Learning from Others: User Anomaly Detection
Using Anomalous Samples from Other Users

Youngja Park!®™) Tan M. Molloy!, Suresh N. Chari', Zenglin Xu?,
Chris Gates?, and Ninghi Li?

L IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{young_park,molloyim,schari}@us.ibm.com
2 Purdue University, West Lafayette, IN, USA
{xu218,gates,ninghui}@cs.purdue.edu

Abstract. Machine learning is increasingly used as a key technique in
solving many security problems such as botnet detection, transactional
fraud, insider threat, etc. One of the key challenges to the widespread
application of ML in security is the lack of labeled samples from real
applications. For known or common attacks, labeled samples are avail-
able, and, therefore, supervised techniques such as multi-class classifica-
tion can be used. However, in many security applications, it is difficult to
obtain labeled samples as each attack can be unique. In order to detect
novel, unseen attacks, researchers used unsupervised outlier detection or
one-class classification approaches, where they treat existing samples as
benign samples. These methods, however, yield high false positive rates,
preventing their adoption in real applications.

This paper presents a local outlier factor (LOF)-based method to
automatically generate both benign and malicious training samples from
unlabeled data. Our method is designed for applications with multiple
users such as insider threat, fraud detection, and social network analysis.
For each target user, we compute LOF scores of all samples with respect
to the target user’s samples. This allows us to identify (1) other users’
samples that lie in the boundary regions and (2) outliers from the tar-
get user’s samples that can distort the decision boundary. We use the
samples from other users as malicious samples, and use the target user’s
samples as benign samples after removing the outliers.

We validate the effectiveness of our method using several datasets
including access logs for valuable corporate resources, DBLP paper titles,
and behavioral biometrics of user typing behavior. The evaluation of our
method on these datasets confirms that, in almost all cases, our technique
performs significantly better than both one-class classification methods
and prior two-class classification methods. Further, our method is a gen-
eral technique that can be used for many security applications.

1 Introduction

Driven by an almost endless stream of well publicized cases of information theft
by malicious insiders, such as Wikileaks and Snowden, there is increased interest
© Springer International Publishing Switzerland 2015

G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 396-414, 2015.
DOI: 10.1007/978-3-319-24177-7_20



Learning from Others: User Anomaly Detection Using Anomalous 397

for monitoring systems to detect anomalous user behavior. Today, in addition
to traditional access control and other security controls, organizations actively
deploy activity monitoring mechanisms to detect such attacks. Activity moni-
toring is done through enforced rules as well as anomaly detection using ML
techniques. To best apply ML techniques, it is ideal if we can train a model with
lots of both anomalous and benign samples. This is very difficult for security
applications: it is often unrealistic to expect to gather enough anomalous sam-
ples for labeling. The lack of anomalous samples prohibits the applicability of
more accurate classification techniques, and, thus, most monitoring applications
have adopted anomaly detection or one-class classification techniques. These
methods construct a profile of a subject’s normal behavior using the subject’s
past behavior by treating them as benign sample and compare a new observed
behavior with the normal profile resulting in high false positive cases. The lack
of labeled data can also extend to samples of normal activity. In some situations,
there may be a small number of samples to learn a user’s normal behavior, or
the sample contain anomalous cases. This makes it difficult to learn an accurate
model for the data. Another problem of existing approaches is that they treat
the samples in the training period as benign. However, the training data can
contain anomalies, and, thus, training with this data can result in high false
negative rates.

Prior work has addressed the issue of mapping such one class classification
problems into two class classification problems [1-5]. However, earlier approaches
generate samples for the second class randomly [1,2] or by following a predefined
distribution such as uniform or Gaussian distribution [3-5]. While these data
points are generated from the data, they do not represent actual behavior in
most real-world problems.

In contrast, we observe that multiple users share the system and exhibit dis-
tinct behavioral patterns in many monitoring applications. Examples of such sce-
narios include user authentication determining the authenticity of a user based
on users’ keystroke patterns, insider threat detection identifying deviation of a
user’s access patterns from past behavior, and social network analysis detecting
anomaly in a user’s collaboration patterns. In these scenarios, we expect other
users’ behavioral pattern to be distinct from the target user’s behavior. Thus,
we can utilize other users’ samples to estimate a target user’s possible abnormal
behavioral patterns. We leverage these “abnormal” samples to help the classifier
learn a boundary between a user’s expected behavior and unexpected behavior.
There are no assumptions made about the distribution of anomalous samples,
no manual labeling is necessary, and it is independent of the underlying learning
algorithms.

The basic idea of our algorithm lies in the concept of a local density and is
built on the Local Outlier Factor algorithm [6]. LOF is a density-based anomaly
detection algorithm and finds anomalous data points based on their deviation
with respect to their neighbours. The locality of a data point is defined by its
k-nearest neighbors, and the distance to the k-neighbors is used to estimate the



398 Y. Park et al.

density. If the density of a data point has much lower density than its neighbors,
the data point is considered as an outlier.

We extend the idea of LOF and propose a new local density-based method
for selecting a good set of anomalous samples from the other users’ sample set.
For a given target user, we compute the Local Outlier Factor (LOF) value for
all data points with respect to the target user’s data points and choose data
points from other users’ samples that are distant from the target user’s data as
anomalous samples. Our method, named as reference points-based LOF, gives us
an estimate of the degree of “outlier-ness” of the other data points with respect
to the target user’s behavior. Given this measure of LOF, we have explored
two broad strategies to select abnormal samples: use the points with the highest
LOF, which deviate the most from the target user’s data points, or use the points
with the lowest LOF above a certain threshold, which are just “slightly different”
from the target user’s data. Further, we use the reference points-based LOF to
remove outliers from the target user’s sample set and produce more coherent
benign sample set.

We evaluate these approaches using four different data sets: keystroke dynam-
ics data for user authentication, typing patterns for user recognition, user access
patterns for a source code repository, and, finally, paper titles from the DBLP bib-
liography. For each test user, we generate both benign data points and abnormal
data points using the LOF-based strategies. We then train two-class classifiers—
Decision Tree, Logistic Regression and Random Forest—for evaluation. In each
case, our evaluation has shown that the strategy of providing abnormal data points
for users using the Reference Points-based LOF provides uniformly better results
compared to the one class classifier approach and binary-class approach using syn-
thetically constructed distributions of abnormal samples for training. Our meth-
ods produce better AUC (Area Under the ROC Curve) across all users in the var-
ious data sets. Our technique is promising and applicable to a large number of
problems in security relying on anomaly detection and user profiling.

2 Approach

This paper addresses the critical problem of detecting anomalous user behavior,
targeting use cases such as continuous user authentication and insider threat
detection. The key challenge we aim to address is the difficulty in obtaining
labeled anomalous samples. The primary goal is to detect anomalous behavior
of a user, i.e., when a user’s behavior deviates significantly from his/her own
historical behavior. While user-specific modeling can provide higher accuracy
and adaptability to changing environments, obtaining known anomalous samples
for each individual user is made even more challenging.

Standard anomaly detection techniques, such as statistical analysis or one-
class classification, aim to rank new samples based on their similarity to the
model of the negative samples, assuming that all previously known samples are
negative (benign). Many approaches use distance or density of the points as a
measurement for the similarity, in which data points with the lowest density



Learning from Others: User Anomaly Detection Using Anomalous 399

or the longest average distance to the previously known (negative) samples are
considered most anomalous.

In contrast, our approach makes no assumption on the underlying data dis-
tribution. We assume that data samples in these applications are generated inde-
pendently by many users with different underlying distributions. Consider, for
example, the case of detecting anomalous user access to a source code repository
shared by many employees. In this case, we expect that users’ access patterns
will depend on their role in the organization or project and will, in general,
be different from each other. For instance, we expect software developers to
exhibit similar access patterns e.g. access the repository regularly during busi-
ness hours, and to be significantly different from the access patterns of testers,
business managers, backup administrators etc. Further, we assume that, in these
multi-user applications, malicious actors often change their behaviors subtly or
try to impersonate another person to hide their malicious intention. Thus, an
anomalous point of a user’s behavior can look perfectly normal in the global
view, and, anomaly detection per user can detect these stealth attacks better
than a global anomaly detection. However, while user-specific modeling can pro-
duce more accurate detection, the data sparseness problem becomes even worse.
In this case, in addition to the lack of anomalous cases, we may not have enough
benign cases for some users, such as new users or not active users.

We address the lack of labeled samples by exploiting data samples from the
other users in the target application. Our intuition is that, when there are many
users, other users’ behavior can provide additional insights on potential anomalies.
We assume that a user’s actions are similar each other and tend to form a few
clusters occupying a small area in the data space. However, when we combine data
samples from many users, they provide more accurate projection of the entire data
space and help to estimate accurate boundaries between different users.

The main focus of this study is on how to generate anomalous samples auto-
matically from other users’ behaviors. To identify possibly anomalous samples
for a target user, we adopt a common definition of anomaly which considers the
data points in low density areas as anomalous [7]. We examine all the samples
of all users in the data set and identify the samples that are considered different
from a target user’s data samples. We apply Local Outlier Factor (LOF) [6] to
estimate the degree of “outlier-ness” and select anomalous samples for the target
user from other users’ data samples which have high LOF with respect to the
target user’s data samples. We call the target user’s data points the reference
points, and call the LOF computed based on the reference points as the reference
points-based LOF. Figurel illustrates the difference between outliers based on
the standard LOF and outliers based on the reference points-based LOF. Stan-
dard anomaly detection methods will identify two clusters of dense area and
detect only the two data points p; and ps as outliers as shown in Fig. 1(a).
However, the reference points-based outlier detection method will measure the
density of all the points with respect to their distance to the reference points
(C1), and thus will consider all the data points in Cy as outliers as well. The
main differences of our approach from other density-based anomaly detection
methods are in that we measure the outlier-ness of a data point with respect to



400 Y. Park et al.

(a) (b)

Fig. 1. Comparison of standard outlier detection (a) and reference points-based outlier
detection (b). The data points in Cy are the reference points, and the red points
represent outliers (Color figure online).

a fixed set of existing data points in the space, and, we use low density samples
as anomalous samples to build a binary classifier.

Apparently, if the data points of a user (i.e., reference points) are dispersed
over a wide area in the data space and mingled with other users’ samples, this
method would not work well. To validate our assumption that one user’s actions
tend to form close clusters, we analyzed a data set of 51 distinct users containing
200 cases for each user (10,200 cases in total) from the dynamic keystroke analy-
sis study [8]. We considered the 200 instances of the first user as the reference
points, and computed the LOF scores for all 10,200 samples with respect to the
200 reference points. Figure2 shows the LOF scores of the data points of all
the users. The x-axis represents the 51 users, and each cross point in the chart
represents a keystroke instance.

As we can see, all samples belonging to the first user have very low LOF
scores, while other users’ data points have much higher LOF scores, indicating
that the data points belonging to a user are close each other, while data points
from other users are separated. The analysis result supports our hypothesis on
exploiting other users’ data points to generate anomalous samples for the tar-
get user.

LOF

Giizit ;;;;;i;i;;;éig;%@%@%i%i;%@%@%@%;%%@%%%w%;

123456 7 8 91011121314 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Subject

Fig. 2. The reference points-based LOF scores for the 51 users in the Keystroke Data
Set [8] using the data points of the first user as the reference points. The dashed red
line is the 95 % confidence interval for the target user (Color figure online).



Learning from Others: User Anomaly Detection Using Anomalous 401

3 Reference Points-Based LOF

In this section, we explain the reference points-based LOF method in detail. The
task is to build an anomaly detection model for each user with both normal and
anomalous samples. In the absence of labeled anomalous samples, we explore
other users’ samples as potential anomalous points for a target user. We find
possible anomalous samples for each user from the other users’ normal samples.
The basic idea is to measure the degree of “outlier-ness” of all the training
samples and identify the data points that deviate from the target user’s samples.

In density-based anomaly detection, a data point is considered as an outlier
if the local density of the point is substantially lower than its neighbors. In this
work, we use the Local Outlier Factor (LOF) for local density estimation [6],
where the local area is determined by its k nearest neighbors from the target
user. LOF is computed as defined in Eqgs. 1 and 2.

S LRD(q)
g€kNN(p) LRD(p) (1)

LOF(®) = = N )

The local reachability distance (LRD) is defined as in Eq. 2.

[ENN(p)|

LRD(p) =
() 2 gekNN(p) Mmax{k-distance(q), dist(p, q)}

(2)

where k-distance(q) be the distance of the point ¢ to its k-th nearest neighbor.

Let U be the set of users, D be the set of training samples for all the users,
D, be the samples of a target user u, and D, be the samples from all other
users except u, i.e., D = D, UD,. Unlike the standard LOF, where k-nearest
neighbors are found from the entire data set, we compute the LOF values of all
data points p € D based on their distance to the k-nearest neighbors from the
target user’s data points, D,,. Figure 3 shows a high level sketch of the reference
points-based LOF.

Reference Points based LOF(D, U, K)

D., = extract samples of user v from D
for (p € D) do
for (¢ € D.) do
compute the distance between p and ¢, dist(p, q)
end for
end for
for (p € D,,) do
kNN (p) = K nearest neighbors of p in D,,
compute LOF'(p) using Equation 1
end for

Fig. 3. Algorithm for computing LOF based on a set of reference points



402 Y. Park et al.

In this work, we compute the distance between two data points p and ¢ using
a normalized Manhattan distance.

dist(p,q) = Z P = 4 (3)

max (i) — min(i)

1
where maz(i) and min(i) denote the maximum and minimum value for the i-th
features respectively. Alternative to the k-nearest neighbors, one can use the
e-neighborhood as described in the DBSCAN clustering algorithm [9]. In this
case, the degree of outlier-ness of a sample p can be computed as the average
distance to the data points in its directly reachable neighbors.

4 Abnormal Behavior Detection

In this section, we explore several strategies to generate a labeled training set
based on the reference points-based LOF. Sections 4.1 and 4.2 describe strategies
for choosing normal samples and anomalous samples respectively. Note that the
algorithm in Fig.3 computes the LOF scores for all data points including both
the target user’s data points and other users’ data points. We use the LOF scores
to select both normal and abnormal samples to train a two-class classification
model for each user.

4.1 Normal Sample Selection

We apply the following 2 different strategies for generating normal samples for
training.

1. All Self Samples (Self): This method uses all the samples from the target
user during the training period as normal samples, similarly to unsupervised
anomaly detection or one-class classification approach.

2. No Outlier Samples (LowLOF): Note that we compute LOF values for the
target user’s own samples as well. The data points with relatively high LOF
scores are outliers in the target user’s samples. We discard these outlier sam-
ples from the target user’s sample set and use the remaining samples as normal
samples for training. This strategy can handle noisy data.

4.2 Abnormal Sample Selection

For anomalous training sample generation, we apply the following four strategies
to extract anomalous samples for the target user. These strategies aim to find
other users’ samples that are outside of the target user’s samples, i.e., outliers
from the perspective of the target user.

1. Boundary Sampling (LowLOFAIl): Out of all other users’ samples that have
LOF higher than a threshold, we choose the samples with lowest LOF scores.
This method finds anomalous samples that are located close to the bound-
aries. These samples would have higher LOF scores than most of the target
user’s samples, but have lower LOF scores than most of the other users’
samples.



Learning from Others: User Anomaly Detection Using Anomalous 403

2. Boundary Sampling Per User (LowLOFUser): This method is also intended
to choose boundary samples. However, this method selects low LOF samples
from each of the other users. If we want to generate N anomalous samples,
and there are m other users, we generate approximately % samples from each
user.

3. Outlier Sampling (HighLOFAIl): This method generates anomalous samples
which deviate mostly from the target users’ samples, i.e., samples with highest
LOF scores from the sample set from all the other users as in LowLOFAII.

4. Outlier Sampling per User (HighLOFUser): This method is similar to LowLO-
FUser. The difference is that it chooses samples with highest LOF scores from
each of the other users.

We note that our algorithm chooses anomalous samples which have an LOF
score higher than a threshold to exclude other users’ samples that are inside of or
too close to the target user’s region. Further, the LowLOF method for generating
normal samples (Sect. 4.1) can also discard a few normal samples. Thus, for very
small data sets like the Typist data set, we can generate a smaller number of
samples than requested.

4.3 Training Sample Generation

By combining the two methods for normal sample generation and the four for
abnormal samples, we have eight methods for generating training samples. We
label the methods as ‘Normal Sampling Method’-*Abnormal Sampling Method’
(e.g., Self-LowLOFAIl and LowLOF-HighLOWUser). Figure 4 illustrates the differ-
ences of the sampling methods. Here, the circle points are the data samples of
the target user, and the triangle, square and diamond points belong to the other
three users, Uy, Us, and Us respectively. Figure4(a) shows the LowLOF method
and Fig. 4(b) shows the Self method for selecting normal samples respectively.
With Self, all circle points are selected as normal, while the two white circles
are discarded because their LOF scores are high and considered as outlier with
the LowLOF method. Suppose we plan to include nine anomalous samples in
the training data set: Fig. 4(a) shows per-user basis sampling methods, LowLO-
FUser and HighLOFUser, and chooses three samples from each user. The points
enclosed by dashed lines are selected by LowLOFUser, while the points enclosed
by solid lines are chosen by HighLOFUser. Figure 4(b) shows anomalous samples
selected by LowLOFAIl (dashed line) and HighLOFAII (solid line).

4.4 Binary Classification

Having both normal and anomalous samples in the training data allows us to
cast the anomaly detection task as a two-class classification problem, and learn
a classifier that can discriminate the abnormal samples from the normal sam-
ples. Any classification algorithm can be applied and may be chosen based on
the application. We use classification algorithms that produce the class proba-
bility as an output, rather than a binary decision. The advantage of having class



404 Y. Park et al.

e ® DR oo !
U Cees = S ees o

target user Uy target user

* *
RO
(a) LowLOF-LOFUser (b) Self-LOFAII

Fig. 4. Tllustrations of the reference points-based LOF sampling methods. The circles
are the instances of the target user. (a) depicts LowLOF-LowLOFUser and LowLOF-
HighLOFUser methods, and (b) depicts Self-LowLOFAIl and Self-HighLOFAIl methods.
The points enclosed with dashed lines have low LOF values, and those enclosed with
solid lines have high LOF values.

probability estimation over a binary decision of normal versus abnormal is that
the system administrators can adjust the ratio of alarms according to available
resources and costs. In this work, we conduct experiments with three classifi-
cation algorithms: Decision Tree, Logistic Regression, and Random Forest. We
use the implementations in RapidMiner [10] for all the experiments described in
Sect. 5.

5 Experiments

We validated the proposed sampling methods with three publicly available data
sets and one private data set from information security application. This section
decribes the four data sets and the evaluation methods in details.

5.1 Data

We validate our algorithms for anomalous sample generation using the following
four data sets: Keystroke Dynamics Benchmark Data; Typist Recognition Data;
DBLP Collaboration Network Data; and Access Log Data. The first three data
sets are publicly available and the last data set is private.

Keystroke Dynamics Benchmark Data: Killourhy and Maxion [8] collected
keystroke data from 51 users typing the same strong password 400 times, broken
into eight equal-length sessions'. They collected various timing features such as
the length of time between each keystroke, and the time each key was depressed.
They used this data set to compare the accuracy of fourteen one-class classifiers
at identifying impostors.

Typist Recognition Data: Hempstalk, Frank and Witten [5] collected data
on the typing patterns of ten different users and build a classifier to identify

! http://www.cs.cmu.edu/afs/cs/Web/People/keystroke,/ .


http://www.cs.cmu.edu/afs/cs/Web/People/keystroke/

Learning from Others: User Anomaly Detection Using Anomalous 405

individual typists. The typing pattern are represented by eight features such as
typing speed and error rate (backspace)?. The typing behavior of the users is
broken into units, approximately one paragraph’s worth of typing. Each user
contains between 24 and 75 records with an average of 53.3.

DBLP Collaboration Network Data: DBLP? is a large database of publica-
tions from computer science journals, conferences, and workshops. We extracted
DBLP records of “inproceedings” and “incollection” publications, and authors
with publication records between 25 and 150 papers in the data set. We then
randomly selected 200 authors from the extracted data and generated a cor-
pus containing the publication records of the selected 200 authors. The paper
titles are preprocessed by removing stop words and performing lemmatization
on the remaining words, and each publication record is converted to a vector of
term:count pairs found in the title. We build models to learn what a “normal”
paper title is for an author.

Access Log Data: The access log data set comes from a source code repository
used in a large IT company. The logs were collected over 5 years and consist
of 2,623 unique users, 298,365 unique directories, 1,162,259 unique files, and
68,736,222 total accesses. Each log contains a timestamp, a user ID, a resource
name, and the action performed on the resource. We process these logs down to
individual periods per user which represent the user’s behavior in a given week.
The features include the number of total accesses, the number of unique accesses
in that period, new unique accesses given a user’s history, counts for the actions
performed, counts for the file extensions accessed, and similarity scores to the
target user as discussed in [11]. The similarity scores represent how similar a
user is to the other users given the user’s current access pattern and the other
users’ past access patterns.

5.2 Evaluation Method

While we assume that most of a target user’s activity is benign, we need to
prevent our training data from containing samples of malicious behavior to be
detected. For example, if the target user’s account is compromised by an adver-
sary, the classifier should not have been trained on the activity of the adversary.
For this reason, we train and test a classifier on different user groups. For each
target user, we perform K-fold cross validation by dividing the user population
into K disjoint sets of training and testing user groups. For example, suppose
there are three users Uy, Us and Us, and U; is the target user. We train a clas-
sifier on U; and Uy and test on U; and Us, and train a second classifier on Uy
and Us, and test on U; and Us,. The user actions are also split into training and
testing samples using a pivot point in time when applicable, that is, all training
actions occur strictly prior to all testing actions. We choose anomalous samples
only from the training user group and measure the performance on the evalua-
tion user group. The training user group and the evaluation user group for each

2 http://www.cs.waikato.ac.nz/ml/data/typist.arff.
3 http://snap.stanford.edu/data/com-DBLP.html.


http://www.cs.waikato.ac.nz/ml/data/typist.arff
http://snap.stanford.edu/data/com-DBLP.html

406 Y. Park et al.

Table 1. Sizes of the four experiment data sets both for training and testing. The
number of samples denote the mean values for each cross-validation set.

Data Set | Num. Users | Training Testing

Normal | Abnormal | Normal | Abnormal
Keystroke | 51 200 200 200 54
Typist 10 47 45 5 45
DBLP 28 91 85 23 34
Access Log | 202 125 151 37 201

fold are mutually exclusive, so no evaluation user is seen during training. Table 1
shows the average size of the training and test data sets.

To ease comparison with some prior work, we evaluate the performance of
a two-class classifier versus a one-class classifier for detecting changes in user
behavior. Further, for all experiments, we report the average results over the
cross-validation splits and compare the algorithms based on AUC (Area Under
Curve), as it is the metric used in all previous work.

5.3 Baseline Methods

We use two baseline methods for evaluation. The first baseline method is a two-
class classification using randomly selected anomalous samples from other users.
We use all training samples from the target user as normal samples (i.e., Self),
and apply a standard random sampling strategy (Random) on the other users’
sample set. We call this baseline Self-Random, and compare this method with
the eight different combinations of sampling methods described in the previous
section.

We also compare two-class classification with one-class classification based
on one-class SVM using all samples of a target user as normal samples. We use
the SVM implementation from SVM KMToolbox [12]* with RBF kernel and the
upper bound on the number of errors v was set to 0.1.

6 Results

6.1 Keystroke Dynamics Benchmark Data

Killourhy and Maxion [8] collected the Keystroke data to build one-class classi-
fiers to detect imposters. There are 51 users in the data, where each user con-
tributed 400 samples. They evaluated fourteen scoring methods, one of which is
a one-class SVM. Each method is trained using normal samples obtained only
from the target user and is not exposed to malicious samples during training.
However, our methods need anomalous samples from other users. To make the

* Download available at http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/.


http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/

Learning from Others: User Anomaly Detection Using Anomalous 407

Per-User AUC with Training/Testing Split 95% Confidence Interval

Table 2. AUC comparison for the Keystroke 100 .
Dynamics Data. Our Algorithm (LOF) reports . /,f'-‘:' L
the best result obtained from the LOF-based 0 P o ey,
strategies. ) %
Cross LOF | Self- One-Class N
validation Random SVM 3ol :

1 0.979 | 0.934 0.927

2 0.967 | 0.939 0.908

3 0.971 | 0.905 0.905 s
4 0.945 | 0.933 0.800

5 0.968 | 0.957 0.844 Fig. 5. AUC values of the classifiers
Ave. 0.966 | 0.934 0.877 for individual target users, and the

variance across the five training-testing
folds.

comparison objective, we divided the 51 users into 5-fold cross validation sets
comprising a training user group and an evaluation user group as described in
Sect. 5.2. Each training and testing group contains approximately 41 users and
10 users respectively.

Following Killourhy et al.’s convention, we considered one user from a training
user group as the target user, and treat all remaining users in the training user
group as malicious users. For each target user, we use the user’s first 200 samples
to select the benign training samples and extract five samples randomly from
each malicious user as anomalous samples for training. Therefore, the training
data set contains 200 benign cases and 200 anomalous cases. For testing, we
use the remaining 200 samples from the target user and extract five samples
randomly from each user in the testing user group as anomalous samples. The
performance is measured using the average AUC over all 51 users. Table 2 shows
the average AUC of the 5-fold cross validation results. As we can see from the
table, the LOF-based method produces a higher AUC than the Self-Random
baseline method and the one-class SVM for all folds.

Next, we evaluate how well the individual classifiers compare across each tar-
get user. Figure 5 compares the classifiers for individual target users and the error
rates of the AUC across the five splits. Here, the x-axis is the AUC score of the
LowLOF-LowLOFUser method, and the y-axis is the AUC for the random baseline
method, Self-Random. The red error ellipse around each point has a diameter
of one standard deviation for the AUC scores over the five splits. Points below
the y-equal-z line (red-dashed) are classifiers where our LOF method produced
strictly better results.

6.2 Typist Recognition Data

Hempstalk et al. [5] proposed a technique for combining density and class prob-
ability estimation for continuous typist recognition. They collected a dataset of



408 Y. Park et al.

15 emails from each of ten participants to validate their method. To compare our
methods with theirs, we conducted experiments using a stratified 10-fold cross
validation on the same data set as described in [5]. For each user, we choose
90 % of randomly chosen samples as training samples and the remaining 10 %
for benign testing samples. Due to the small user population, we don’t split the
users into disjoint training and evaluation groups.

To generate anomalous training samples for each target user, we first merge
the training samples for all users, assuming the target user’s samples as “normal”
and samples from the other nine users as “abnormal”. We then compute the
reference points-based LOF scores all the samples in the training data, and
generate abnormal samples as described in Sect. 3. To replicate the experiments
by Hempstalk et al. as close as we can, we set the number of anomalous samples
to the number of normal samples for the target users. However, our method often
produces a smaller number of samples than requested as we noted in Sect. 4.2,
because LowLOF normal sampling method discards outliers from the target user’s
sample set.

Table3 compares the results of our algorithm, random sampling-based
method, and two density estimation-based methods from [5]. The table shows
the average AUC over the 10-fold cross validation for each user. As we can see,
our method outperforms both of the density estimation methods, and is slightly
better than the random sampling method for this data set. However, as we noted

Table 3. AUC results for the Typist Recognition Data. Our Algorithm (LOF) reports
the best result obtained from the LOF-based strategies. The results of Gaussian and
EM methods are obtained by the density and class probability estimation described
in [5].

Participant | LOF | Self-Random | Density™ One-Class SVM
Gaussian | EM
A 0.946 | 0.923 0.924 0.923 | 0.894
B 0.965 | 0.984 0.934 0.929 |0.725
C 0.852|0.825 0.707 0.786 |0.769
D 0.903 | 0.922 0.924 0.902 | 0.918
E 0.977 |0.982 0.973 0.971 |0.932
F 0.902 | 0.872 0.852 0.867 | 0.749
G 0.960 | 0.949 0.942 0.952 | 0.856
H 0.909 | 0.877 0.909 0.914 | 0.822
I 0.976  0.974 0.956 0.950 | 0.913
J 1.000 | 0.989 1.000 1.000 | 0.982
Avg. 0.939 | 0.930 0.912 0.919 | 0.856
Std. 0.046 | 0.056 0.082 0.060 | 0.087




Learning from Others: User Anomaly Detection Using Anomalous 409

Table 4. AUC results for the DBLP data set.

Authors LOF Self-Random One-Class SVM  Authors LOF Self-Random One-Class SVM

1 0783  0.664 0.59 16 0846  0.852 0.54
2 0810 0.859 0.74 170750  0.69 0.71
30926 0.909 0.72 18 0760  0.756 0.62
4 0805 0718 0.78 19 0734  0.824 0.46
5 083 0765 071 20 0659  0.625 0.58
6 0760 0.821 048 21 0.890  0.883 075
7 0.694 0.760 0.33 22 0.603 0.607 0.48
8 0.845 0.825 0.79 23 0.814 0.642 0.67
9 0.918 0.896 0.75 24 0.735 0.676 0.72
10 0.802  0.720 0.84 25 0849 0.865 0.63
11 0807 0779 0.59 260779 0.858 0.49
12 0810 0730 0.74 27 0.685  0.686 0.61
13 0547  0.630 0.35 28 0628 0552 051
14 0835  0.868 0.76 Ave. 0.770  0.760 0.621
15 0658  0.822 0.47 Std.  0.093  0.100 0.137

earlier, the results demonstrate our algorithm’s advantage, as it used a smaller
number of training samples than the other three methods in most testing cases.

6.3 DBLP Collaboration Network Data

While the DBLP data contain publication information about many authors, each
user has a small number of publications. Many authors do not have enough data
points for training a reliable model. In this experiments, we selected authors
with at least 50 publications in the data set, resulting in 28 distinct authors.
We used the words in the publication titles as the features and represent each
user with a bag of word vector after removing stop words and converting words
to their base form, resulting in 9,670 unique features. We ran PCA (Principal
Component Analysis) on the entire samples, and reduced the dimension to 200.
Then, we conducted a 5-fold cross validation test similar to the password data
sets. Table4 summarizes the average AUC of each user over the 5-fold splits.

6.4 Access Log Data

The access log data contains a mixture of real user IDs and system IDs which
periodically run batch processes. These system processes perform tasks such as
nightly builds of source code and exhibit vastly different behavioral patterns from
real users. We discarded these system IDs from the logs. Further, we eliminated
any user that is active in fewer than 150 weeks (not active users) or more than
250 weeks (very active) out of 260 weeks during which the logs were collected.
The final data set contain 202 unique users. The samples are then split by time
into 80 % for training and 20 % for testing.



410 Y. Park et al.

1.0 1.0
w0 -7
® g /’
// -
28 o P
0.9t A oo o b ool -
08 2T oo A% S eetl ¢
: R, . 08} 0’ . ., **
. . b "
e e o ®
07 o s 7
- . S 07t v g
£ e 2] -
S e 4 - °
Bos6f - s Pis N
© - o -
4 N $06F -
2065,
S
05} o9 odbog
0.5t
04f
0.4
0.3
0.3t

060 065 070 0.75 0.80 085 090 095 1.00 060 065 070 075 0.80 0.85 090 095 1.00
LOF LOF

Fig. 6. Comparison of AUC scores for LOF, Random, and One-Class SVM across the
202 per-user classifiers.

Figure 6 shows the comparison of the three sampling methods in terms of the
AUC scores for the individual classifiers per target user, and Table5 shows the
mean and standard deviation of the AUC scores of the 202 users.

In both scatter plots, the AUC scores of LOF are given on the x-axis, and
the AUC scores for the competing methods, Self-Random for the left plot and
one-class SVM for the right, are given on the y-axis. The dashed red-line is the
y-equals-z line. For any points below the line, our LOF method outperformed
the other methods for the given target user, producing better results across the
majority of target users (89.1 % compared to Self-Random and 87.1 % compared
to one-class SVM). Further, the improvement in AUC scores is significant: 0.155
(stdev 0.155) higher compared to Self-Random, and 0.163 (stdev 0.155) com-
pared to one-class SVM. We also note that the biggest impediment to the use of
analytics for insider threat detection is the high false positive rates. As shown
above, our approach significantly reduces false positive rates, thus improving the
applicability of anomaly detection mechanisms.

6.5 Comparison of Sampling Methods

Lastly, we compare the performance of the eight LOF-based sampling methods
and the Self-Random baseline. The comparison was conducted using the Key-
stroke Data and the three binary classifiers—Decision Tree, Logistic Regression,
and Random Forest—over a 5-fold cross validation, resulting in 6,885 exper-
iments in total (51 wusers X 9 sampling methods x 3 classifiers x 5 folds). We
counted how many times a sampling method preformed the best for each of the
user and classifier combinations. When multiple sampling algorithms made a tie,
we considered all the methods as the best performing one.

The comparison results are shown in Fig.7. The x-axis denotes the five
methods for generating anomalous samples—four LOF-based methods and the



Learning from Others: User Anomaly Detection Using Anomalous 411

Table 5. Mean and Standard o1

. . LowLOF-Normal
Deviation for AUC scores of the ot

202 users in the Access Log data.

o
=

Method Mean | Stdev oo
AUC | AUC
LOF 0.877 | 0.089 £°°

o
o
1)

Self-Random 0.722 | 0.176
One-Class SVM | 0.714 | 0.134

o
=)
1)

Percentage of being the best performer

o
o
2

o
9
R

0.00 HighLOFAIl HighLOWUser LowLOFAIll LowLOFUser Random

Anomalous Sample Selection Methods

Fig. 7. The percentage of each sampling method
being the best performer.

Random method. The blue bars represent the LowLOF method for generating
normal samples, and the pink bars indicate that all samples of the target user
were used as normal (Self). We can see that LowLOF-HighLOFUser was the best
performing method most of the time, closely followed by LowLOF-LowLOFUser.
The results confirm two findings. First, discarding outlier cases from the nor-
mal sample significantly increase the detection accuracy, as indicated by all blue
bars (LowLOF outperforming red bards (Self). Second, sampling from each user is
more beneficial than from the merged sample set (LOFUser vs. LOFAIl for anom-
alous samples). The reason that there is no significant difference between High-
LOFUser and LowLOFUser methods for anomalous sample generation is because
the sample size was relatively small, and many of the selected anomalous samples
appear in both training sets.

7 Related Work

Anomaly detection has been an important research problem in security analy-
sis [13,14]. Various techniques based on domain knowledge/statistics [15-19] or
on data mining algorithms [20-22], haven been proposed for anomaly detection
for a number of application domains. Due to the absence or insufficiency of
labeled examples, most of the techniques have modeled anomaly detection as a
unsupervised learning problem. However, unsupervised modeling suffers from a
number of problems, e.g., the incapability of discriminative modeling and the
difficulty of tuning parameters, leading to high false-positive rates.

To solve this problem, several anomaly detection methods tried to artificially
generate samples as a second class based on some heuristics, posing a one-class
classification task as a binary classification problem. For example, in a word
spotting application, Chang and Lippmann [1] presented a method to artifi-
cially enlarge the number of training talkers to increase variabilities of training



412 Y. Park et al.

samples. They transformed one talker’s speech pattern to that of a new talker
by generating more varied training examples of keywords. Theiler and Cai [2]
applied a resampling method to generate a random sample by choosing each of
its coordinates randomly from the coordinate values that are in the data. Later,
Fan et al. [3] proposed a distribution-based artificial anomaly generation method,
which first measures the density of each feature value in the original data set D
and then artificially generates anomaly points near to the normal data points by
replacing low-density features with a different value in D. This method assumes
that the boundary between the known and anomalous instances is very close to
the existing data, hence “near misses” can be safely assumed to be anomalous.
However, this methods is not applicable to data with a very high dimensionality
or with continuous variables.

Further, Hastie et al. [4] summarized techniques for transforming the density
estimation (unsupervised learning) problem into one of supervised learning using
artificially generated data in the context of association rule learning. A reference
model, such as uniform or Gaussian, can be used to generate artificial training
samples as “contrast” statistics that provide information concerning departures
of the data density from the chosen reference density. Following this principle,
Hempstalk et al. [5] further proposed to employ the training data from the target
class to generate artificial data based on a known reference distribution. But
it restrict the underlying classification algorithm to produce class probability
estimates rather than a binary decision.

Despite the success of the above methods, they suffer either from strong
restrictions, which made them not applicable to problems with high dimen-
sional data other application domains, or from the requirement of estimating
the reference data distribution, which is usually not accurate and may lead to
suboptimal performance. Our method addresses both limitations: (1) artificially
generated samples do not reflect real cases, (2) assuming an underlying data
distribution is unrealistic in multi-user environments. Instead, our LOF-based
sampling provides a unified mechanism to filter out bad normal samples and
generate potential anomalous samples for each target user.

8 Conclusion

This study focused on abnormal behavior detection for applications where mul-
tiple users share the system or application. Many applications exist in computer
security such as user authentication, insider threat detection, and network secu-
rity, and anomalous user activity detection in social network. In each case, we
learn a target user’s normal behavior from the user’s training samples, and esti-
mate the user’s possible abnormal behavioral patterns from other users’ training
samples, who exhibit quite different behavioral patterns from the target user.
We proposed the reference points based LOF method which measures outlier-
ness of a data point with respect to a set of known data points, and showed,
through empirical evaluations, that reference points-based LOF methods find
good anomalous samples from the behavior of other users. Our evaluation has



Learning from Others: User Anomaly Detection Using Anomalous 413

shown that the our methods provide uniformly better results compared to the one
class classifier approach and the approach of providing synthetically constructed
distributions of abnormal samples for training. Our technique is promising and
seems to be applicable to a large number of problems in security relying on
anomaly detection and user profiling.

References

10.

11.

12.

13.

14.

15.

Chang, E.I., Lippmann, R.P.: Using voice transformations to create additional
training talkers for word spotting. In: Advances in Neural Information Processing
Systems, pp. 875-882 (1995)

Theiler, J., Cai, D.M.: Resampling approach for anomaly detection in multispectral
images. In: Proceedings of the SPIE, pp. 230-240 (2003)

Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to
detect unknown and known network intrusions. Knowl. Inf. Syst. 6(5), 507-527
(2004)

Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical
learning: data mining, inference and prediction. The Math. Intelligencer 27(2),
83-85 (2005)

Hempstalk, K., Frank, E., Witten, [.H.: One-class classification by combining den-
sity and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K.
(eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 505-519. Springer,
Heidelberg (2008)

Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. In: ACM Sigmod Record, vol. 29, no. 2, pp. 93-104. ACM (2000)
Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceed-
ings Vision, Image and Signal Processing, vol. 141, no. 4, pp. 217-222. IET (1994)
Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms forkey-
stroke dynamics. In: IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2009, pp. 125-134 (2009)

Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226-231
(1996)

Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business
Analytics Applications. CRC Press, Boca Raton (2013)

Gates, C., Li, N., Xu, Z., Chari, S.N., Molloy, I., Park, Y.: Detecting insider infor-
mation theft using features from file access logs. In: Kutytowski, M., Vaidya, J.
(eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 383-400. Springer, Heidelberg
(2014)

Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: Svm and kernel meth-
ods matlab toolbox. Perception Systmes et Information, INSA de Rouen, Rouen,
France (2005)

Salem, M., Hershkop, S., Stolfo, S.: A survey of insider attack detection research.
In: Insider Attack and Cyber Security, pp. 69-90 (2008)

Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13(2),
222-232 (1987)



414

16.

17.

18.

19.

20.

21.

22.

Y. Park et al.

Javitz, H.S., Valdes, A.: The SRI IDES statistical anomaly detector. In: Research
in Security and Privacy (1991)

Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting malicious
software by monitoring anomalous windows registry accesses. In: Wespi, A., Vigna,
G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 36-53. Springer, Heidelberg
(2002)

Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly detection
in computer security and an application to file system accesses. In: Hacid, M.-S.,
Murray, N.V., Ras, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488,
pp. 14-28. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11425274_2
Chen, Y., Malin, B.: Detection of anomalous insiders in collaborative environments
via relational analysis of access logs. In: CODASPY 2011: Proceedings of the First
ACM Conference on Data and Application Security and Privacy, Feb 2011
Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: Loci: Fast outlier
detection using the local correlation integral. In: Dayal, U., Ramamritham, K.,
Vijayaraman, T.M. (eds.) ICDE, pp. 315-326. IEEE Computer Society (2003)
Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: A
ranking driven approach. In: Abiteboul, S., Bhm, K., Koch, C., Tan, K.-L. (eds.)
ICDE, pp. 410-421. IEEE Computer Society (2011)

Senator, T.E., Goldberg, H.G., Memory, A., Young, W.T., Rees, B., Pierce, R.,
Huang, D., Reardon, M., Bader, D.A., Chow, E., Essa, 1., Jones, J., Bettadapura,
V., Chau, D.H., Green, O., Kaya, O., Zakrzewska, A., Briscoe, E., Mappus, R.I.L.,
McColl, R., Weiss, L., Dietterich, T.G., Fern, A., Wong, W.-K., Das, S., Emmott,
A., Irvine, J., Lee, J.-Y., Koutra, D., Faloutsos, C., Corkill, D., Friedland, L.,
Gentzel, A., Jensen, D.: Detecting insider threats in a real corporate database of
computer usage activity. In: KDD 2013: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM Request
Permissions, Aug 2013


http://dx.doi.org/10.1007/11425274_2

	Learning from Others: User Anomaly Detection Using Anomalous Samples from Other Users
	1 Introduction
	2 Approach
	3 Reference Points-Based LOF
	4 Abnormal Behavior Detection
	4.1 Normal Sample Selection
	4.2 Abnormal Sample Selection
	4.3 Training Sample Generation
	4.4 Binary Classification

	5 Experiments
	5.1 Data
	5.2 Evaluation Method
	5.3 Baseline Methods

	6 Results
	6.1 Keystroke Dynamics Benchmark Data
	6.2 Typist Recognition Data
	6.3 DBLP Collaboration Network Data
	6.4 Access Log Data
	6.5 Comparison of Sampling Methods

	7 Related Work
	8 Conclusion
	References


