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Abstract. Security protocols can be successfully analysed using formal
methods. When proving security in symbolic settings for an unbounded
number of sessions, a typical technique consists in abstracting away fresh
nonces and keys by a bounded set of constants. While this abstraction is
clearly sound in the context of secrecy properties (for protocols without
else branches), this is no longer the case for equivalence properties.

In this paper, we study how to soundly get rid of nonces in the context
of equivalence properties. We show that nonces can be replaced by con-
stants provided that each nonce is associated to two constants (instead of
typically one constant for secrecy properties). Our result holds for deter-
ministic (simple) protocols and a large class of primitives that includes
e.g. standard primitives, blind signatures, and zero-knowledge proofs.

1 Introduction

Security protocols are notoriously difficult to design as exemplified by a long
history of attacks. For example, the TLS protocol has been shown once again to
be vulnerable to a new attack called FREAK [4]. Formal methods offer symbolic
models to carefully analyse security protocols, together with a set of proof tech-
niques and efficient tools such as ProVerif [5], Scyther [17], Maude-NPA [21], or
Avispa [3]. Security properties can be divided into two main categories.

– Trace properties are used to express secrecy or various forms of authentication
properties. They ensure that a certain statement holds for any execution.

– Equivalence properties are typically used to state privacy properties like
anonymity, unlinkability [8], or vote privacy [18]. More generally, equivalence
properties may state indistinguishability properties, such as game-based defi-
nitions inherited from models used in cryptography [15,22].

When proving security properties, it is important to obtain guarantees for an
unlimited number of sessions. Unfortunately, it is well known that even secrecy
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is undecidable [20] in this context. Undecidability comes from two main factors.
First, messages may grow arbitrarily during an execution. Second, even when
considering messages of fixed size, it has been shown that nonces still cause
undecidability [2]. Intuitively, nonce freshness may be used to create pointers
that are used in turns to build chained lists and thus again arbitrarily large data.
Therefore, a standard restriction consists in bounding the number of nonces (and
keys). Under this assumption, several decidability results have been established
for secrecy [7,13,20], as well as for trace equivalence [9,10].

Replacing nonces by constants is sound in the context of secrecy properties.
More precisely, assuming that P is obtained from the security protocol P by
replacing nonces (and keys) by constants, whenever P is secure (w.r.t. a trace
property such as secrecy) then P is secure as well. Indeed, replacing nonces
by constants may only introduce more attacks, since it may only create more
equalities, as long as the protocol P under study does not have else branches.
Therefore, the decidability results developed for secrecy (e.g. [7,13,20]) may be
seen as proof techniques: if P falls in a decidable class and can be shown to be
secure then the protocol P is secure as well. Unfortunately, such an approach
is no longer valid in the context of equivalence properties. Indeed, consider the
processes:

P = ! new n.out(c, {n}k) and Q = ! out(c, {n}k).

The ! operator denotes the replication. Intuitively, both processes send out an
arbitrary number of messages on the public channel c. The process P sends out
each time a fresh nonce n encrypted by a (secret) key k while Q always sends the
same message. We assume here that encryption is not randomised. Clearly, the
processes P and Q are not in equivalence (denoted P �≈ Q) since an attacker can
easily notice that P sends distinct messages while Q sends identical messages.
However, abstracting away fresh names with constants, the resulting equivalence
holds (denoted P ≈ Q). Indeed, the two resulting processes are actually identical:
P = Q = ! out(c, {n}k). This illustrates that P ≈ Q �⇒ P ≈ Q.

Main Contribution. We identify a technique to (soundly) get rid of freshly
generated data (e.g. nonces, keys). The main idea consists in introducing an
additional copy of each replicated nonce. More precisely, we show that:

!P | P � ≈ !Q | Q� ⇒ !P ≈ !Q

where P � is obtained from P by renaming all fresh nonces and keys to distinct
(fresh) constants. Our result holds for simple processes, a notion that has been
introduced in [15] and used in several subsequent works (e.g. [10]). Roughly, each
process communicates on a distinct channel. This corresponds to the fact that in
practice each machine has its own IP address and each session is characterised
by some session identifier. We consider a large family of primitives, provided
that they can be described by a destructor/constructor theory with no critical
pair. In particular, our technique allows one to deal with standard primitives
(asymmetric and symmetric encryption, hash, signatures, MACs) as well as e.g.
blind signatures and zero-knowledge proofs. As an application, we deduce that
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the decidability result developed in [10] for tagged protocols without nonces can
be applied to study the security of protocols with nonces. The full proofs of the
results presented in this paper can be found in [11].

Related Work. Abstracting nonces and keys by constants is known to be sound
for secrecy properties as part of the “folklore”. We did not find a precise refer-
ence for this result. A related result is a reduction to two agents [14] for trace
properties. Reducing the number of nonces can be obtained in a similar way.

The tool ProVerif [5,6] also makes use of an abstraction for fresh data. In
case of secrecy, nonces are abstracted by functions applied to the process inputs.
In case of equivalence properties, nonces are additionally given a counter (termi-
nation is of course not guaranteed). The abstraction technique is therefore more
precise than using only constants but seems dedicated to the internal behaviour
of the ProVerif tool.

The only decidability result for equivalence with nonces (for an unbounded
number of sessions) has been recently presented in [12]. For protocols that fall
in the class of [12], it is therefore more direct to use this decidability result than
applying our simplification. However, the class of protocols we consider here is
more general: we do not need protocols to be tagged nor to induce an “acyclic
dependency graph” and we cover a much wider class of cryptographic primitives.

2 Model for Security Protocols

Security protocols are modelled through a process algebra inspired from [1] that
manipulates terms.

2.1 Term Algebra

We assume an infinite set N of names, which are used to represent keys and
nonces and an infinite set X of variables. We assume a signature Σ, i.e. a set of
function symbols together with their arity, and we make a distinction between
constructor symbols and destructor symbols: Σ = Σc �Σd. Given a signature Σ,
we denote by T (Σ,A) the set of terms built from symbols in Σ and atomic data
in A. Terms without variables are called ground. The set T (Σc,X ∪ N ) is the
set of constructor terms. Then among the terms in T (Σc,N ) we distinguish a
special subset of terms called messages and noted MΣ , and that is stable under
renaming of names: a message does not contain any destructor symbol, and
m ∈ MΣ implies that mρ ∈ MΣ for any renaming ρ (not necessarily a bijective
one).

In addition to the set of variables X , we consider an infinite disjoint set of
variables W. Variables in W intuitively refer to variables used to store messages
learnt by the attacker. We denote vars(u) the set of variables that occur in a
term u. The application of a substitution σ to a term u is written uσ, and we
denote dom(σ) its domain. The positions of a term are defined as usual. Two
terms u and v are unifiable if there is a substitution σ such that uσ = vσ.
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The properties of the primitives are expressed using rewriting rules of the
form g(t1, . . . , tn) → t where g is a destructor, that is g ∈ Σd, and t1, . . . , tn, t
are constructor terms. A rewriting rule can only be applied to constructor terms.
Formally, we say that u can be rewritten into v if there is a position p and a
rule g(t1, . . . , tn) → t such that u at position p is equal to g(t1, . . . , tn)θ and
v = u[tθ]p (that is u where the term at position p has been replaced by tθ) for
some substitution θ such that t1θ, . . . , tnθ, tθ are messages. We only consider
sets of rewriting rules that yield convergent rewrite systems. We denote by u↓
the normal form of a given term u. We refer the reader to [19] for the precise
definitions of rewriting systems, convergence, and normal forms.

Example 1. A typical signature for representing symmetric encryption and pair is

Σ = {senc, sdec, 〈 〉, proj1, proj2} � Σ0

where Σ0 is a set of atomic data. The set Σ0 typically contains the public con-
stants known to the attacker (e.g. agent names a, b, . . . ). The symbols senc
and sdec of arity 2 represent symmetric encryption and decryption. Pairing is
modelled using 〈 〉 of arity 2, whereas projection functions are denoted proj1 and
proj2 (both of arity 1). The relations between encryption/decryption and pair-
ing/projections are represented through the following convergent rewrite system:

sdec(senc(x, y), y) → x, and proji(〈x1, x2〉) → xi with i ∈ {1, 2}.

We have that proj1(sdec(senc(〈s1, s2〉, k), k))↓ = s1. Note that, since a
destructor can only be applied on messages, no rewriting rule can be applied on
the term sdec(senc(s, proj1(s)), proj2(s)) which is thus in normal form (but not a
message). This signature Σ is split into two parts as follows: Σc = {senc, 〈 〉}�Σ0

and Σd = {sdec, proj1, proj2}. Then, we may consider MΣ to be Mc = T (Σc,N )
the set of all ground constructor terms. We may also restrict MΣ to be Matomic,
the set of ground constructor terms that only use atomic data in key position.

Finally, we assume Σ to be split into two parts, and this distinction is orthog-
onal the one made between destructor and constructor symbols. We denote by
Σpub the set of function symbols that are public, i.e. available to the attacker,
and Σpriv for those that are private. Actually, an attacker builds his own mes-
sages by applying public function symbols to terms he already knows. Formally,
a computation done by the attacker is modelled by a term in T (Σpub,W), called
a recipe. Note that such a term does not contain any name. Indeed, all names
are initially unknown to the attacker.

2.2 Process Algebra

Let Ch be an infinite set of channels. We consider processes built using the
grammar below where u ∈ T (Σc,N ∪ X ), v ∈ T (Σ,N ∪ X ), n ∈ N , and
c, c′ ∈ Ch:
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P,Q := 0 null
| in(c, u).P input
| out(c, u).P output
| let x = v in P evaluation

| (P | Q) parallel
| !P replication
| new n.P restriction
| new c′.out(c, c′).P channel generation

The process 0 does nothing. The process “in(c, u).P” expects a message m of
the form u on channel c and then behaves like Pσ where σ is a substitution such
that m = uσ. The process “out(c, u).P” emits u on channel c, and then behaves
like P . The variables that occur in u are instantiated when the evaluation takes
place. The process “let x = v in P” tries to evaluate v and in case of success
the process P is executed; otherwise the process is blocked. The process “P | Q”
runs P and Q in parallel. The process “!P” executes P some arbitrary number
of times. The restriction “new n” is used to model the creation of a fresh random
number (e.g., a nonce or a key) whereas channel generation “new c′.out(c, c′).P”
is used to model the creation of a fresh channel name that shall immediately
be made public. Note that we consider only public channels. It is still useful to
generate fresh channel names to let the attacker identify the different sessions
(as it is often the case in practice through sessions identifiers).

Note that our calculus allows both message filtering as well as explicit appli-
cation of destructor symbols. For example, to represent a process that waits for
a message, decrypts it with a key k, and sends the plaintext in clear, we may write
P = in(c, senc(x, k)).out(c, x) as well as Q = in(c, y).let x = sdec(y, k) in out(c, x).
However, the choice of filtering or let yields a slightly different behaviour since a
message will be received in P only if it matches the expected format while any
message will be received in Q (and then the format is checked).

We write fv(P ) for the set of free variables that occur in P , i.e. the set of
variables that are not in the scope of an input or a let construction. We assume
Ch = Ch0 � Chfresh where Ch0 and Chfresh are two infinite sets of channels. Intu-
itively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be used in the semantics
to instantiate the channels generated during the execution of a protocol. They
shall not be part of its specification.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P ) = ∅;
and P does not use channel names from Chfresh.

Example 2. The Yahalom protocol [23] is a key distribution protocol using sym-
metric encryption and a trusted server. The Paulson’s version of this protocol
can be described informally as follows:

1. A → B : A, Na

2. B → S : B, Nb, {A,Na}Kbs

3. S → A : Nb, {B,Kab, Na}Kas
, {A,B,Kab, Nb}Kbs

4. A → B : {A,B,Kab, Nb}Kbs
, {Nb}Kab

where {m}k denotes the symmetric encryption of a message m with key k, A
and B are agents trying to authenticate each other, S is a trusted server, Kas

(resp. Kbs) is a long term key shared between A and S (resp. B and S), Na

and Nb are nonces generated by A and B, whereas Kab is a key generated by S.
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We propose a modelling of the Yahalom protocol in our formalism using the
signature given in Example 1. We use restricted channels to model the use of
unique session identifiers used along an execution of the protocol. Below, kas,
kbs, na, nb, kab are names, whereas a and b are constants from Σ0 and cA, cB ,
and cS are (public) channel names for respectively the role of A, B, and S. We
denote by 〈x1, . . . , xn−1, xn〉 the term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.

PYah =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB , and PS are given below:

PA = new na. out(c1, 〈a, na〉). in(c1, 〈xnb, senc(〈b, xab, na〉, kas), xbs〉).
out(c1, 〈xbs, senc(xnb, xab)〉);

PB = in(c2, 〈a, yna〉). new nb. out(c2, 〈b, nb, senc(〈a, yna〉, kbs)〉).
in(c2, 〈senc(〈a, b, yab, nb〉, kbs), senc(nb, yab)〉);

PS = in(c3, 〈b, znb, senc(〈a, zna〉, kbs)〉). new kab.
out(c3, 〈nb, senc(〈b, kab, zna〉, kas), senc(〈a, b, kab, znb

〉, kbs)〉).

2.3 Semantics

The operational semantics of a process is defined using a relation over configu-
rations. A configuration is a pair (P;φ) where:

– P is a multiset of ground processes.
– φ = {w1 � m1, . . . ,wn � mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W, and m1, . . . ,mn are messages, i.e. terms in MΣ .

We often write P instead of ({P}; ∅), and P ∪P or P | P instead of {P}∪P.
The terms in φ represent the messages that are known by the attacker. The
operational semantics of a process is induced by the relation α→ as defined below.

(in(c, u).P ∪ P;φ)
in(c,R)

−−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓ is a
message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)(out(c, u).P ∪ P;φ)
out(c,wi+1)

−−−−−−−→ (P ∪ P;φ ∪ {wi+1 � u}) where u is a message and i is the number of

elements in φ(new c′.out(c, c′).P∪P;φ)
out(c,chi)

−−−−−−−→ (P{chi/c′}∪P;φ) where chi is
the “next′′ fresh channel name available in Chfresh(let x = v in P ∪ P;φ) τ→
(P{v↓/x} ∪ P φ) where v↓ is a message (new n.P ∪ P;φ) τ→ (P{n′

/n} ∪ P;φ)
where n′ is a fresh name in N (!P ∪ P;φ) τ→ (P ∪ !P ∪ P;φ).

The first rule allows the attacker to send to some process a term built from
publicly available terms and symbols. The second rule corresponds to the output
of a term: the corresponding term is added to the frame of the current configu-
ration, which means that the attacker can now access the sent term. Note that
the term is outputted provided that it is a message. The third rule corresponds
to the special case of an output of a freshly generated channel name. In such a
case, the channel is not added to the frame but it is implicitly assumed known
to the attacker, as all the channel names. These three rules are the only observ-
able actions. The fourth rule corresponds to the evaluation of the term v; if this
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succeeds, i.e. if v↓ is a message then x is bound to the result and P is executed;
otherwise the process is blocked. The two remaining rules are quite standard
and are unobservable by the attacker.

The relation α1...αn→ between configurations (where α1 . . . αn is a sequence of
actions) is defined as the transitive closure of α→. Given a sequence of observable
actions tr, we write K

tr=⇒ K ′ when there exists a sequence α1 . . . αn such that
K

α1...αn−−−−→ K ′ and tr is obtained from α1 . . . αn by erasing all occurrences of τ .
For every protocol P , we define its set of traces as follows:

trace(P ) = {(tr, φ) | P
tr=⇒(P;φ) for some configuration (P;φ)}.

Example 3. The Yahalom protocol as presented in Example 2 is known to be
flawed as informally described below.

(i) 1. I(A) → B : A, Ni

(i) 2. B → I(S) : B, Nb, {A,Ni}Kbs

(ii) 1. I(A) → B : A, B, Ki, Nb

(ii) 2. B → I(S) : B, N ′
b, {A, B, Ki, Nb}Kbs

(i) 4. I(A) → B : {A,B,Ki, Nb}Kbs
, {Nb}Ki

Intuitively, the attacker opens two sessions with B. In the second session (ii),
the attacker uses B as an encryption oracle. This attack can be reflected by the
following sequence tr.

tr = out(cB , ch1).in(ch1, 〈a, ni〉).out(ch1,w1).out(cB , ch2).in(ch2, 〈a,b, ki, Rb〉).
out(ch2,w2).in(ch1, 〈proj2(proj2(w2)), senc(Rb, ki)〉)

where ki and ni are public constants from Σ0, and Rb = proj1(proj2(w1)). This
sequence tr allows one to reach the frame:

φ = {w1 � 〈b, nb, senc(〈a, ni〉, kbs)〉, w2 � 〈b, n′
b, senc(〈a, 〈b, ki, nb〉〉, kbs)〉}.

We have that (tr, φ) ∈ trace(PYah). Roughly, agent b has completed a session
apparently with agent a, and has established a session key ki. However, the
agent a has never participated to this execution, and ki is actually a key known
to the attacker.

2.4 Trace Equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any
attacker. Trace equivalence can be used to formalise many interesting secu-
rity properties, in particular privacy-type properties, such as those studied for
instance in [8,18]. We first define symbolic indistinguishability of sequences of
messages, called static equivalence.

Definition 2. Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when
we have that dom(φ1) = dom(φ2), and:
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– for any recipe R, Rφ1↓ ∈ MΣ if, and only if, Rφ2↓ ∈ MΣ; and
– for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ MΣ, we have that

R1φ1↓ = R2φ1↓ if, and only if, R1φ2↓ = R2φ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference
between the two situations they represent. If some computation fails in φ1 for
some recipe R, i.e. Rφ1↓ is not a message, it should fail in φ2 as well. Moreover,
the frames φ1 and φ2 should satisfy the same equalities. In other words, the
ability of the attacker to distinguish whether a recipe R produces a message,
or whether two recipes R1, R2 produce the same message should not depend on
the frame. The choice of MΣ as well as the choice of public symbols allow to
fine-tune what an attacker can observe. The set of public function symbols tell
exactly which functions the attacker may use. Then the choice MΣ defines when
computations fail. For example, if MΣ represents the set of terms with atomic
keys only, then an attacker may potentially observe that some computation fails
because he was able to inject a non atomic key.

Example 4. Consider φ1 = {w1 � senc(m1, ki)}, and φ2 = {w1 � senc(m2, ki)}.
Assuming that m1, m2 are public constants from Σ0, we have that φ1 �∼ φ2.
An attacker can observe that decrypting the message of φ1 with the public
constant ki leads to the public constant m1. This is not the case in φ2. Consider
the recipes R1 = sdec(w1, ki) and R2 = m1. We have that R1φ1↓ = R2φ1↓
whereas R1φ2↓ �= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the
resulting sequences of messages observed by the attacker are in static equivalence.

Definition 3. Let P and Q be two protocols. We have that P � Q if for every
(tr, φ) ∈ trace(P ), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′.
They are in trace equivalence, written P ≈ Q, if P � Q and Q � P .

Example 5. We wish to check strong secrecy of the key received by B for the
Yahalom protocol. A way of doing so is to check that P 1

Yah ≈ P 2
Yah where P i

Yah

(with i ∈ {1, 2}) is as PYah but we add the instruction out(c2, senc(mi, yab)) at the
end of the process PB . The terms m1 and m2 are two distinct public constants
from Σ0. The idea is to check whether an attacker can see the difference when
the key that has been established is used to encrypt different public constants.
Actually, this equivalence does not hold.

Let tr′ = tr.out(ch1,w3), and φ′
j = φ ∪ {w3 � senc(mj , ki)} (with j ∈ {1, 2})

where (tr, φ) is as described in Example 3. We have that (tr′, φ′
1) ∈ trace(P 1

Yah)
and (tr′, φ′

2) ∈ trace(P 2
Yah). However, we have that φ′

1 �∼ φ′
2 (as explained in

Example 4). Thus, P 1
Yah and P 2

Yah are not in trace equivalence. An attacker can
observe the encrypted message sent at the end of the execution and see which
constant has been encrypted since he knows the key ki.
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3 Main Contribution: Getting Rid of Nonces

As explained in introduction, our main contribution is to provide a transforma-
tion that soundly abstracts nonces. Informally, we prove an implication of the
following form:

!P | P � ≈ !Q | Q� ⇒ !P ≈ !Q

where P is obtained from P by replacing nonces by constants, and P � is a copy
of P . Before defining formally this transformation in Sect. 3.2, we introduce in
Sect. 3.1 which hypotheses are required for the soundness of our transformation.

3.1 Our Hypotheses

Our technique soundly abstracts nonces and keys for trace equivalence, for simple
protocols and for a large family of security primitives, namely adequate theories,
that we define in this section. We first introduce the class of simple protocols,
similar to the one introduced e.g. in [10,15].

Definition 4. A simple protocol P is a protocol of the form:

!new c′
1.out(c1, c

′
1).B1 | ... | !new c′

m.out(cm, c′
m).Bm | Bm+1 | . . . | Bm+p

where each Bi with 1 ≤ i ≤ m + p is a basic process on ci, that is a ground
process built using the following grammar:

B := 0 | in(ci, u).B | out(ci, u).B | let x = v in B | new n.B

where u ∈ T (Σc,N ∪ X ), v ∈ T (Σ,N ∪ X ), and n ∈ N . Moreover, we assume
that c1, . . . , cm, cm+1, . . . , cm+p are pairwise distinct.

Even if considering simple processes may seem to be restricted, in practice it
is often the case that an attacker may identify processes through e.g. IP addresses
and even sessions using sessions identifiers. Therefore, encoding protocols in such
a class may be considered as a good practice since it allows to potentially discover
more flaws. Indeed, it gives more power to the attacker and allows him to know
from which agent he receives a message.

Example 6. The protocol PYah (see Example 2), as well as P 1
Yah and P 2

Yah as
described in Example 5, are simple protocols.

In order to establish our result, we have to ensure that considering two dis-
tinct constants instead of fresh nonces is sufficient. We need this property to hold
on terms first. Intuitively, when a term cannot be reduced further, it should be
possible to isolate two nonces that cause the reduction to fail. This is indeed the
case for a large class of primitives. We formalise this notion as follows:

Definition 5. Given a signature Σ = Σc � Σd, a convergent rewriting system
R, and a set of messages MΣ, we say that the theory (Σ,R) is adequate w.r.t.
MΣ when for any term t ∈ T (Σ,N )�MΣ in normal form, there exist n1, n2 ∈
N such that for any renaming ρ with ρ(n1) �= ρ(n2) then tρ↓ �∈ MΣ.
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Intuitively, we require that whenever a term t is not a message, it is possible
to fix two names of t such that any renaming of t (preserving these two names)
is still not a message. We could generalise our criterion to n-adequate theories
where the number of names that need to fixed is bounded by n but two names
are actually sufficient to deal with most of the theories.

Example 7. The theory described in Example 1 is adequate w.r.t. to the two
notions of messages Mc and Matomic that have been introduced. Intuitively, when
a term is not a message, either this property is actually stable for any renaming
(e.g. sdec(n, k)) or is due to the failure of a decryption (e.g. sdec(senc(n, k), k′)).
In such a case, maintaining the disequality between the terms modelling the
encryption and the decryption keys is sufficient to ensure that the resulting
term will not become a message.

Since proving a theory to be adequate may be a bit tedious, we develop in
Sect. 4.2 a criterion that allows us to conclude for the theory given above and
many others.

3.2 Our Transformation

We now explain how to formally get rid of nonces. Our transformation is actually
modular w.r.t. which nonces shall be abstracted. Let P be a simple process in
which any name is bound at most once. This means that any name that does
not occur explicitly in the scope of a restriction is distinct from those introduced
by the new operator. Moreover, a same name can not be introduced twice by the
operator new. Our transformation is parametrised by a set of names N which
correspond to the new instructions that we want to remove (typically those under
a replication).

We denote by P
N

(or simply P when N is clear from the context) the process
obtained from P by removing every instruction new n for any n ∈ N. Given B(c)
a basic process built on channel c, we denote by B�(c�) the process obtained
from B by applying a bijective alpha-renaming on each name bound by a new
instruction and replacing each occurrence of the channel c with the channel c�

(that is assumed to be fresh).

Example 8. Consider the process P = !new c′.out(c, c′).B where B is a basic
process built on channel c′. Let B = new n.out(c′, senc(n, k)), and N = {n}. We
have that:

1. P = !new c′.out(c, c′).out(c′, senc(n, k)), and
2. B�(c�) = new n�.out(c�, senc(n�, k)).

Note that B and B�(c�) are identical up to the fact that they proceed on dif-
ferent channel. The transformation 
 applied on the basic process is just here to
emphasise the fact that bound names are renamed to avoid some confusion due
to name clashes.
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Now, our transformation consists of combining these two building blocks.
When removing fresh names from a process P , we keep a copy of one of the
replicated basic processes of P , identified by its channel c. More formally, given
a simple process P of the form P = ! new c′.out(c, c′).B | P ′, and a set of names
N, the resulting process P

N,c
is defined as follows:

P
N,c def= P

N | B�(c�).

Sometimes we simply write P
c

instead of P
N,c

when N is clear from the context.

Example 9. Continuing Example 8, we have that:

P
N,c

= ! new c′.out(c, c′).out(c′, senc(n, k)) | new n�.out(c�, senc(n�, k)).

3.3 Main Result

We are now able to state our main result. We consider a signature Σ = Σc � Σd

together with a convergent rewriting system R, and a notion of messages MΣ

such that the theory (Σ,R) is adequate w.r.t. MΣ . Given a simple process P ,
we note Ch(P ) the set of public channel names occurring under a replication
in P .

Theorem 1. Let P and Q be two simple protocols such that Ch(P ) = Ch(Q),
and N be a set of names (intuitively those that we want to abstract away). We
have that:

[∀c ∈ Ch(P ). P
N,c ≈ Q

N,c
] ⇒ P ≈ Q

Note that, in case Ch(P ) �= Ch(Q), we trivially have that P �≈ Q since one
process is able to emit on a channel whereas the other is not.

This theorem shows that whenever two processes are not in trace equiva-
lence, then it is possible to find a witness of non-equivalence when nonces are
replaced by constants provided that one basic process under a replication has
been duplicated.

Example 10. Continuing the example developed in introduction and pursued in
Sect. 3.2, we consider

1. P = !new c′.out(c, c′).new nP .out(c′, senc(nP , k)), and
2. Q = !new c′.out(c, c′).out(c′, senc(nQ, k)).

Let N = {nP }. We have that:

1. P
c

= !new c′.out(c, c′).out(c′, senc(nP , k)) | new n�
P .out(c�, senc(n�

P , k)), and
2. Q

c
= !new c′.out(c, c′).out(c′, senc(nQ, k)) | out(c�, senc(nQ, k)).

Clearly P
c �≈ Q

c
since an attacker can observe that P

c
may send two distinct

messages while Q
c

cannot. Intuitively, the attack reflecting that P �≈ Q can be
reflected in P

c �≈ Q
c
. Another choice for N is to consider the set {nP , nQ} but

this would lead exactly to the same result.
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3.4 Sketch of Proof

To establish our result, we first establish how to map traces from P to P
N
.

Given a simple process P , and a trace (tr, φ) ∈ trace(P ), we denote by ρP,N
(tr,φ) the

replacement that associates to each name r ∈ N generated during the execution
under study and occurring in the frame φ, the name n ∈ N that occurs in the
instruction new n of P and that is responsible of the generation of this fresh
name. This amounts in losing freshness of all the new n instructions with n ∈ N.
Indeed all nonces induced by such an instruction are collapsed into a single nonce
n. Our transformation is parametric in N: we may replace all new instructions
or simply part of them. Note that, for simple processes, once (tr, φ) is fixed, this
replacement is uniquely defined.

Lemma 1. Let P be a simple protocol, N be a set of names, and (tr, φ) ∈
trace(P ). We have that (tr, φρP,N

(tr,φ)) ∈ trace(P
N
).

This proposition is shown by induction on the length of the trace under study
and by case analysis on the rule of the semantics that is applied to allow the
process to evolve. The crucial point is that the lack of freshness induced by
considering P

N
instead of P only generates more equalities between terms, and

thus more behaviours. Now, it remains to ensure that the disequality that is
needed to witness the non-equivalence still remains, and this is the purpose of
considering a fresh copy, namely B�(c�).

Sketch of proof of Theorem 1. The idea is to showthatawitness ofnon-equivalence
for P �≈ Q can be converted into a witness of non-equivalence for P

c �≈ Q
c

for at
least one c ∈ Ch(P ) = Ch(Q). Due to the fact that we consider simple processes,
three main cases may occur (the three other symmetric cases can be handled sim-
ilarly). We have that (tr, φ) ∈ trace(P ), and

1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that
R1φ↓, R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ �= R2ψ↓;
or

2. there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓ is a
message but Rψ↓ is not; or

3. there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Each case is proved separately, following the same lines. First, thanks to
Lemma 1, in case (tr, φρP,N

(tr,φ)) is still a witness of non-equivalence, we easily
conclude. This roughly means that we do not even need the fresh copy to exhibit
the non-equivalence. Otherwise, we need to maintain a disequality to ensure that
the distinguishing test will not hold on the Q side. Since we consider adequate
theories, we know that this disequality can be maintained through the use of
two distinct names. This is exactly why a fresh copy is needed. The other cases
can be handled similarly.
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4 Scope of Our Result

In this section, we explain why we need to assume simple processes and adequate
theories and we discuss which class of protocols and primitives can be covered.

4.1 Simple Processes

Simple processes are really necessary for our simplification result to hold. We
provide below a small counter example to our result for non simple processes.

Example 11. We consider symmetric encryption and pairs as in Example 1 with
ok ∈ Σ0. We define the two following processes.

P = ! new c.out(c1, c).new n.out(c, senc(n, k)) (1)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok) (2)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok) (3)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok) (4)

Q = ! new c.out(c1, c).new n.out(c, senc(n, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

Intuitively P expects a list of three ciphertexts among which two must be identi-
cal, while Q expects any three ciphertexts. The process Q is simple but P is not
since several processes in parallel proceed on channel c2. We have that P �≈ Q:
it is possible using (1) to generate distinct ciphertexts, concatenate them, and
send the resulting message on c2. This message will not be accepted in P , but
it will be accepted in Q.

Now, consider the process P
c1 and Q

c1 with N = {n}, that is the processes
obtained by applying our transformation on channel c1 (the only branch that
contains nonce generation) with the goal of getting rid of the instruction new n
on both sides. We obtain:

P
c1 = ! new c.out(c1, c).out(c, senc(n, k))

| new n�. out(c�, senc(n�, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok)

Q
c1 = ! new c.out(c1, c).out(c, senc(n, k))

| new n�. out(c�, senc(n�, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

It is quite easy to see that the witness of non-equivalence given above is not a
valid one anymore. Actually, we have that P

c1 and Q
c1 are in trace equivalence

since only two distinct ciphertexts may be produced.

Note that it is easy to express standard protocols as simple processes. As
explained previously, encoding security protocols as simple processes is a good
practice, and gives power to the attacker. However, it prevents the modeling of
unlinkability properties.
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4.2 Adequate Theories

The fact that we consider adequate theories may seem to be a proof artefact.
We could probably go beyond adequate theories, but this would be at the price
of considering a more complex transformation, and in particular additional con-
stants. We provide below an example of a theory that reflects the same kind of
issues than the ones illustrated by the processes presented in Example 11.

Example 12. In addition to the signature introduced in Example 1, we consider
an additional destructor symbol g together with the following rewriting rules:

g(〈senc(x, z), senc(x, z), senc(y, z)〉) → ok
g(〈senc(x, z), senc(y, z), senc(x, z)〉) → ok
g(〈senc(y, z), senc(x, z), senc(x, z)〉) → ok

Assume for instance that MΣ is Mc = T (Σc,N ) the set of all ground con-
structor terms. The resulting theory is not adequate. For instance, we have that
the term t = g(〈senc(n1, k), senc(n2, k), senc(n3, k)〉) is in normal form and not
a message. However, any renaming ρ that preserves distinctness between only
two names among n1, n2, n3, will be such that tρ↓ ∈ MΣ . This yields a counter-
example to our result, illustrated by the two following processes.

P ′ = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).

let y = g(〈senc(x1, k), senc(x2, k), senc(x3, k)〉) in out(c2, y).
Q′ = ! new c.out(c1, c).new n.out(c, senc(n, k))

| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).out(c2, ok).

The process P ′ expects three ciphertexts and returns the result of applying g to
them while Q′ directly returns ok. For the same reasons as those explained in
Example 11, we have that P ′ �≈ Q′ whereas P ′c1 ≈ Q′c1 .

The equational theory above is contrived, and actually most of the equational
theories useful to model cryptographic protocols can be shown to be adequate.
An example of a non-adequate theory is tdcommit as described in [18] which
does not fit the structure of our rules. Since the adequacy hypothesis might be
cumbersome to prove by hand for each theory, we exhibit a simple criterion that
ensures adequacy: the absence of critical pair.

Definition 6. Given a signature Σ = Σc � Σd, and a convergent rewriting
system R, we say that the theory (Σ,R) has no critical pair if �1 and �2 are not
unifiable for any distinct rules �1 → r1, and �2 → r2 in R.

Our notion of critical pairs actually coincide with the usual one for the theo-
ries we consider. Indeed, rewrite rules are all of the form � → r such that the head
symbol of � is a destructor symbol and destructors may not appear anywhere
else in � nor r. Theories without critical pairs are convergent and adequate.
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Lemma 2. Given a signature Σ = Σc � Σd, a convergent rewriting system R,
and a set of messages MΣ such that T (Σc,N ) � MΣ is stable by renaming. If
the theory (Σ,R) has no critical pair, then (Σ,R) is convergent and adequate
w.r.t. MΣ.

This lemma allows us to conclude that many theories used in practice to
model security protocols are actually adequate. This is the case of the theory
given in Example 1, and the theories that are presented below.

Standard Cryptographic Primitives. We may enrich the theory described in
Example 1 with function symbols to model asymmetric encryption, and digi-
tal signatures.

Σ+ = Σ ∪ {aenc, adec, sign, checksign, getmsg, pub, priv, ok}.

Symbols adec/aenc and sign/checksign of arity 2 are used to model asymmetric
encryption and signature, whereas pub/priv of arity 1 will be used to model
key pairs, and the symbol priv will be part of the signature Σpriv. The symbol
getmsg may be used in case we want to consider a signature algorithm that does
not protect the signed message. The corresponding rewrite rules are defined as
follows:

checksign(sign(x, priv(y)), pub(y)) → ok
getmsg(sign(x, priv(y))) → x

adec(aenc(x, pub(y)), priv(y)) → x

Regarding the notion of messages, a reasonable choice for MΣ+ is to consider
M+

c = T (Σc � {aenc, sign, pub, priv, ok},N ) the set of all ground constructor
terms. We may also restrict MΣ+ in various ways to only allow some specific
terms in key positions.

Blind Signatures. The following theory is often used to model blind signatures
(see e.g. [18]), checksign and unblind are the only destructor symbols.

checksign(sign(x, priv(y)), pub(y)) → x
unblind(blind(x, y), y) → x

unblind(sign(blind(x, y), priv(z)), y) → sign(x, priv(z))

Zero-Knowledge Proofs. A typical signature for representing zero-knowledge
proofs is ΣZKP = {Verify,ZKP, ok} where ZKP represents a zero-knowledge proof
and Verify models the verification of the proof. To ease the presentation, we
present how to model the proof of a particular statement, namely the fact that
a ciphertext is the encryption of either 0 or 1. Such proofs are thoroughly used
for example in the context of e-voting protocols such as Helios. In particu-
lar, the theory we consider here has been introduced in [16]. Specifically, let
Σ+

ZKP = ΣZKP � {raenc, radec, pub, priv, 0, 1} and consider the following rewrite
rules.

radec(raenc(x, z, pub(y)), priv(y)) → x
Verify(ZKP(x, raenc(0, x, pub(y)), pub(y)), raenc(0, x, pub(y)), pub(y)) → ok
Verify(ZKP(x, raenc(1, x, pub(y)), pub(y)), raenc(1, x, pub(y)), pub(y)) → ok
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The symbol raenc represents randomised asymmetric encryption as reflected by
the first rewrite rule. The two last rules ensure that a proof is valid only if the
corresponding ciphertext contains either 0 or 1 and nothing else. Many variants
of zero-knowledge proofs can be modelled in a very similar way.

5 Application of Our Result

Abstracting nonces with constants (as done in Theorem 1) may introduce false
attacks. A typical case is when protocols make use of temporary secrets.

Example 13. Consider the signature described in Example 1. Let P and Q be:

P = ! new c′.out(c, c′).in(c′, x).new n.out(c′, senc(ok, n)).
let y = sdec(x, n) in out(c′, y);

Q = ! new c′.out(c, c′).in(c′, x).new n.out(c′, n).

The two processes are in equivalence: P ≈ Q. Now, consider the processes P
c

and Q
c

with N = {n}, that is, the processes obtained by applying our transfor-
mation on channel c to get rid of the fresh nonces.

P
c

= ! new c′.out(c, c′).in(c′, x).out(c′, senc(ok, n)).let y = sdec(x, n) in out(c′, y)
| in(c�, x).out(c�, senc(ok, n�)).let y = sdec(x, n�) in out(c�, y)

Q
c

is defined similarly. It is easy to notice that the output of the constant ok is
now reachable, yielding P

c �≈ Q
c
.

5.1 Is Our Abstraction Precise Enough?

Our transformation may in theory also introduce false attacks for protocols with-
out temporary secrets. In this section, we review several (secure) protocols of the
literature and study whether a false attack is introduced by our transformation.
To perform this analysis we rely on the ProVerif tool. For each protocol, we first
consider a scenario with honest agents only as for the Yahalom protocol (Sect. 2).
We then consider a richer scenario where honest agents are also willing to engage
communications with a dishonest agent. In each case, we check whether ProVerif
is able to establish:

1. the equivalence between the original processes (left column);
2. all the equivalences obtained after getting rid of all the nonces using our

transformation (right column).

The results are reported on the table below: a � means that ProVerif succeeded
and a ✗ means that it failed. Actually, on most of the protocols/scenarios we
have considered, our abstraction does not introduce any false attack. ProVerif
models of our experiments are available online at http://www.lsv.ens-cachan.fr/
∼chretien/prot.tar.

http://www.lsv.ens-cachan.fr/~chretien/prot.tar
http://www.lsv.ens-cachan.fr/~chretien/prot.tar
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Protocol name Original (with
nonces)

Our transformation (no
nonce)

Yahalom (corrected version)

- simple scenario � �
- with a dishonest agent � �

Otway-Rees

- simple scenario � �
- with a dishonest agent � �

Kao-Chow (tagged version)

- simple scenario � �
- with a dishonest agent � �

Needham-Schroeder-Lowe

- simple scenario (secrecy of Na) � ✗

- simple scenario (secrecy of Nb) � �
- with a dishonest agent (secrecy of Nb) � �

Denning-Sacco (asymmetric)

- simple scenario � �
- with a dishonest agent � �

Needham Schroeder Lowe Protocol. We briefly comment on the false attack intro-
duced by our transformation on the Needham Schroeder Lowe protocol.

1. A → B : {A,Na}pub(B)

2. B → A : {Na, Nb, B}pub(A)

3. A → B : {Nb}pub(B)

1. I(A) → B : {A,Ni}pub(B)

2. B → I(A) : {Ni, Nb, B}pub(A)

3. I(A) → B : {Nb}pub(B)

The protocol is given on the left, and the (false) attack depicted on the right.
This attack scenario (and more precisely step 3 of this scenario) is only possible
when nonces are abstracted away with constants. Indeed, the attacker will not
be able to decrypt the message {Ni, Nb, B}pub(A) he has received to retrieve the
nonce Nb. Instead he will simply replay an old message coming from a previous
honest session between A and B. Since nonces have been replaced by constants,
B will accept this old message, and will assume that Ni is a secret shared between
A and B, while Ni is known by the attacker. Unfortunately, this abstraction does
not seem to help ProVerif prove the security of new protocols. Nonetheless it can
still be used as a proof technique to prove the security of protocols in classes
defined in [9,10].

5.2 Proof Technique

Our result can be used as a proof technique to show that two simple proto-
cols are in trace equivalence. In particular, we have that the decidability result
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developed in [10] for tagged protocols without nonces can now, thanks to our
transformation, be applied to study the security of protocols with nonces.

The decidability result given in [10] applies on type-compliant protocols. This
roughly means that ciphertexts cannot be confused and this can be achieved by
adding some identifier (a tag that is re-used in all sessions) in each ciphertext.

Applying our transformation to a simple, type-compliant protocol yields a
process that belongs to the decidable class of [10].

Proposition 1. Let (Σ,R) be the theory given in Example 1 with MΣ =
Matomic. Let P and Q be two simple and type-compliant protocols built on (Σ,R),
and such that Ch(P ) = Ch(Q). Let N be the set of names that occur in P or Q.

The problem of deciding whether P
N,c

and Q
N,c

are in trace equivalence is
decidable (for any c ∈ Ch(P )).

6 Conclusion

Our simplification result allows to soundly reduce the equivalence of processes
with nonces to the equivalence of processes without nonce. This can be seen
as a proof technique. For example for tagged simple protocols with symmetric
encryption, the resulting protocols fall in the decidable class of [10]. Similarly, we
could use the decidability result of [9] for ping-pong protocols with one variable
per transition.

Our result assumes protocols to be simple processes. Otherwise, to prevent
some transition, it could be necessary to maintain several disequalities. We plan
to go slightly beyond simple processes and simply require some form of determi-
nacy. More generally, we plan to study whether such a reduction result can be
obtained for arbitrary processes, that is, study whether it is possible to compute
a bound on the number of fresh copies from the structure of the processes.

Regarding adequate theories, we believe that our criterion is general enough
to capture even more theories like exclusive or, or other theories with an asso-
ciative and commutative operator. This would however require to extend our
formalism to arbitrary terms (not just destructor/constructor theories).

A Appendix

Lemma 1 is a direct corollary of Lemma 3 which we state below. In the following,
we will only consider theories adequate w.r.t. MΣ . Given a frame φ (resp. ψ)
and a name r in φ (resp. ψ), let n(r) be the nonce in P (resp. Q) such that
r is an instance of n(r) and let c(r) be the channel of the protocol’s branch
which generated it. Actually, it can be computed as the channel on which r
appeared first in trφ↓ (resp. trψ↓). We note Dφ = {r ∈ φ | n(r) ∈ N} and for
any A ⊆ Dφ, we denote n(A) the application having A as domain, and such
that n(A)(r) = n(r) for any r ∈ A. To each nonce n ∈ N, we can associate a
new name n�: we can then define the function n�(·) to be the function mapping
any r ∈ Dφ to (n(r))�. Similarly, for any A ⊆ Dφ, we denote n�(A) the function
mapping any r ∈ A to (n(r))�.
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Lemma 3. We have the two following properties.

1. Let (tr, φ) ∈ trace(P ), Dφ = {r ∈ φ | n(r) ∈ N} and ρ0 = n(Dφ). Then
(tr, φρ0) ∈ trace(P

N
).

2. Moreover, let ch be a channel such that tr = tr1.out(c, ch).tr2, D̃φ = {r ∈
φ | n(r) ∈ N ∧ c(r) = ch} and ρ = n(Dφ � D̃φ) ∪ n�(D̃φ). Then (tr�, φρ) ∈
trace(P

N,c
), where tr� = tr1.tr2{c�

/ch}.

Proof. The proof of case 2 is done by induction on the length of the execution
of tr in P . For any rule in our semantics, we prove that the renaming ρ does not
prevent the action from being executed as it only introduces new equalities and
that the resulting multiset of processes and frame are similar, up to application
of ρ. Finally, case 1 can be seen as a special instance of case 2. ��

Theorem 1. Let P and Q be two simple protocols such that Ch(P ) = Ch(Q),
and N be a set of names (intuitively those that we want to abstract away). We
have that:

[∀c ∈ Ch(P ). P
N,c ≈ Q

N,c
] ⇒ P ≈ Q.

Proof. Let us assume there exists a witness of non-equivalence (tr, φ) ∈ trace(P ).
Three main cases can occur:

1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that
R1φ↓, R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ �= R2ψ↓;

2. or there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓
is a message but Rψ↓ is not;

3. or, finally, there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Note that the remaining symmetric cases are handled by considering a witness
(tr, ψ) ∈ trace(Q) instead, as P and Q are both simple. We will deal with each
case separately, with the same intermediate goal: define a renaming ρ on Dψ

such that any test failing in ψ still fails in ψρ while the successful tests in φ

remain so; then translate it into a valid trace of P
N,c

for some c ∈ Ch(P ).

Case 1: Let us examine R1ψ↓ and R2ψ↓. If the two terms do not share the
same constructors, then for any renaming ρ, R1(ψρ)↓ �= R2(ψρ)↓, while for
any renaming ρ′, R1(φρ′)↓ = R2(φρ′)↓ (as the constructors are left unchanged,
because every term is a message). Now, if the two terms share the same con-
structors, there must exist a leaf position p in them such that R1ψ↓|p �= R2ψ↓|p.
Let us call t and s these terms respectively. If s or t is not an element of Dψ,
then sρ �= tρ for any ρ with dom(ρ) = Dψ. As in the previous case, we get
that R1(ψρ)↓ �= R2(ψρ)↓, while R1(φρ′)↓ = R2(φρ′)↓ for any renaming ρ′. Else,
assume s = r1 and t = r2 are two nonces of Dψ such that n(r1) = n1 ∈ N (resp.
n(r2) = n2 ∈ N). If n1 �= n2, consider the renaming ρQ

0 mapping any r ∈ Dψ to
n(r). Then sρQ

0 �= tρQ
0 and we get that R1(ψρQ

0 )↓ �= R2(ψρQ
0 )↓. By Lemma 3,

(tr, ψρQ
0 ) ∈ trace(Q

N
).
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Similarly, by defining ρP
0 as the function mapping any name r ∈ Dφ to n(r),

we have that (tr, φρP
0 ) ∈ trace(P

N
). and R1(φρP

0 )↓ = R2(φρP
0 )↓. Hence we get

a witness of non-equivalence between P
N

and Q
N
, which can translate into a

witness between P
N,c

and Q
N,c

for any c ∈ Ch(P ).
Else, if n(r1) = n(r2) = n, we need to be more precise to define a proper ρ.

Let out(c, ch) be the action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch.
Let D̃ψ = {r ∈ ψ | n(r) ∈ N ∧ c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N ∧ c(r) =
ch}. r1 ∈ Dψ � D̃ψ but r2 ∈ D̃ψ Consider now ρQ = n(Dψ � D̃ψ) ∪ n�(D̃ψ).
In particular, r1ρQ = n while r2ρQ = n�. Then sρQ �= tρQ and we get that
R1(ψρQ)↓ �= R2(ψρQ)↓ and Lemma 3 ensures (tr�, ψρQ) ∈ trace(Q

N,c
). Similarly,

by defining ρP = n(Dφ�D̃φ)∪n�(D̃φ), Lemma 3 ensures (tr�, φρP ) ∈ trace(P
N,c

)
and R1(φρP )↓ = R2(φρP )↓ (only equalities have been introduced by removing
the name restriction in P ). Hence we get a witness of non-equivalence between
P

N,c
and Q

N,c

Case 2: Because Rψ↓ is not a message and our signature is adequate (see Def-
inition 5), there must exist a, b ∈ N such that a �= b and for any renaming
σ : N → N , aσ �= bσ ⇒ tσ↓ /∈ MΣ . If a /∈ Dψ or b /∈ Dψ, consider the renam-
ing ρQ

0 mapping any name r ∈ Dψ to n(r): as aρQ
0 = a and n(r) �= a for any

r ∈ Dψ, R(ψρQ
0 )↓ is still not a message. On the other hand, if ρP

0 = n(Dφ), as
Rφ↓ is a message, Rφ↓ρP

0 = R(φρP
0 )↓ is a message. Hence, Lemma 3 ensures

(tr, φρP
0 ) ∈ trace(P

N
) while (tr, ψρQ

0 ) /∈ trace(Q
N
), leading to a witness of non-

equivalence between P
N

and Q
N
.

Else, assume a = r1 and b = r2 are two nonces in Dψ. If n(r1) �= n(r2),
r1ρ

Q
0 �= r2ρ

Q
0 and we can apply the same exact reasoning as before. So let us

consider the case where n(r1) = n(r2) = n. Let out(c, ch) be the action of tr
such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ψ = {r ∈ ψ | n(r) ∈
N ∧ c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N ∧ c(r) = ch}. r1 ∈ Dψ � D̃ψ but
r2 ∈ D̃ψ Consider now ρQ = n(Dψ �D̃ψ)∪n�(D̃ψ). In particular, r1ρQ = n while
r2ρQ = n�. Definition 5 ensures R(ψρQ

0 )↓ is still not a message. On the other
hand, if ρP = n(Dφ � D̃φ) ∪ n�(D̃φ), as Rφ↓ is a message, Rφ↓ρP = R(φρP )↓ is
a message. Hence, Lemma 3 ensures (tr�, φρP ) ∈ trace(P

N,c
) while (tr�, ψρQ) ∈

trace(Q
N,c

), leading to a witness of non-equivalence between P
N,c

and Q
N,c

.

Case 3: if tr ends with an output out(c,w) such that wψ is not a message, we
can define ρQ and ρP as in case 2 and obtain a witness of non-equivalence.
Similarly, if tr ends with an input or output out(c,w) which cannot be executed
in Q because a let action did not reduce to a message, we can define ρQ and
ρP as in case 2 and obtain a witness of non-equivalence. Consider now the
subcase where tr = tr′.in(c,R) for some tr′ such that (tr′, φ) ∈ trace(P ) and
(tr′, ψ) ∈ trace(Q) for some frame ψ. Because P and Q are both simple protocols,
there exists a unique term uP (resp. at most one term uQ) in the multiset P
(resp. Q) of processes from the execution of tr′ in P (resp. in Q) such that
in(c, uP ).M ∈ P for some M (resp. in(c, uQ).N ∈ Q for some N). Moreover,
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there exists σP such that Rφ↓ = uP σP while there is no σ such that Rψ↓ =
uQσ. As before, we consider the renamings ρQ

0 = n(Dψ) and ρP
0 = n(Dφ). As

(tr, φρP
0 ) ∈ trace(P

N
) and (tr, ψρQ

0 ) ∈ trace(Q
N
) by Lemma 3, if there exists

no σ such that uQρQ
0 σ = Rψ↓ρQ

0 , tr is a witness of non-equivalence between
P

N
and Q

N
and we are done. So let us then assume there exists σ0 such that

uQρQ
0 σ0 = Rψ↓ρQ

0 while uQσ �= Rψ↓ for every σ. There exist two leaves with
positions p1 and p2 in Rψ↓ which corresponds to positions below variables in
uQ such that Rψ↓|p1 �= Rψ↓|p2 but R(ψρQ

0 )↓|p1 = R(ψρQ
0 )↓|p2 and Rψ↓|p1 = r1

and Rψ↓|p2 = r2 such that n(r1) = n(r2) = n ∈ N. As repeatedly before, let
out(c, ch) be the action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let
D̃ψ = {r ∈ ψ | n(r) ∈ N∧c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N∧c(r) = ch}. We
have that r1 ∈ Dψ � D̃ψ but r2 ∈ D̃ψ. Consider now ρQ = n(Dψ � D̃ψ)∪n�(D̃ψ).
In particular, r1ρQ = n while r2ρQ = n�. As Rψ↓ is a message (by virtue of
our semantics), Rψ↓ρQ = R(ψρQ)↓ and now R(ψρQ)↓|p1 �= R(ψρQ)↓|p2 . As
such, uQρQσ �= RψρQ↓ for any σ. By defining ρP = n(Dφ � D̃φ) ∪ n�(D̃φ), as
Rφ↓ is a message, Rφ↓ρP = R(φρP )↓ is a message. Hence, Lemma 3 ensures
(tr�, φρP ) ∈ trace(P

N,c
) while (tr�, ψ) /∈ trace(Q

N,c
) for any ψ, leading to a

witness of non-equivalence between P
N,c

and Q
N,c

. ��
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