Checking Interaction-Based Declassification
Policies for Android Using Symbolic Execution

Kristopher Micinski!®, Jonathan Fetter-Degges', Jinseong Jeon!,
Jeffrey S. Foster!, and Michael R. Clarkson?

! University of Maryland, College Park, USA
{micinski, jonfd, jsjeon,jfoster}@cs.umd.edu
2 Cornell University, Ithaca, USA
clarkson@cs.cornell.edu

Abstract. Mobile apps can access a wide variety of secure information,
such as contacts and location. However, current mobile platforms include
only coarse access control mechanisms to protect such data. In this
paper, we introduce interaction-based declassification policies, in which
the user’s interactions with the app constrain the release of sensitive
information. Our policies are defined extensionally, so as to be indepen-
dent of the app’s implementation, based on sequences of security-relevant
events that occur in app runs. Policies use LTL formulae to precisely spec-
ify which secret inputs, read at which times, may be released. We for-
malize a semantic security condition, interaction-based noninterference,
to define our policies precisely. Finally, we describe a prototype tool that
uses symbolic execution of Dalvik bytecode to check interaction-based
declassification policies for Android, and we show that it enforces poli-
cies correctly on a set of apps.

Keywords: Information flow - Program analysis + Symbolic execution

1 Introduction

The Android platform includes a permission system that aims to prevent apps
from abusing access to sensitive information, such as contacts and location.
Unfortunately, once an app is installed, it has carte blanche to use any of its
permissions in arbitrary ways at run time. For example, an app with location
and Internet access could continuously broadcast the device’s location, even if
such behavior is not expected by the user.

To address this limitation, this paper presents a new framework for Android
app security based on information flow control [8] and user interactions. The key
idea behind our framework is that users naturally express their intentions about
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information release as they interact with an app. For example, clicking a button
may permit an app to release a phone number over the Internet. Or, as another
example, toggling a radio button from “coarse” to “fine” and back to “coarse”
may temporarily permit an app to use fine-grained GPS location rather than a
coarse-grained approximation.

To model these kinds of scenarios, we introduce interaction-based declassi-
fication policies, which extensionally specify what information flows may occur
after which sequences of events. Events are GUI interactions (e.g., clicking a
button), inputs (e.g., reading the phone number), or outputs (e.g., sending over
the Internet). A policy is a set of declassification conditions, written ¢ > S,
where ¢ is a linear-time temporal logic (LTL) [20] formula over events, and S
is a sensitivity level. If ¢ holds at the time an input occurs, then that input is
declassified to level S. We formalize a semantic security condition, interaction-
based noninterference (IBNI), over sets of event traces generated by an app.
Intuitively, IBNT holds of an app and policy if observational determinism [28§]
holds after all inputs have been declassified according to the policy. (Section 2
describes policies further, and Sect. 3 presents our formal definitions.)

We introduce ClickRelease, a static analysis tool to check whether an Android
app and its declassification policy satisfy IBNI. ClickRelease generates event
traces using SymDroid [11], a Dalvik bytecode symbolic executor. ClickRelease
works by simulating user interactions with the app and recording the resulting
execution traces. In practice, it is not feasible to enumerate all program traces, so
ClickRelease generates traces up to some input depth of n GUI events. ClickRe-
lease then synthesizes a set of logical formulae that hold if and only if IBNT holds,
and uses Z3 [17] to check their satisfiability. (Section4 describes ClickRelease in
detail.)

To validate ClickRelease, we used it to analyze four Android apps, including
both secure and insecure variants of those apps. We ran each app variant under
a range of input depths, and confirmed that, as expected, ClickRelease scales
exponentially. However, we manually examined each app and its policy, and
found that an input depth of at most 5 is sufficient to guarantee detection of a
security policy violation (if any) for these cases. We ran ClickRelease at these
minimum input depths and found that it correctly passes and fails the secure
and insecure app variants, respectively. Moreover, at these depths, ClickRelease
takes just a few seconds to run. (Section5 describes our experiments.)

In summary, we believe that ClickRelease takes an important step forward in
providing powerful new security mechanisms for mobile devices. We expect that
our approach can also be used in other GUI-based, security-sensitive systems.

2 Example Apps and Policies

We begin with two example apps that show interesting aspects of interaction-
based declassification policies.

Bump App. The boxed portion of Fig.1 gives (simplified) source code for an
Android app that releases a device’s unique ID and/or phone number. This
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public class BumpApp extends Activity {
protected void onCreate(...) {
Button sendBtn = (Button) findViewByld(. . .);
1| CheckBox idBox = (CheckBox) findViewByld(...);
5| CheckBox phBox = (CheckBox) findViewByld(...);
s| TelephonyManager manager = TelephonyManager.getTelephonyManager();
7| final int id = manager.getDeviceld();
s| final int ph = manager.getPhoneNumber();
o/ idBox.setChecked(false ); phBox.setChecked(false);
10 sendBtn.setOnClickListener (
11 new OnClickListener() {
12 public void onClick(View v) {
13 if (idBox.isChecked())
14 Internet .sendInt(id ); //Internet.sendlInt(ph);
15 if (phBox.isChecked())
16 Internet . sendInt(ph); //Internet.sendInt(id);

D

-

id! * A(F (sendBtnlunit A last(idBox, true))) > Low,
ph! x A(F(sendBtnlunit A last(phBox, true))) > Low

Fig. 1. “Bump” app and policy.

app is inspired by the Bump app, which let users tap phones to share selected
information with each other. We have interspersed an insecure variant of the app
in the red code on lines 14 and 16, which we will discuss in Sect. 3.1.

Each screen of an Android app is implemented using a class that extends
Activity. When an app is launched, Android invokes the onCreate method for a
designated main activity. (This is part of the activity lifecycle [10], which includes
several methods called in a certain order. For this simple app, and the other apps
used in this paper, we only need a single activity with this one lifecycle method.)
That method retrieves (lines 3-5) the GUI IDs of a button (marked “send”) and
two checkboxes (marked “ID” and “phone”). The onCreate method next gets
an instance of the TelephonyManager, uses it to retrieve the device’s unique ID
and phone number information, and unchecks the two checkboxes as a default.
Then it creates a new callback (line 11) to be invoked when the “send” button is
clicked. When called, that callback releases the user’s ID and/or phone number,
depending on the checkboxes.

This app is written to work with ClickRelease, a symbolic execution tool we
built to check whether apps satisfy interaction-based declassification policies. As
we discuss further in Sect. 4, ClickRelease uses an executable model of Android
that abstracts away some details that are unimportant with respect to security.
While a real app would release information by sending it to a web server, here
we instead call a method Internet.sendInt. Additionally, while real apps include
an XML file specifying the screen layout of buttons, checkboxes, and so on,
ClickRelease creates those GUI elements on demand at calls to findViewByld
(since their screen locations are unimportant). Finally, we model the ID and
phone number as integers to keep the analysis simpler.
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ClickRelease symbolically executes paths through subject apps, recording a
trace of events that correspond to certain method calls. For example, one path
through this app generates a trace

id!42, ph!43, idBox!true, sendBtn!unit, netout!42

Each event has a name and a value. Here we have used names id and ph for
secret inputs, idBox and sendBtn for GUI inputs, and netout for the network
send. In particular, the trace above indicates 42 is read as the ID, 43 is read
as the phone number, the ID checkbox is selected, the send button is clicked
(carrying no value, indicated by unit), and then 42 is sent on the network. In
ClickRelease, events are generated by calling certain methods that are specially
recognized. For example, ClickRelease implements the manager.getDeviceld call
as both returning a value and emitting an event.

Notice here that in the trace, callbacks to methods such as idBox and sendBtn
correspond to user interactions. The key idea behind our framework is that these
actions convey the user’s intent as to which information should be released. More-
over, traces also contain actions relevant to information release—here the reads
of the ID and phone number, and the network send. Thus, putting both user
interactions and security-sensitive operations together in a single trace allows
our policies to enforce the user’s intent.

The policy for this example app is shown at the bottom of Fig. 1. Policies are
comprised of a set of declassification conditions of the form ¢ > .S, where ¢ is an
LTL formula describing event traces and S is a security level. Such a condition
is read, “At any input event, if ¢ holds at that position of the event trace, then
that input is declassified at level S.” For this app there are two declassification
conditions. The top condition declassifies (to Low) an input that is a read of
the ID at any value (indicated by %), if sometime in the future (indicated by
the F modality) the send button is clicked and, when that button is clicked, the
last value of the ID checkbox was true. (Note that last is not primitive, but is
a macro that can be expanded into regular LTL.) The second declassification
condition does the analogous thing for the phone number.

To check such a policy, ClickRelease symbolic executes the program, generat-
ing per-path traces; determines the classification level of every input; and checks
that every pair of traces satisfies noninterference. Note that using LTL provides
a very general and expressive way to describe the sequences of events that imply
declassification. For example, here we precisely capture that only the last value
of the checkbox matters for declassification. For example, if a user selects the ID
checkbox but then unselects it and clicks send, the ID may not be released.

Although this example relies on a direct flow, ClickRelease can also detect
implicit flows. Section 3.2 defines an appropriate version of noninterference, and
the experiments in Sect. 5 include a subject program with an implicit flow.

Notice this policy depends on the app reading the ID and phone number
when the app starts. If the app instead waited until after the send button were
clicked, it would violate this policy. We could address this by replacing the F
modality by P (past) in the policy, and we could form a disjunction of the two
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public class ToggleRes extends Activity { ...

LocSharer mLocSharer = new LocSharer();

RadioManager mRadio = new RadioManager();

protected void onCreate(...) { ...}

private class LocSharer implements LocationListener { ...
public LocSharer(RadioManager rm) {
Im = (LocationManager) getSystemService(LOCATION_SERVICE);
Im.requestLocationUpdates(mCurrentProvider, SHARE_INTERVAL, distance, this);

public void onLocationChanged(Location 1) {
if (mRadio.mFine) {
Internet . sendInt (|.mLatitude);
Internet . sendInt(|.mLongitude);

} else {
Internet . sendInt (1. mLatitude & 0 xffffff00 );

Internet . sendInt (| .mLongitude & 0xffffff00 );
P}

private class RadioManager
implements OnClickListener {
public boolean mFine = false;
public void onClick(View v) { mFine = ImFine; }

I

longitude! x Alast(mRadio, true) > Low,
longitude! x Alast(mRadio, false) > MaskLower8

Fig. 2. Location sharing app and policy.

policies if we wanted to allow either implementation. More generally, we designed
our framework to be sensitive to such choices to support reasoning about secret
values that change over time. We will see an example next.

Location Resolution Toggle App. Figure2 gives code for an app that shares
location information, either at full or truncated resolution depending on a radio
button setting. The app’s onCreate method displays a radio button (code not
shown) and then creates and registers a new instance of RadioManager to be
called each time the radio button is changed. That class maintains field mFine
as true when the radio button is set to full resolution and false when set to
truncated resolution.

Separately, onCreate registers LocSharer to be called periodically with the
current location. It requests location updates by registering a callback with the
LocationManager system service. When called, LocSharer releases the location,
either at full resolution or with the lower 8 bits masked, depending on mFine.

The declassification policy for longitude appears below the code; the policy
for latitude is analogous. This policy allows the precise longitude to be released
when mRadio is set to fine, but only the lower eight bits to be released if mRadio
is set to coarse. Here ClickRelease knows that at the MaskLower8 level, it should
consider outputs to be equivalent up to differences in the lower 8 bits.
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Primitives p :=n|true | false | unit | f(p1,...,pi)
Events n = namelp
Traces t = list

(a) Event and Trace Definitions.

Policies P = C1,C4,

Conditions Cui=¢> 85

Security Levels S ::= High | Low | MaskLower§ | ...

Atoms A = namels | s® s

Messages s n=x|p|x*

Formulae =A@ |dNP|OVOP|d— ¢|Tx.d|Vr.d

| X loU ¢|Go| Fop| oS ¢|Po

(b) Interaction-based Declassification Policy Language.

Fig. 3. Formal definitions.

Finally, notice that this policy does not use the future modality. This is
deliberate, because location may be read multiple times during the execution, at
multiple values, and the security level of those locations should depend on the
state of the radio button at that time. For example, consider a trace

mRadiolfalse, longitudelv;, mRadio!true, longitude!v,

The second declassification condition (longitude!*Alast(mRadio, false)) will match
the event with vy, since the last value of mRadio was false, and thus v; may be
declassified only to MaskLowerS8. Whereas the first declassification condition will
match the event with vy, hence it may be declassified to Low.

3 Program Traces and Security Definition

Next, we formally define when a set of program traces satisfies an interaction-
based declassification policy.

3.1 Program Traces

Figure 3(a) gives the formal syntax of events and traces. Primitives p are terms
that can be carried by events, e.g., values for GUI events, secret inputs, or
network sends. In our formalism, primitives are integers, booleans, and terms
constructed from primitives using uninterpreted constructors f. As programs
execute, they produce a trace t of events n, where each event namelp pairs an
event name name with a primitive p. We assume event names are partitioned into
those corresponding to inputs and those corresponding to outputs. For all the
examples in this paper, all names are inputs except netout, which is an output.
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Due to space limitations, we omit details of how traces are generated. These
details, along with definition of our LTL formulas, can be found in a companion
tech report [16]. Instead, we simply assume there exists some set 7 containing all
possible traces a given program may generate. For example, consider the insecure
variant bump app in Fig. 1, which replaces the black code with the red code on
lines lines 14 and 16. This app sends the phone number when the email box is
checked and vice-versa. Thus, its set 7 contains, among others, the following
two traces:

id!0, ph!0, idBox!true, sendBtn!unit, netout!0 (1)
id!0, ph!1, idBox!true, sendBtn!unit, netout!1 (2)

In the first trace, ID and phone number are read as 0, the ID checkbox is selected,
the button is clicked, and 0 is sent. The second trace is similar, except the phone
number and sent value are 1. Below, we use these traces to show this program
violates its security policy.

3.2 Interaction-Based Declassification Policies

We now define our policy language precisely. Figure 3(b) gives the formal syntax
of declassification policies. A policy P is a set of declassification conditions C;
of the form ¢; > S;, where ¢; is an LTL formula describing when an input
is declassified, and S5; is a security level at which the value in that event is
declassified.

As is standard, security levels S form a lattice. For our framework, we require
that this lattice be finite. We include High and Low security levels, and we can
generalize to arbitrary lattices in a straightforward way. Here we include the
MaskLower8 level from Fig. 2 as an example, where Low C MaskLower8 T High.
Note that although we include High in the language, in practice there is no
reason to declassify something to level High, since then it remains secret.

The atomic predicates A of LTL formulae match events, e.g., atomic predi-
cate namelp matches exactly that event. We include * for matches to arbitrary
primitives. We allow event values to be variables that are bound in an enclosing
quantifier. The atomic predicates also include atomic arithmetic statements; here
@ ranges over standard operations such as +, <, etc. The combination of these
lets us describe complex events. For example, we could write Jx.spinnerle Az > 2
to indicate the spinner was selected with a value greater than 2.

Atomic predicates are combined with the usual boolean connectives (-, A,
V, —) and existential and universal quantification. Formulae include standard
LTL modalities X (next), U (until), G (always), F (future), ¢ S 9 (since), and
P¢ (past). We include a wide range of modalities, rather than a minimal set,
to make policies easier to write. Formulae also include last(name,p), which is
syntactic sugar for —(namelx) S namelp. We assume a standard interpretation
of LTL formulae over traces [14]. We write t,i = ¢ if trace ¢ is a model of ¢ at
position 7 in the trace.
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Next consider a trace ¢t € T for an arbitrary program. We write level(t, P, 1)
for the security level that policy P assigns to the event t[i]:

[No,05,ep{Si 1 ti = @5} t[i] = namelp
Low t[¢] = netout!p

level(t, P,1) = {

In other words, for inputs, we take the greatest lower bound (the most declas-
sified) of the levels from all declassification conditions that apply. We always
consider network outputs to be declassified. Notice that if no policy applies, the
level is H by definition of greatest lower bound.

For example, consider trace (1) above with respect to the policy in Fig. 1.
At position 0, the LTL formula holds because the ID box is eventually checked
and then the send button is clicked, so level((1),P,0) = Low. However,
level((1), P, 1) = High because no declassification condition applies for ph (phBox
is never checked). And level((1), P,4) = Low, because that position is a network
send.

Next consider applying this definition to the GUI inputs. As written, we
have level((1), P,2) = level((1), P,3) = High. However, our app is designed to
leak these inputs. For example, an adversary will learn the state of idBox if they
receive a message with an ID. Thus, for all the subject apps in this paper, we also
declassify all GUI inputs as Low. For the example in Fig. 1, this means adding
the conditions idBox! * > Low, phBox! * > Low, and sendBtn! x > Low. In general,
the security policy designer should decide the security level of GUI inputs.

Next, we can apply level pointwise across a trace and discard any trace
elements that are below a given level S. We define

t[i] level(t, P,i) C S
level(t, P)[i] = { 1] level ” i) C

7  otherwise
We write level(t, P)*"" for the same filtering, except output events (i.e., network
sends) are removed as well. Considering the traces (1) and (2) again, we have

level((1), P)L°ow=id!0, idBox!true, sendBtn!unit, netout!0

level((2), P)L°ow=id!0, idBox!true, sendBtn!unit, netout!1
level((1), P)Lowin=id!0, idBox!true, sendBtn!unit
level((2), P)Lowin=idl0, idBox!true, sendBtn!unit

Finally, we can define a program to satisfy noninterference if, for every pair
of traces such that the inputs at level S are the same, the outputs at level S are
also the same. To account for generalized lattice levels such as MaskLower8, we
also need to treat events that are equivalent at a certain level as the same. For
example, at MaskLowerS8, outputs Oxffffffff and Oxffffff00 are the same,
since they do not differ in the upper 24 bits. Thus, we assume for each security
level S there is a appropriate equivalence relation =g, e.g., for MaskLowerS8, it
compares elements ignoring their lower 8 bits. Note that x =r,, y is simply
r =y and x =p;gp ¥ is always true.
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Definition 1 (Interaction-based Noninterference (IBNI)). A program
satisfies security policy P, if for all S and for all t1,to € T (the set of traces of
the program) the following holds:

level(t, P)>"™ =g level(ty, P)>" = level(ty, P)° =g level(ty, P)°

Looking at traces for the insecure app, we see they violate non-interference,
because level((1), P)Lowin = Jevel((2), P)Fow but level((1), P)Low # level
((2)P)Low (they differ in the output). We note that our definition of nonin-
terference makes it a 2-hypersafety property [6,7].

4 Implementation

We built a prototype tool, ClickRelease, to check whether Android apps obey
the interaction-based declassification policies described in Sect. 3. ClickRelease
is based on SymDroid [11], a symbolic executor for Dalvik bytecode, which is
the bytecode format to which Android apps are compiled. As is standard, Sym-
Droid computes with symbolic expressions that may contain symbolic variables
representing sets of values. At conditional branches that depend on symbolic
variables, SymDroid invokes Z3 [17] to determine whether one or both branches
are feasible. As it follows branches, SymDroid extends the current path condition,
which tracks branches taken so far, and forks execution when multiple paths are
possible. Cadar and Sen [1] describe symbolic execution in more detail.
SymDroid uses the features of symbolic execution to implement nondetermin-
istic event inputs (such as button clicks or spinner selections), up to a certain
bound. Since we have symbolic variables available, we also use them to represent
arbitrary secret inputs, as discussed below in Sect.4.2. There are several issues
that arise in applying SymDroid to checking our policies, as we discuss next.

4.1 Driving App Execution

Android apps use the Android framework’s API, which includes classes for
responding to events via callbacks. We could try to account for these callbacks
by symbolically execution Android framework code directly, but past experience
suggests this is intractable: the framework is large, complicated, and includes
native code. Instead, we created an executable model, written in Java, that mim-
ics key portions of Android needed by our subject apps. Our Android model
includes facilities for generating clicks and other GUI events (such as the View,
Button, and CheckBox classes, among others). It also includes code for Location-
Manager, TelephonyManager, and other basic Android classes.

In addition to code modeling Android, the model also includes simplified ver-
sions of Java library classes such as StringBuffer and StringBuilder. Our versions
of these APIs implement unoptimized versions of methods in Java and escape to
internal SymDroid functions to handle operations that would be unduly complex
to symbolically execute. For instance, SymDroid represents Java String objects
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with OCaml strings instead of Java arrays of characters. It thus models methods
such as String.concat with internal calls to OCaml string manipulation functions.
Likewise, reflective methods such as Class.getName are handled internally.

For each app, we created a driver that uses our Android model to simulate
user input to the GUI. The driver is specific to the app since it depends on
the app’s GUI. The driver begins by calling the app’s onCreate method. Next it
invokes special methods in the Android model to inject GUI events. There is one
such method for each type of GUI element, e.g., buttons, checkboxes, etc. For
example, Trace.addClick(id) generates a click event for the given id and then calls
the appropriate event handler. The trace entry contains the event name for that
kind of element, and a value if necessary. Event handlers are those that the app
registered through standard Android framework mechanisms, e.g., in onCreate.

Let m be the number of possible GUI events. To simulate one arbitrary
GUI event, the driver uses a block that branches m ways on a fresh symbolic
variable, with a different GUI action in each branch. Typical Android apps never
exit unless the framework kills them, and thus we explore sequences of events
only up to a user-specified input depth n. Thus, in total, the driver will execute
at least m™ paths.

4.2 Symbolic Variables in Traces

In addition to GUI inputs, apps also use secret inputs. We could use SymDroid to
generate concrete secret inputs, but instead we opt to use a fresh symbolic vari-
able for each secret input. For example, the call to manager.getDeviceld in Fig. 1
returns a symbolic variable, and the same for the call to manager.getPhoneNumber.
This choice makes checking policies using symbolic execution a bit more power-
ful, since, e.g., a symbolic integer variable represents an arbitrary 32-bit integer.
Note that whenever ClickRelease generates a symbolic variable for a secret input,
it also generates a trace event corresponding to the input.

Recall that secret inputs may appear in traces, and thus traces may now
contain symbolic variables. For example, using «;’s as symbolic variables for the
secret ID and phone number inputs, the traces (1) and (2) become

idlay, phlasg, idBox!true, sendBtn!lunit, netout!as (1)
idlaq, phlag, idBox!true, sendBtn!lunit, netout!as (2')

We must take care when symbolic variables are in traces. Recall level checks
t,i = ¢ and then assigns a security level to position i. If ¢ depends on symbolic
variables in ¢, we may not be able to decide this. For example, if the third
element in (1) were idBoxlag, then we would need to reason with conditional
security levels such as level(t, P,0) = if az then Low else High. We avoid the
need for such reasoning by only using symbolic variables for secret inputs, and
by ensuring the level assigned by a policy does not depend on the value of a
secret input. We leave supporting more complex reasoning to future work.
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4.3 Checking Policies with Z3

Each path explored by SymDroid yields a pair (¢, ®), where ¢ is the trace and
@ is the path condition. ClickRelease uses Z3 to check whether a given set of
such trace-path condition pairs satisfies a policy P. Recall that Definition 1
assumes for each S there is an =g relation on traces. We use the same relation
below, encoding it as an SMT formula. For our example lattice, =gign produces
true, =y, produces a conjunction of equality tests among corresponding trace
elements, and =p/qskLowers Produces the conjunction of equality tests of the
bitwise-and of every element with Oxffffff00.

Given a trace t, let ¢ be ¢ with its symbolic variables primed, so that the
symbolic variables of ¢t and ¢’ are disjoint. Given a path condition @, define &’
similarly. Now we can give the algorithm for checking a security policy.

Algorithm 1. To check a set T of trace—path condition pairs, do the following.
Let P be the app’s security policy. Apply level across each trace to obtain the
level of each event. For each (t1,P1) and (ta,P2) in T X T, and for each S, ask
Z3 whether the following formula (the negation of Definition 1) is unsatisfiable:

level(ty, P)5"™ =g level(th, P)*™ A level(t, P)° #s level(thy, P)S A &, A D)
If no such formula is unsatisfiable, then the program satisfies noninterference.

We include @1 and &4 to constrain the symbolic variables in the trace. More
precisely, t; represents a set of concrete traces in which its symbolic variables
are instantiated in all ways that satisfy @7, and analogously for ¢.

If the above algorithm finds an unsatisfiable formula, then Z3 returns a coun-
terexample, which SymDroid uses in turn to generate a pair of concrete traces as
a counterexample. For example, consider traces (1) and (2’) above, and prime
symbolic variables in (2). Those traces have the trivial path condition true, since
neither branches on a symbolic input. Thus, the formula passed to Z3 will be:

a1 = o) Atrue = true A unit = unit A (a1 #* oy V true # true V unit # unit V as # 0/2)

Thus we can see a satisfying assignment with a3 = o} and as # o, hence
noninterference is violated.

4.4 Minimizing Calls to Z3

A naive implementation of the noninterference check generates n? equations,

where n is the number of traces produced by ClickRelease to be checked by Z3.
However, we observed that many of these equations correspond to pairs of traces
with different sequences of GUI events. Since GUI events are low inputs in all
our policies, these pairs trivially satisfy noninterference (the left-hand side of the
implication in Definition 1 is false). Thus, we need not send those equations to
Z3 for an (expensive) noninterference check.

We exploit this observation by organizing SymDroid’s output traces into a
tree, where each node represents an event, with the initial state at the root.
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Traces with common prefixes share the same ancestor traces in the tree. We
systematically traverse this tree using a cursor ¢, starting from the root. When
t1 reaches a new input event, we then traverse the tree using another cursor %o,
also starting from the root. As ¢y visits the tree, we do not invoke Z3 on any
traces with fewer input events than ¢; (since they are not low-equivalent to ¢;).
We also skip any subtrees where input events differ.

5 Experiments

To evaluate ClickRelease, we ran it on four apps, including the two described
in Sect. 2. We also ran ClickRelease on several insecure variants of each app, to
ensure it can detect the policy violations. The apps and their variants are:

— Bump. The bump app and its policy appear in Fig. 1. The first insecure vari-
ant counts clicks to the send button sends the value of the ID after three
clicks, regardless of the state of the ID checkbox. The second (indicated in
the comments in the program text) swaps the released information—if the ID
box is checked, it releases the phone number, and vice-versa.

— Location Toggle. The location toggle app and its policy appear in Fig.2. The
first insecure variant always shares fine-grained location information, regard-
less of the radio button setting. The second checks if coarse-grain information
is selected. If so, it stores the fine-grained location (but does not send it yet).
If later the fine-grained radio button is selected, it sends the stored location.
Recall this is forbidden by the app’s security policy, which allows the release
only of locations received while the fine-grained option is set.

— Contact Picker. We developed a contact picker app that asks the user to select
a contact from a spinner and then click a send button to release the selected
contact information over the network. The security policy for this app requires
that no contact information leaks unless it is the last contact selected before
the button click. (For example, if the user selects contact 1, selects contact 2,
and then clicks the button, only contact 2 may be released.) Note that since
an arbitrarily sized list of contacts would be difficult for symbolic execution
(since then there would be an unbounded number of ways to select a contact),
we limit the app to a fixed set of three contacts. The first insecure variant of
this app scans the set of contacts for a specific one. If found, it sends a message
revealing that contact exists before sending the actual selected contact. The
second insecure variant sends a different contact than was selected.

— WhereRU. Lastly, we developed an app that takes push requests for the user’s
location and shares it depending on user-controlled settings. The app con-
tains a radio group with three buttons, “Share Always,” “Share Never,” and
“Share On Click.” There is also a “Share Now” button that is enabled when
the “Share On Click” radio button is selected. When a push request arrives,
the security policy allows sharing if (1) the “Always” button is selected, or
(2) the “On Click” button is selected and the user presses “Share Now.” Note
that, in the second case, the location may change between the time the request
arrives and the time the user authorizes sharing; the location to be shared is
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Fig. 4. Runtime vs. number of events.

the one in effect when the user authorized sharing, i.e., the one from the most
recent location update before the button click. Also, rather than include the
full Android push request API in our model, we simulated it using a basic
callback. This app has two insecure variants. In the first one, when the user
presses the “Share Now” button, the app begins continuously sharing (instead
of simply sharing the single location captured on the button press). In the sec-
ond, the app shares the location immediately in response to all requests.

Scalability. We ran our experiments on a 4-core i7 CPU @3.5 GHz with 16 GB
RAM running Ubuntu 14. For each experiment we report the median of 10 runs.

In our first set of experiments, we measured how ClickRelease’s performance
varies with input depth. Figure4 shows running time (log scale) versus input
depth for all programs and variants. For each app, we ran to the highest input
depth that completed in one hour.

For each app, we see that running time grows exponentially, as expected.
The maximum input depth before timeout (i.e., where each curve ends) ranges
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Input Time (ms)
App Depth Exploration[Analysis[Total
Bump 3 114 15| 142
Bump (insecure 1) 5 2,100 1,577|3,690
Bump (insecure 2) 4 266 70| 344
Location toggle 2 113 12| 128
Location toggle (insecure 1) 2 143 12| 163
Location toggle (insecure 2) 3 117 12| 143
Contact picker 2 79 2| 94
Contact picker (insecure 1) 2 325 27| 361
Contact picker (insecure 2) 2 149 9| 170
WhereRU 3 849 183(1,045
WhereRU (insecure 1) 3 860 234/1,108
WhereRU (insecure 2) 2 257 10| 280

Fig. 5. Results at minimum input depth.

from five to nine. The differences have to do with the number of possible events
at each input point. For example, WhereRU has seven possible input events, so
it has the largest possible “fan out” and times out with an input depth of five.
In contrast, Bump and Location Toggle have just three input events and time
out with an input depth of nine. Notice also the first insecure variant of Contact
Picker times out after fewer events than the other variants. Investigating further,
this occurs due to that app’s implicit flow (recall the app branches on the value
of a secret input). Implicit flows cause symbolic execution to take additional
branches depending on the (symbolic) secret value.

Minimum Input Depth. Next, for each variant, we manually calculated a mini-
mum input depth guaranteed to find a policy violation. To do so, first we deter-
mined possible app GUI states. For example, in Bump (Fig. 1), there is a state
with idBox and phBox both checked, a state with just idBox checked, etc. Then we
examined the policy and recognized that certain input sequences lead to equiv-
alent states modulo the policy. For example, input sequences that click idBox an
even number of times and then click send are all equivalent. Full analysis reveals
that an input depth of three (which allows the checkboxes to be set any possible
way followed by a button click) is sufficient to reach all possible states for this
policy. We performed similar analysis on other apps and variants.

Figure 5 summarizes the results of running with the minimum input depth
for each variant, with the depths listed in the second column. We confirmed
that, when run with this input depth, ClickRelease correctly reports the benign
app variants as secure and the other app variants as insecure. The remaining
columns of Fig. 5 report ClickRelease’s running time (in milliseconds), broken
down by the exploration phase (where SymDroid generates the set of symbolic
traces) and the analysis phase (where SymDroid forms equations about this set
and checks them using Z3). Looking at the breakdown between exploration and
analysis, we see that the former dominates the running time, i.e., most of the
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time is spent simply exploring program executions. We see the total running
time is typically around a second or less, while for the first insecure variant of
Bump it is closer to 4 seconds, since it uses the highest input depth.

Our results show that while ClickRelease indeed scales exponentially, to actu-
ally find security policy violations we need only run it with a low input depth,
which takes only a small amount of time.

6 Limitations and Future Work

There are several limitations of ClickRelease we plan to address in future work.

Thus far we have applied ClickRelease to a set of small apps that we devel-
oped. There are two main engineering challenges in applying ClickRelease to
other apps. First, our model of Android (Sect.4.1) only includes part of the
framework. To run on other apps, it will need to be expanded with more Android
APIs. Second, we speculate that larger apps may require longer input depths to
go from app launch to interfering outputs. In these cases, we may be able to
start symbolic execution “in the middle” of an app (e.g., as in the work of Ma
et al. [15]) to skip uninteresting prefixes of input events.

ClickRelease also has several limitations related to its policy language. First,
ClickRelease policies are fairly low level. Complex policies—e.g., in which clicking
a certain button releases multiple pieces of information—can be expressed, but
are not very concise. We expect as we gain more experience writing ClickRelease
policies, we will discover useful idioms that should be incorporated into the policy
language. Similarly, situations where several methods in sequence operate on and
send information should be supported. Second, currently ClickRelease assumes
there is a single adversary who watches netout. It should be straightforward to
generalize to multiple output channels and multiple observers, e.g., to model
inter-app communication. Third, we do not consider deception by apps, e.g., we
assume the policy writer knows whether the sendBtn is labeled appropriately as
“send” rather than as “exit.” We leave looking for such deceptive practices to
future work.

Finally, since ClickRelease explores a limited number of program paths it is
not sound, i.e., it cannot guarantee the absence of policy violations in general.
However, in our experiments we were able to manually analyze apps to show
that exploration up to a certain input depth was sufficient for particular apps,
and we plan to investigate generalizing this technique in future work.

7 Related Work

ClickRelease is the first system to enforce extensional declassification policies in
Android apps. It builds on a rich history of research in usable security, informa-
tion flow, and declassification.

One of the key ideas in ClickRelease is that GUI interactions indicate the
security desires of users. Roesner et al. [22] similarly propose access control gad-
gets (ACGs), which are GUI elements that, when users interact with them,
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grant permissions. Thus, ACGs and ClickRelease both aim to better align secu-
rity with usability [27]. ClickRelease addresses secure information flow, especially
propagation of information after its release, whereas ACGs address only access
control.

Android-Based Systems. TaintDroid [9] is a run-time information-flow tracking
system for Android. It monitors the usage of sensitive information and detects
when that information is sent over insecure channels. Unlike ClickRelease, Taint-
Droid does not detect implicit flows.

ApplIntent [26] uses symbolic execution to derive the context, meaning inputs
and GUI interactions, that causes sensitive information to be released in an
Android app. A human analyst examines that context and makes an expert
judgment as to whether the release is a security violation. ClickRelease instead
uses human-written LTL formulae to specify whether declassifications are per-
mitted. It is unclear from [26] whether Applntent detects implicit flows.

Pegasus [2] combines static analysis, model checking, and run-time monitor-
ing to check whether an app uses API calls and privileges consistently with users’
expectations. Those expectations are expressed using LTL formulae, similarly to
ClickRelease. Pegasus synthesizes a kind of automaton called a permission event
graph from the app’s bytecode then checks whether that automaton is a model
for the formulae. Unlike ClickRelease, Pegasus does not address information flow.

Jia et al. [12] present a system, inspired by Flume [13], for run-time enforce-
ment of information flow policies at the granularity of Android components and
apps. Their system allows components and apps to perform trust declassifica-
tion according to capabilities granted to them in security labels. In contrast,
ClickRelease reasons about declassification in terms of user interactions.

Security Type Systems. Security type systems [25] statically disallow programs
that would leak information. O’Neill et al. [19] and Clark and Hunt [5] define
interactive variants of noninterference and present security type systems that
are sound with respect to these definitions.

Integrating declassification with security type systems has been the focus of
much research. Chong and Myers [3] introduce declassification policies that con-
ditionally downgrade security labels. Their policies use classical propositional
logic for the conditions. ClickRelease can be seen as providing a more expres-
sive language for conditions by using LTL to express formulae over events. SIF
(Servlet Information Flow) [4] is a framework for building Java servlets with
information-flow control. Information managed by the servlet is annotated in
the source code with security labels, and the compiler ensures that information
propagates in ways that are consistent with those labels. The SIF compiler is
based on Jif [18], an information-flow variant of Java.

All of these systems require adding type annotations to terms in the pro-
gram code, e.g., method parameters, etc. In contrast, ClickRelease policies are
described in terms of app inputs and outputs.
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Event Based Models and Declassification. Vaughan and Chong [24] define expres-
sive declassification policies that allow functions of secret information to be
released after events occur, and extend the Jif compiler to infer events. ClickRe-
lease instead ties events to user interactions.

Rafnsson et al. [21] investigate models, definitions, and enforcement tech-
niques for secure information flow in interactive programs in a purely theoretical
setting. Sabelfeld and Sands [23] survey approaches to secure declassification in a
language-based setting. ClickRelease can be seen as addressing their “what” and
“when” axes of declassification goals: users of Android apps interact with the
GUI to control when information may be released, and the GUI is responsible
for conveying to the user what information will be released.

8 Conclusion

We introduced interaction-based declassification policies, which describe what
and when information can flow. Policies are defined using LTL formulae describ-
ing event traces, where events include GUI actions, secret inputs, and network
sends. We formalized our policies using a trace-based model of apps based on
security relevant events. Finally, we described ClickRelease, which uses sym-
bolic execution to check interaction-based declassification policies on Android,
and showed that ClickRelease correctly enforces policies on four apps, with one
secure and two insecure variants each.
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