short scans, i. e. a cone-beam geometry
with semicircle trajectory. We present first reconstruction results of rigid motion
compensation for real patient data based on the consistency measure.

At first, we investigated the ability of this approach to estimate the motion
parameters for several degrees of freedom. Based on these insights, we applied
a customized geometry optimization procedure to projections from five clinical
datasets. This geometric adaptation was followed by a standard reconstruction
(FDK). Reconstructed images without motion compensation were used for com-
parison.

2 Methods

2.1 Objective Function

One can define a consistency measure based on redundancies occurring in CT
projection datasets. For this, we consider a plane {n, l}: {x ∈ R

3 |n · x = l} in
the patient’s world coordinate system with the normal unit vector n and the
distance l to the origin. The projection’s redundancies manifest in Grangeat’s
fundamental relation which connects the 3D Radon transform1 r(n, l) with an
intermediate function Si(n) (cf. Defrise et al. [4]):

Si(n) := −
ˆ

S2
dm δ′(m · n)gi(m) = ∂

∂l
r(n, l)|l=Ci·n . (1)

Ci denotes the vector to the point of the i’th x-ray source position lying on the
plane. The intermediate function Si(n) is a transformation of the cone-beam
projections gi(m) (also called X-ray transform; alternative representation of the
2D projection images gi(x, y)), where m is the direction of a ray starting from
Ci. The integration is over the unit 2-sphere and δ′(x) is the derivative of the
1 3D radon transform: integrals over 2D planes of a three-dimensional scalar field.
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Dirac delta distribution. Thus, there are only contributions from gi(m), when
m is perpendicular to n. In other words the integration is reduced to an 1D
manifold considering only x-rays which lie within the plane {n, l = Ci · n}, i. e.
add up projection values located at the line of intersection between this plane
and the detector plane. As a consequence, it is appropriate to identify the plane
{n, l} with the intersection line in the i’th detector coordinate system using
conventional 2D Radon parametrization {ϑ, s} (ϑ denotes the angle of the line’s
normal and s the distance to origin). The coordinate transformation to Radon
parameters of the i’th local system {n, l} → {ϑ, s}i in the integral (1) can also
be found in Defrise et al. [4]. Its rewritten result is:

Si(ϑ, s) = s2 + D2

D2 · ∂

∂s
� [g̃i] (ϑ, s), with g̃i(x, y) = D

√
x2 + y2 + D2

· gi(x, y) .

(2)
D is the source-detector distance and � [ . ] (ϑ, s) the 2D Radon transform (par-
allel beam) which has to be applied to cosine weighted projections g̃i(x, y).

Assuming a static object, the expression at the right-hand side of Grangeat’s
equation (1) depends only on the plane {n, l}. By selecting another projection gj

with source position Cj which also fulfills l = Cj ·n, i. e. it is located in the same
plane, one can conclude that the intermediate function values Si(n) = Si(ϑi, si)
and Sj(n) = Sj(ϑj , sj) are equal. Now, we can fix the source positions and
consider N different planes with normal vectors nn for which Ci · nn = Cj · nn

holds true. For each of these planes redundant pairs Si(ϑn
i , sn

i ) != Sj(ϑn
j , sn

j ) from
two projections can be found.

We define the following error matrix (norm type) describing the consistency
of each combination of two projection images:

εij := 1
N

N∑

n=1

∣
∣Si(ϑn

i , sn
i ) − Sj(ϑn

j , sn
j )

∣
∣p

, N
gen.= Nij .

The parameter p controls properties of this metric like smoothness, detectability
of inconsistencies or consideration of outliers and has to be chosen empirically.
We figured out a reliable value of p = 0.3 in simulations and used it throughout
all experiments. In general, the number of available mutual planes N containing
Ci and Cj depends on i and j. This is due to divergent geometric situations
of combinations of two C-arm positions and the finiteness of the detector (more
detailed in section 2.3). A summation of the error function εij enables us to
quantify the consistency of a set of projections with indices I = {i1, . . . , iI} with
respect to all the other J existing projections:

EI :=
∑

i∈I

∑

j /∈I
εij .

Thus, we obtain an objective function for a given set of I projection images
containing N × I × J redundant pairs of values (with N as a corresponding
average of Nij). In the special case of considering only one projection angle i,
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we obtain Ei =
∑

j �=i εij . The high quantity of redundant pairs provides a good
basis for an optimization which is robust in terms of noise.

2.2 Optimization Procedure

We define a world coordinate system which is orientated in such a way that the
z-axis is parallel to the C-arm’s rotational axis. Our optimization approach for
a rigid geometric modification is based on the following parameter set

�p :=
[

α
τ

]
, with τ =

⎡

⎣
τx

τy

τz

⎤

⎦ , α =

⎡

⎣
αx

αy

αz

⎤

⎦ ,

thus including a shift of the world coordinate system by a vector τ as well as
a rotation w.r.t. the axis α by an angle ‖α‖ . It defines a useful dependency
of the objective function EI = EI (�p) without ambiguous points in the 6D
optimization space. Moreover, we can separate these geometric changes into two
distinctive groups:

out-of-plane parameters: �pOP =

⎡

⎣
αx

αy

tz

⎤

⎦ , in-plane parameters: �pIP =

⎡

⎣
αz

tx

ty

⎤

⎦ .

Due to the semicircle geometry of the short scan, most projections do not have
opposing views. Therefore, planes including X-ray sources of such projections
and hitting the (limited) detector can only be slightly tilted from the plane of
rotation. It was expected that the intermediate function values of those would
not be susceptible to modifications of in-plane (IP) parameters, because the
according 3D Radon transform value is not affected by translations/rotations
within those planes (or planes parallel to them). On the contrary, geometric
variations stepping out of the plane of rotation should significantly change the
consistency error εij .

This expectation was confirmed by simulations with a 3D Shepp-Logan phan-
tom. In figure 1, only one of the six parameters �p is changed from a perfect
semicircle trajectory for each angle (row) and its consistency error εij is de-
termined by the unaltered other angles (columns). One can observe significant
increases in the error function throughout all projections when changing one of
the out-of-plane (OP) parameters �pOP. In contrast, when modifying IP pa-
rameters �pIP, the consistency measure is only sensible for the first and last
projections, which represent opposite views and offer the most redundancy. To
be more precise, this includes all projections containing identical rays (angular
range equals to two times of the opening angle of the fan). In the following these
projections will be referred to as the “fan angle sector”.

Considering these findings, a separate optimization of the three OP parame-
ters was performed for each single projection. If required, optimization can be
extended to the full 6D �p inside the fan angle sector as well as the inter-fan
angle sector, if we increase the angle block length I, e. g. I = 2 (for fan angle
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Fig. 1. Consistency measure εij of each single rigid degree of freedom. For each defined
geometry parameter, the increase of the error matrix εij is depicted for misadjustments
between two projections at row i and column j of 0.5 ° or 0.5 mm, respectively. The
same grey scale window is used for each matrix. The largest increase of the error can
be observed for the OP parameter in (a), (b) and (f).

sector) and I = 15 (for inter-fan angle sector). Optimizing a larger block of I
results in a higher number of redundant pairs in the objective function leading
to more support. However, a further consequence of the increased block size, the
estimation of the geometry of projections with rapid patient motion is hampered.

2.3 Implementation

The intermediate function was computed on the CPU before the actual optimiza-
tion routine. This function was then sampled and stored for the optimization
process in the GPU’s video RAM:

1. cosine weighting of gi(x, y)
2. Radon transformation based on the model of Siddon [10] with a sampling

rate of Δs = 1 Pixel and Δϑ = 0.5 °
3. numerical differentiation with respect to s (centered derivative filter [−1, 0, 1])

and weighting according to (2)

The weightings in steps 1. and 2. could be computed as pre-processing steps since
the intrinsic parameter of the C-arm system were fixed within the optimization
routine. The sampling rates Δs und Δϑ of the Radon transformation were de-
termined empirically by selecting the configuration with the lowest numerical
error in the simulations.

The essential part of the optimization represents the search for the redun-
dant Radon pairs (ϑi, si) ↔ (ϑj , sj) of two projections required to determine
the εij . For that, we used the constraint that two source positions Ci and Cj

are on the same plane. An intuitive way of gathering the related set of planes
is to rotate an initial plane around a line connecting the two sources by an an-
gle φ. Using this strategy, we were able to estimate several redundant pairs of
intermediate function values by a fast linear interpolation on video the GPU’s
RAM. Thereby, only those planes with intersection lines {ϑ, s}i/j located inside
both detector areas were considered. The smallest reasonable change Δφ of the
plane rotation is given by the sampling of the Radon transformation. It was
estimated through geometric consideration (not shown here). Using the above
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parameters and the geometry of a Siemens Artis Q C-arm with source-detector
distance D = 1.2 m, detector resolution of 0.308×0.308 mm and 1240×960 pixels,
we estimated a lower bound of Δφ ≈ 0.015 °, resulting in a maximum num-
ber of redundant pairs Nmax = 180 °

Δφ ≈ 12, 000. As already mentioned in sec-
tion 2.1, this amount is not attainable for all projection combinations when
using equidistant rotational steps. Especially, the overall amount for each an-
gle is not equally distributed, due to limited angle of rotation (approx. 200 °)
in short scans (in connection with limited detector size). The number of us-
able planes (associated with available redundant values) is shown in figure 2.

Fig. 2. Number of usable redun-
dant Radon planes for each X-
ray image pair of a short scan
(0 ° . . . 200 °). Most of the planes are
concentrated at the fan angle sector
containing opposite views.

The computation of the objective function
EI was performed for each εij in parallel on
GPU using OpenCL programming language.
For minimization of the objective function,
we used a nonlinear optimization algorithm
from the open-source library NLopt2 which
is based on T. Rowan’s "Subplex" [9] imple-
mentation.

In summary, the main methodical differ-
ences to the work of Maass et al. [6] are: non-
linear optimizer instead of grid search, mul-
tidimensional optimizing of the world coor-
dinate system instead of single intrinsic CT
geometry parameters (motion instead of cal-
ibration), p = 0.3 instead of p = 2 (smooth-
ing the objective function), Nmax = 12, 000
instead of Nmax = 768.
With these adaptions, we tried to overcome
the inferior preconditions of the C-arm in
terms of data quality (e. g. partial overexposure) and short-scan geometry.

3 Results

A Siemens Artis Q system has been used to acquire the clinical data using a
20 sec protocol with 496 projection images. Figure 3 depicts the effect of the op-
timization on the error matrix εij . In this example, the acquisition of a patient
head with distinct movements was used. One can notice an increase of the consis-
tency error εij as well the totalized Ei =

∑
j εij for the misadjusted projections.

The peaks in figure 3b are correlated with the amount of geometric changes af-
ter the optimization. The optimization was performed sequentially through all
images, but was applied for all three OP parameter at once. Figure 4 depicts
the improvement of the reconstruction (via FDK) in four datasets after the 3D
OP optimization which was already sufficient in most cases. However, Figure 5

2 Steven G. Johnson, The NLopt nonlinear-optimization package.
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(a) Error matrix εij before (left) and after
(right) the optimization. Reconstructions
are shown in the upper right in figure 4.

(b) Totalized Error Ei before and after
the 3D OP optimization and the absolute
value of the resulting OP parameter tz.

Fig. 3. Impact of a sequential 3D OP parameter optimization on the consistency metric
εij , its summation Ei over columns and the translations {tz}i in �pOP

Fig. 4. Reconstructions of four clinical datasets before and after a sequential 3D OP
motion compensation (very robust). Computation time per patient is about 30 sec using
a standard gaming videocard AMD Radeon R9 280.

Fig. 5. Reconstruction with uncorrected geometry (left), after a sequential 3D OP
motion compensation (center) and subsequent full 6D optimization (OP+IP).

presents a case where a 6D optimization of the whole parameter vector �p pro-
vides further improvoment of image quality. Note that the 6D optimization is
unstable in general and does not improve image quality in every case. This will
be subject of future work.
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4 Conclusions

In this work we show the possibility to compensate rigid patient motion in the
out-of-plane parameters, which can be performed in a robust manner. These
parameters can be separated from the other geometric directions and optimized
in a 3D nonlinear minimization procedure. This leads to a robust motion com-
pensation of the reconstructed images at a relatively low computational cost.
In most cases, it was sufficient to neglect the in-plane parameters which are, in
general, difficult to optimize. However, assumably, they have minor influence on
the image quality. In one case, it was beneficial to consider all six degrees of
freedom which was realized by optimizing a larger block of projections at once.
Limitations may occur, if there are further artefacts within the projections due
to truncation, detector overexposure or beam hardening. A refinement of the
optimization strategy, e. g. the detection of motion based on pattern recognition
in the error matrix εij , can reduce the computational cost.
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