Interleaving Cryptanalytic Time-Memory
Trade-Offs on Non-uniform Distributions

Gildas Avoine’2®) Xavier Carpent?®, and Cédric Lauradoux?

1 INSA de Rennes, IRISA UMR 6074, F-35043 Rennes, France
gildas.avoine@irisa.fr
2 Institut Universitaire de France, Paris, France
3 Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
4 INRIA, Rennes, France

Abstract. Cryptanalytic time-memory trade-offs (TMTO) are famous
tools available in any security expert toolbox. They have been used to
break ciphers such as A5/1, but their efficiency to crack passwords made
them even more popular in the security community. While symmetric keys
are generated randomly according to a uniform distribution, passwords
chosen by users are in practice far from being random, as confirmed by
recent leakage of databases. Unfortunately, the technique used to build
TMTOs is not appropriate to deal with non-uniform distributions. In this
paper, we introduce an efficient construction that consists in partitioning
the search set into subsets of close densities, and a strategy to explore
the TMTOs associated to the subsets based on an interleaved traversal.
This approach results in a significant improvement compared to currently
used TMTOs. We experimented our approach on a classical problem,
namely cracking 7-character NTLM Hash passwords using an alphabet
with 34 special characters. This resulted in speedups ranging from 16 to
76 (depending on the input distribution) over rainbow tables, which are
considered as the most efficient variant of time-memory trade-offs.

1 Introduction

Security experts are often facing the problem of guessing secret values such as
passwords. Performing an exhaustive search in the set of possible secrets is an
ad-hoc approach commonly used. In practice, the search time can usually be
reduced (on average) by exploiting side information on the values to be guessed.
For example, a password cracker checks the most commonly used passwords and
their variants before launching an exhaustive search. This optimization is very
effective, as described in [7,15]. More generally, the distribution of the secrets
can be exploited to reduce the average cryptanalysis time [14].

An alternative to an exhaustive search is the cryptanalytic time-memory
trade-off (TMTO) technique, introduced by Hellman in 1980 [9]. It consists for
an adversary in precalculating values that are then used to speed up the attack
itself. The precalculation is quite expensive but they are done once, and the
cryptanalysis time is significantly reduced if a large memory is used to store
© Springer International Publishing Switzerland 2015

G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 165-184, 2015.
DOI: 10.1007/978-3-319-24174-6_9

166 G. Avoine et al.

the precalculation. Nowadays, TMTOs are used by most password crackers, for
example Ophcrack that is considered to be the most efficient password cracker,
which implements a TMTO variant due to Oechslin [16] and known as the rain-
bow tables.

Unfortunately, TMTOs do not behave well with non-uniform distributions of
secrets because TMTOs, by construction, uniformly explore the set of considered
secrets. Duplicating secrets in the search set for instance artificially creates a
non-uniform distribution but this approach does not make sense in practice
due to the excessive waste of memory. Providing an efficient solution would be
very impactful in practice, though, not only for cracking passwords, but also
for solving any problem that can be reduced to a chosen plaintext attack. For
example, anonymization techniques based on hashing email addresses or MAC
addresses are vulnerable targets for non-uniform TMTOs.

This paper introduces a technique to make cryptanalytic time-memory trade-
offs compliant with non-uniform distributions. More precisely, the approach con-
sists in (i) dividing a set into subsets of close densities, and (ii) exploring the
related time-memory trade-offs in an interleaved way (instead of sequentially)
defined by a density-related metric. The technique significantly improves the
cryptanalysis time when considering non-uniform distributions: we applied our
technique to crack passwords and demonstrated that we are up to 76 times
faster than state-of-the-art techniques [16] when considering real-life password
distributions.

After an introduction to TMTOs in Sect.2, we describe and analyze our
technique in Sect. 3 and explain how to interleave the TMTOs in Sect. 4. Section 5
explains the memory allocation, and Sect. 6 provides experimental results.

2 Cryptanalytic Time-Memory Trade-Offs

2.1 Hellman Scheme

Hellman introduced in [9] a method to do an efficient cryptanalysis of a one-way
function, the cryptanalytic time-memory trade-off (or TMTO). Given y, the goal
is to discover z such that h(z) =y, with h : A — B a one-way function (such as
a hash function or a block cipher). As its name suggests, it is a trade-off between
two simple solutions, the exhaustive search and the lookup table. The exhaustive
search consists in computing h over all possible input values in A, checking every
time if the image corresponds to y. It requires no memory or precalculation, but
on average |A|/2 evaluations of h. The lookup table approach creates offline a
huge table mapping all inputs in A with their image through A. During the online
phase (when queried with an image), this approach requires no h evaluation and
is very quick, but the precalculation cost is N = | A| evaluations of h, and more
importantly the N mappings are saved in memory. Hellman’s method on the
other hand, has an offline cost of O(V), and an online cost of O(N?/M?) for M
units of memory.

Interleaving Cryptanalytic Time-Memory Trade-Offs 167

2.2 Oechslin Scheme

There has been quite a few variants to Hellman’s method, but arguably the
most significant improvement is the rainbow table, introduced by Oechslin in [16].
Rainbow tables are faster in practice than Hellman tables [12,16], and are imple-
mented in many popular tools, especially in the password-cracking scene (see e.g.
Ophcrack [17], RainbowCrack [20]).

Rainbow tables are heavily inspired from Hellman tables and their behavior
is similar. In the offline phase, a series of chains of hashes is built, by alternating
h : A — B, the hash function to be inverted, and r; : B — A, a reduction
function. The goal of the reduction function is to output an arbitrary point in A
in an efficient and deterministic way, and with outputs uniformly distributed in
A (given inputs uniformly distributed in B). A typical reduction function set is:

ri(y) = (y + i) mod |A].

A different reduction function r; is used at each iteration ¢ (this is the major
difference with Hellman tables where the same reduction function is used in
a table!). Chains start with an arbitrary point in A. They are all of a given
length ¢, and m chains are built this way. Of all the points in the chains, only
the starting and ending points are saved. Figure 1 depicts the construction of a
rainbow table.

Tables are said to be perfect [4,16] or clean [2] when they contain no merges.
A major advantage of rainbow tables over Hellman tables is that in rainbow
tables, collisions only result in merges when they happened in the same col-
umn (whereas collisions always lead to merges in Hellman tables). In that case,
merging chains result in duplicate ending points. It is therefore very easy to
remove these chains and create clean tables. Clean tables have a maximal size
(on average, only a given number of different ending points may be obtained by

ri0h rooh ri—10h r;0h r¢—10h

Xiqh | — Xip2 X1 X
rioh rooh ri—10h r;oh r¢_10h

Xo1 | — Xap X Xoy
ri0h rooh ri—10h r;oh ry_10h

Xj1 | = Xj2 Xiji Xt
r10h ro0h ri—10h rioh r¢—10h

Xm,l > Xm,2 Xm,z Xm,t

Fig. 1. Structure of a rainbow table. The framed columns, respectively the starting
points and the ending points, are the parts stored in memory.

I Multiple tables with different reduction functions are used in both Hellman and
rainbow tables, although there are much more tables in typical settings for Hellman
tables.

168 G. Avoine et al.

computing chains from all possible starting points), and have a bounded proba-
bility of success of about 86 %. In order to have a higher probability of success,
several rainbow tables are computed, using a different reduction function set for
each (a typical number is 4).

The online phase works as follows. Given an image y, the goal is to find =
such that h(z) = y. The first step is to compute 7:_1(y), and check whether
it appears in the ending points list. If an ending point X, matches r,_1(y),
a chain is rebuilt from X, up to X;;—1, and h(X;,_1) is compared to y. If
they are equal, the search stops here and the preimage is x = X ;1. If they
differ (this situation is called a false alarm and is due to the collisions created
by the reduction functions), the search goes on to the next table, where r1_1(y)
is computed for that table. When all tables are searched in the last column, the
next step is to compute 7,1 (h(r;—2(y))) and to proceed to the next column. This
procedure goes on until the answer is found, or until all ¢ columns are searched
through, in which case the search fails (as said previously, the number of tables
can be adjusted to make this event extremely rare).

2.3 Related Works

There exists many variants of the original cryptanalytic time-memory trade-off
introduced by Hellman [9], in particular the distinguished points [8,11,21] and
the rainbow tables [16]. The choice on which variant to apply depends on the
parameters (space size, memory, probability of success), and the applicability of
their various optimizations (see [6,12,16] for discussions on their comparison).
Lately however, rainbow tables have been shown [12] to be superior to the other
trade-offs in most practical scenarios, and maximal tables have the best online
performance (despite being slower to precompute). That being said, the inter-
leaving technique discussed in this paper can be easily adapted to other variants
or to non-maximal rainbow tables.

Maximal-Sized Rainbow Tables. This work focuses on clean maximal-sized
rainbow tables. Clean rainbow tables have been analyzed extensively [4,12]. Some
earlier results on maximal-size rainbow tables from [4] that are relevant for the
rest of the analysis are cited below for reference.

Result 1. The probability of success of a set of £ clean rainbow tables of mazximal
size is:

P*x1—e
Result 2. The average number of h evaluations during a search in column k

(column O being the rightmost one) of a set of £ clean rainbow tables of maximal
size with chains of size t is:

Cr=k+({t—k+1Dq—gt1,

with
i(t—1)

tt+1)

¢ =1-

Interleaving Cryptanalytic Time-Memory Trade-Offs 169

Result 3. The average number of h evaluations during the online phase of a set
of € clean rainbow tables of mazximal size with m chains of size t on a problem
set of size N 1is:

oy (- ()) (-) T e (1 5) e

Rainbow Table Improvements. Rainbow tables have had a few improve-
ments of their own. Although they are not considered in this article, they are
worth mentioning as they are independent and complementary to the interleav-
ing technique.

Checkpoints, introduced by Avoine, Junod and Oechslin in [3] are additional
data related to the chain that is stored alongside the starting points and the
ending points. Their goal is to alleviate the overhead due to false alarms at the
cost of a bit of extra memory.

Efficient storage is important in time-memory trade-offs, as more chains
translates directly into faster online time. Techniques to store starting and end-
ing points efficiently are discussed in [2].

Ending point truncation (as described for instance in [12]) is another effort
to reduce memory usage. Truncating the ending points reduces storage required
for chains, and thus more chains can be stored in the same amount of memory.
A drawback is that it introduces additional false alarms and thus increases online
cost somewhat, but a modest amount of truncation has been shown to be valuable.

Non-uniform Distribution. Working with non-uniform distribution is the
core aspect of our work, and several approaches have been proposed [10,13].

A possible means to favor some passwords over some others is to introduce a
bias in the reduction functions [10]. However, the technique suffers from imple-
mentation issues and is not profitable in practice, as stated in [10].

Markov chains have been used to search through probable passwords instead
of improbable ones [13,15]. This is essentially the adaptation of dictionary
attacks on time-memory trade-offs, as it allows to search for some passwords
at the expense of not covering some others. Interleaving is different in that it
aims at covering a given set, but searching through it in an efficient way, given
its probability distribution. As detailed in Sect. 6, we used statistics on common
passwords to guide the partitioning of the input set. One could alternatively use
the technique described in [13] to determine the partitioning.

3 Interleaving

3.1 Description

The nature of rainbow tables dictates that each point of the input set is recovered
using on average the same time. There is no bias in the coverage either: each

170 G. Avoine et al.

point is covered a priori with the same probability. In order to work efficiently
with a non-uniform input distribution, the technique introduced in this paper
consists in (1) dividing the TMTO into several sub-TMTOs and (2) balancing
the online search between the sub-TMTOs.

The TMTO is divided into several sub-TMTOs such that each subdivision
of the input set is close to be uniform. For instance, if one wants to build a
TMTO against passwords containing alphanumeric and special characters, two
sub-TMTOs can be built on a partition of the input set: alphanumeric passwords
on one side, and passwords containing special characters on the other side. As
illustrated on Fig. 2, this makes sense because the first set (A;) is considerably
larger although most users choose their passwords in the second set (Ay). We say
that the first set has a higher password density than the second one. This density
disparity is not exploited in regular TMTOs while Sect.5 demonstrates that a
TMTO covering a high-density subset should be devoted a higher memory.

Formally, let the input set A be partitioned into n input subsets? [A];, of size
[[A]s| = [N]». Each subset has a probability p; that the answer to the challenge in
the online phase lies in [A],. The part of the trade-off dedicated to [A], is named
“sub-TMTO b”. The memory is divided and a slice [M], = ppyM is allocated
for each sub-TMTO b, where M is the total memory available for the trade-off.
Each sub-TMTO b is built on [A], using a memory of [M]p, exactly in the same
way than a regular TMTO.

@) o

Set [Ah Set [A]Q
Fig. 2. Input set divided into two sets of different densities

In order to search through the sub-TMTOs, one naive approach could be to
search through each of them one by one. However, this technique is very slow
when the point to recover ends up being in one of the last sub-TMTOs. A more
efficient approach consists in balancing the search between the sub-TMTOs: at
every step of the online search, the balancer decides which sub-TMTO will be
visited, as illustrated in Fig. 3 when 2 sub-TMTOs are considered. The search in
a sub-TMTO is performed in the same way than in classical rainbow tables. The
order of visits is chosen deterministically in a way that minimizes the average
online time, as described in Sect. 4.

2 For notations that already exist for rainbow tables, the convention adopted through-
out the article to avoid confusion is to surround them with brackets, as summarized
in Table 1.

Interleaving Cryptanalytic Time-Memory Trade-Offs 171

Balancer
—

Fig. 3. The TMTO balancer defines the order of visit of the sub-TMTOs.

Table 1. Notations used in this paper.

Meaning Notes
n number of subsets (and sub-TMTOs)
[A], | input subset Up—1[Als = A, [Als N[A]lyy =0 Vb #V
[N]p | input subset size [N]p = [[Als], >p—1[N]p =N
Db intrinsic probability of subset [A], pp = Pr(z € [Alplh(x)), D p_ipp =1
[M]p | memory size for sub-TMTO b Sh1 M)y =M
b memory proportion for sub-TMTO b | ppM = [M]p, > pp =1
[m]p | number of chains of the sub-TMTO b | [m], = %
[t]p |length of chains of the sub-TMTO b | [t], = 2[%]: -1
t total number of steps of the TMTO |£ =37, [t
[Cilp | cost for column ¢ of sub-TMTO b see Theorem 2

3.2 Analysis

Notations. In the analysis done in this article, the same number ¢ of tables is
used in each sub-TMTO. It is also possible to use a different number of tables
per sub-TMTO, but this results in a different probability of success for each of
them.

A step is defined as being a search in one column for the ¢ tables of a given
sub-TMTO. One could choose to define a step as being a search in a column for a
single table of a given sub-TMTO, but doing so results in a negligible difference
of performance at the cost of a more complicated analysis and implementation.

The notations used in this paper are presented in Table 1.

Online Phase

Probability of Success. The probability of success is the same in rainbow tables
that use interleaving than in the undivided case, provided clean tables of maximal
size are used.

Theorem 1. The probability of success of a set of interleaved clean rainbow
tables of maximal size is:
Pra~1—e 2.

172 G. Avoine et al.

Proof. The probability of success is

b=1

with P} the probability of success of the sub-TMTO i. Since each sub-TMTO is
a clean rainbow table of mazximal size, we have that P} ~ 1 — e~ 2, as computed
in Result 1. The results follows from Y ;" p; = 1.

Average Time. The average search time for interleaved rainbow tables is given
in Theorem 2. An example of the average speedup realized is given in Sect. 6.

Theorem 2. The average number of hash operations required in the online
phase of a set of interleaved clean rainbow tables of maximal size, given a set of
n input subset sizes {[N]1, ..., [N]n}, intrinsic probabilities {p1, ..., pn}, numbers
of chains {[m]1, ..., [m]n}, and a vector V = (V1,..., V) representing the order of
visits (i.e. Vi is the sub-TMTO chosen at step k) is:

1 (skq)e k

7= vak[N I R SN
[t n [t
Zm (1—’]3}2)] e (1)

b=1 s=1

with t = Y, [t]y the total mazimum number of steps®, and Sy the number of
steps for the sub-TMTO V. after k steps in total, that is:

Sk = #{i < Ek|V; = Vi.}.

Proof. The formula is a relatively direct adaptation of the average time in the
undivided case (Result3) to the interleaved case. Let y be the given hash in the
online phase, and x € A be the the preimage of y. The average cryptanalysis
time for a TMTO is:

i
T= ZPr(search succeeds at step k) x (cost up to step k)
k

+ Pr(search fails) x (cost of a complete search).

Vi is the sub-TMTO chosen to visit at some step k. Vi, has been visited Sy, — 1
times until step k. The probability Pr(search succeeds at step k) is therefore:

o (1= (1= Y 1ty @)
§ [N] Vi [N] Vi
3 { is used instead of ¢ in order to avoid confusion with the number of columns of the
undivided TMTO, which is a different number.

Interleaving Cryptanalytic Time-Memory Trade-Offs 173

The first factor in (2) is simply Pr(z € [A]y,) (the search may not succeed
otherwise). Then, for the search to succeed at step k (or step Sy within the sub-
TMTO Vi), it must have failed up to now. This is the third factor in (2). The

erpression gﬂt" is the probability that x lies within any column of any table of
k

(Sk—1)¢
the sub-TMTO Vj,, provided that x € [A]y,. The expression (1 _ mkﬁk) k
k

is then just the probability that x is not in any of the (S — 1)¢ first columns
visited, provided that x € [A]y,. Finally, the second factor in (2) expresses the
probability that x lies within one of the £ columns visited at this step®, provided
that x € [A]y, and that it has not been found up to now.

The value “cost up to step k” is the sum of the cost of each step up to the
current one. For each step i < k, the sub-TMTO wvisited is V; (and it is its S;-th
visit), and the associated cost is [Cs,]y, (see Result2).

The probability Pr(search fails) is:

n m [t]n

A failed search means that x is not in any of the [ty columns of the sub-TMTO
b where b is such that x € [A]y. Since the subsets [A]; form a partition of A, the
[

[t]ne
law of total probability gives (3). The factor (1 — &%”) ' is the probability that
x is not in any of the [t]y columns of the sub-TMTO b, given x € [Alp.
Finally, the “cost of a complete search” is the sum of the cost of each step in
all sub-TMTOs, that is >, _, Z[t]” 0[Cslp. This expression could also be written

Zk:l [Cs,]v,, but the former expression is closer to its counterpart in Theo-
rem 3 and also highlights that the cost of failure is independent of the order of
visits V.

Note that Theorem 2 for interleaved rainbow tables is a generalization of
Result 3 for classical rainbow tables. In particular, if n =1 and V = (1,1, ...,1)
with |V| = ¢, Theorem 2 gives the same equation as Result 3.

Worst-Case Time. A drawback of the interleaving is that it has in general a

worse worst-case time than an undivided TMTO. The worst-case in interleaved
rainbow tables corresponds to the second factor of the last term in (1), that is:

(4)

M:
(]

b=1 s=1
Note that it is independent of the subset probabilities and the order of visits.
4 Note that one would normally stop the search as soon as x is found rather than

continuing with all ¢ tables of this step. This results in a more complex formula for
the average time, and a negligible difference numerically.

174 G. Avoine et al.

Offline Phase. Precalculation of an interleaved TMTO consists in precalcula-
tion of each sub-TMTO independently. Precalculation of a clean rainbow table
set of m chains requires to build m; = am chains, where « is a factor depending
on how close to tables of maximal size the implementer wants to get (typical
numbers for « are 20-50).

The precalculation cost is the same regardless of the order of visit (since this
only regards the online phase), and asymptotically independent of the memory
allocation for each sub-TMTO. In particular, it is the same as in the undivided
case, as shown in Theorem 3.

Theorem 3. The number of hash operations required in the precalculation phase
of a set of interleaved clean rainbow tables, given a set of n input subset sizes
{[N]1, ..., [N]n}, numbers of chains {[m]1,...,[m]n}, and given «, the overhead
factor for clean tables, is:

P =~ 2afN.

Proof. The precalculation consists in computing, for each sub-TMTO b and for
each of its £ tables, [m1], = a|m]y chains of [ty] points.

n

P = Zf[ml]b[t]b.

b=1

By replacing the definition of [t], for clean tables, we get

timaly (2[%];’ - 1) ~ Y 02a[N],.
b=1

P =
b

n

1

The approximation (2[%]: — 1) = 2[%% is good because, typically, [t], > 1. For
unusually small tables, the cost is slightly overestimated. The conclusion follows
from >y [Nl =N

Storage. In this analysis, a naive storage consisting in storing both the starting
and ending points on [log, N'| bits is used. This explains why the number of
chains [m], is given as % in Table1.

Other options could be envisaged, such as storing the starting points on
[logy[m4]p] bits and the ending points on [logy[N]p| bits, or even better, using
prefix-suffix decomposition or compressed delta encoding [2]. These storage tech-
niques improve the memory efficiency and therefore implicitly the global efficiency
of the trade-off. In fact, they are even more beneficial for interleaved sub-TMTOs
than for an undivided TMTO, because sub-TMTOs operate on smaller subsets,
and can therefore benefit from a more substantial reduction of the memory.

However, taking these into account makes both the analysis of interleaved
sub-TMTOs and their comparison with an undivided TMTO quite a bit more
complex. It is nevertheless strongly encouraged to take these storage improve-
ments into consideration for practical implementations, and for figuring out the
optimal memory allocation (as discussed in Sect.5.2) for such practical imple-
mentations.

Interleaving Cryptanalytic Time-Memory Trade-Offs 175

4 Order of Visit

4.1 Discussion

This section discusses the order of visit of the columns of the sub-TMTOs. Before
every step during the search, a decision is made regarding in which sub-TMTO
to search through during this step. This decision should be made easily and
quickly, and the goal is to have an order of visit that minimizes the average
search time.

What is suggested is that a metric is computed for each sub-TMTO b. This
metric is defined as being the probability to find a solution in [A], at the next
step, divided by the average amount of work at the next step in sub-TMTO b
(Definition 1).

Definition 1. The metric associated to the k-th step of sub-TMTO b is:

Pr(z found at the k-th step in sub-TMTO b)
Elwork for the k-th step in sub-TMTO b] ’

77(177 k) =

with x, an answer in the online phase.

The sub-TMTO that should be visited is the one with the highest metric.
This metric is quantified for the rainbow scheme case in Sect. 4.2.

4.2 Analysis

It has been shown in [4] that the probability for the preimage to be in any column
is m/N. This probability is thus independent of the column visited. Moreover, it
may be seen from Result 2 that the cost is monotonically increasing towards the
left columns in a rainbow table. This means that it is always preferable to visit
the rightmost column that is not yet visited first. Therefore, the metric is only
computed for each sub-TMTO rather than for each column, since the choice of
the column is implicitly the rightmost one®.

Theorem 4. The metric associated to the k-th step of sub-TMTO b is:

w1 (- 8)) (-)

L[Cklp

n(b’ k) =

Proof. The numerator in Definition 1 is the probability addressed in equation (2)
in the proof of Theorem 2. The denominator, the expected work required at step
k in sub-TMTO b is denoted [Cklp, and is computed as indicated in Result 2.
Since the search is done in £ tables, the total work done at this step on average
18 E[Ck]b

5 Note that in rainbow tables with checkpoints [3], this is not entirely the case (columns
where checkpoints are placed often have a slightly cheaper cost than the the column
immediately to their right, for instance). Nevertheless, the search is performed from
right to left as well in such tables (see [3]), and experiments show that the gain of
reorganizing columns visit for taking this into account is extremely small.

176 G. Avoine et al.

The Lemma 1 provided below helps demonstrating Theorem 5.

Lemma 1. The metric n(b, k) from Theorem j is a decreasing function of k.

J4
Proof. The numerator of n(b, k) is decreasing, because both (1 — (1 — F]ﬁ:))

(k=1)¢
and py are constant, and because (1 — mk) is decreasing (since m%z >0).

The denominator is an increasing function of k since the cost of a step is
increasingly expensive towards the left of a rainbow table.

Theorem 5. The metric given in Theorem 4 is optimal, that is it minimizes
T from Theorem 2 given a set of n input subset sizes {[N]1,...,[N],}, intrinsic
probabilities {p1,...,pn} and numbers of chains {[m]1, ..., [m],}.

Proof. See Appendiz A.

5 Input Set Partition and Memory Allocation

5.1 Input Set Partition

Dividing a set into subsets generates a time overhead for the online phase of the
time-memory trade-off. Doing so is worth it if the gain outweighs this overhead.
The ratio [Jfﬁb represents the individual probability of occurrence for each point
of the [A], subset, and is intuitively a measure of the “density” of [A],. It makes
sense to divide a set when it contains subsets of unbalanced densities. A TMTO
covering a high-density subset should be devoted a higher memory and searched
through more rapidly than usual, and vice versa. Once the considered set is
partitioned into subsets, one may compute the expected online time given using
Theorem 2.

5.2 Memory Allocation

Given a partition {[N]i, ..., [N],} of the input set and their intrinsic probabili-
ties {p1, ..., Pn}, a memory size must be assigned to each subset. Given [N];, we
have [M], = ppM. The expression T given in Theorem 2 is not simple enough to
determine analytically an optimal memory allocation. Instead, the memory allo-
cation can be done solving an optimization problem that consists in minimizing
T by changing the variables pq, ..., pp.

When the number of subsets n is small, the memory allocation can be found
easily with a grid search. That is, T is evaluated at discretized values of the
parameters p1, ..., p, (with .1, p; = 1), and the point where 7' is minimal is
kept as the selected memory allocation.

This technique however becomes quite costly when the number of subsets
n is too large, or when the desired resolution of the discretization is too thin.
Metaheuristic techniques of local search such as Hill Climbing [19] can be used
instead to search for the optimal memory allocation more efficiently.

Interleaving Cryptanalytic Time-Memory Trade-Offs 177

6 Results

In this section, the interleaving technique is illustrated on password cracking.

6.1 Statistics

In order to determine the password distribution, two publicly-available datasets
have been considered: “RockYou” and “10 million combos”. The RockYou
dataset originated from www.rockyou.com, a gaming website that lost 32.6 mil-
lion unencrypted passwords in 2009. Among those passwords 14.3 million are
unique. The 10 million combos was released by Mark Burnett in 2015. This 10
million passwords dataset contains passwords from various hack sources accord-
ing to the author from which 5.18 million are unique. These datasets are for
example used for wordlist attacks by the well-known password crackers Hash-
cat [1] and John the Ripper [18].

Tables 2 and 3 present some statistics on these datasets (the results are shown
up to length of 7). Each cell of the two tables represents the per mille of passwords
that have the length indicated on the left, and that correspond to the character
set indicated on the top. More precisely: “Special” relates to passwords with at
least a special character®, “Lower” to passwords containing only lowercase letters,
“Upper” to passwords containing only uppercase letters, “Digit” to passwords
containing only digits, “Alpha” to passwords containing only letters (at least
one lowercase and one uppercase), “Alnum” to passwords containing letters and
digits (at least one letter and one digit). Such statistics can then be used to feed
the parameters for the interleaving technique.

Table 2. Statistics for the “RockYou” dataset (expressed in per mille).

Length | Special | Lower | Upper | Digit | Alpha | Alnum
0.000 0.000 | 0.000 0.000 | 0.000 | 0.000
0.000 0.002 | 0.000 | 0.002|0.000 | 0.000
0.000 0.024 | 0.002 | 0.005|0.000 | 0.001
0.002 0.153 1 0.010 0.032 1 0.003 | 0.006
0.007 1.38410.052 | 0.634|0.026 | 0.055
0.283 28.930 | 1.401 | 6.550|0.511 | 3.013
3.022 |122.3164.528 |69.899 | 2.131 | 58.435
5.709 83.980 | 3.034 | 19.684 | 1.848 | 78.546

N OOk | W N~ O

6 Here, a special character is one of {!"#8%&> Ox+,-./:;<=>7@[\I"_“{1}"L. These
are the characters denoted as such in the “XP special” table of the Ophcrack soft-
ware [17].

www.rockyou.com

178 G. Avoine et al.

Table 3. Statistics for the “10 million combos” dataset (expressed in per mille).

Length | Special | Lower | Upper | Digit | Alpha | Alnum
0.000 0.000 | 0.000 0.000 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.004 0.292/0.026 | 0.153/0.034 | 0.083
0.057 17.357/0.490 |14.212/0.515 | 1.890
0.145 31.451 | 0.804 7.42711.489 | 8.194
0.782 | 117.591 | 2.965 |70.308 |6.604 | 56.200
1.024 74.965 | 1.742 | 20.857 | 3.306 | 64.425

N | OO ks | W N - O

6.2 RockYou

We decided to set A to the set of passwords of the special character set (96
characters) of length 7 or less, which corresponds to the same set covered in
the “XP special” table of the Ophcrack software [17]. Likewise, we set the total
memory to 8 GB, which is about the memory used for this table. With these
settings, an undivided TMTO has an average cryptanalysis time of T = 6.27 x 10?
operations (obtained from Result 3).

We chose the following partition: [A]; is set to the passwords of length 7
(exactly) that contain at least one special character, and [A]s the rest of the
passwords. This gives the following parameters for the RockYou dataset:

[N]; =967 — 627 = 7.16 x 103 p1 = 0.0143
[N]o = N — [N]; = 4.31 x 102 p2 = 0.9857.
The probabilities are taken from Table 2, and are adjusted such that the sum of
probabilities up to length 7 is 1.
Figure 4 represents T according to p;: the memory allocation is optimal when

p1 = 0.5957, with T' = 3.81 x 108 operations, which represents a speedup of about
16.45 with respect to the undivided case”.

6.3 10 Million Combos

This second dataset presents comparable statistics to RockYou. Applying the
same partitioning, we have:

[N]; =967 — 627 = 7.16 x 10'3 p1 = 0.0026

[N]a = N — [N]; = 4.31 x 10*2 pa = 0.9974.
" For instance, in terms of time elapsed on a laptop capable of performing 3 x 10°

SHA-1 operations per second, and on a memory of 8 GB, this corresponds to 34’50”
(for the undivided case) reduced to 2’07” (for the interleaved case) on average.

Interleaving Cryptanalytic Time-Memory Trade-Offs 179

10 [

. . . .
0.0 0.2 0.4 0.6 0.8 1.0
P

Fig. 4. Memory allocation for the RockYou database: the solid line represents the
average number of operations as a function of the proportion p; of the memory devoted
to the first sub-TMTO. The cross mark is the optimal memory allocation, and the
dashed line represents the cost of an undivided TMTO, about 16.45 times slower.

This partitioning yields an even better result: T = 1.42 x 10® at the optimal
memory division p; = 0.4695, which represents a speedup of 44.29. This further
improvement with respect to RockYou is due to p; being even smaller in the
case of the 10 million combos dataset, which results in a stronger disparity in
the densities of A; and As.

In order to improve further the gain, one may partition A into more subsets.
This was tried with three subsets: we sorted the cells of Table3 in increasing
order of density, and chose the partitioning that produced the best results (see
Appendix B for details on the subsets chosen). These subsets correspond to:

[N]; = 7.16 x 10" p1 = 0.0026
[N]s = 4.27 x 10*? p2 = 0.1962
[N]3 = 4.67 x 10'° p2 = 0.8012.

The average time is of 8.20 x 107, which represents a speedup of 76.48. The
optimal memory decomposition was found using Hill Climbing [19]:

p1 = 0.5604 p2 = 0.3931 p3 = 0.0466.

Partitioning into four subsets or more did not yield a better speedup in our
experiments.

6.4 Discussion

Interleaving produces a gain over the classical method of 16.45, 44.29 and 76.48,
respectively for RockYou with 2 subsets, 10 million combos with 2 subsets, and
10 million combos with 3 subsets. The gain thus strongly depends on the input
distribution, and can be arbitrarily big. On the other hand, interleaving may not
be profitable at all when the input distribution is close to uniform.

Increasing the number of subsets allows for a finer division of the input
set, and is worthwhile when the resulting subsets have important differences of

180 G. Avoine et al.

density. It has however an overhead, which means that in practice (at least for
the distributions described in Sect.6.1), the optimal size of the partitioning is
relatively small.

Barkan, Biham and Shamir showed [5] that the cost of a search using a time-
memory trade-offs is theoretically lower-bounded. With an appropriate input
distribution, one could go below that bound using interleaving, which may seem
to be in contradiction with the results of [5]. However, these results were provided
in a context of uniform input distribution, so the bound is not violated since the
assumptions are different.

7 Conclusion

This paper introduces a technique to magnify the efficiency of cryptanalytic time-
memory trade-offs when the considered distribution of secrets is non-uniform.
It consists — during the precalculation phase — in dividing the input set into
smaller subsets of unbalanced densities and applying a time-memory trade-off
on every subset. As importantly, the contribution also consists of a method to
interleave — during the attack phase — the exploration of the time-memory trade-
offs. For that, a metric to select at each step the time-memory trade-off to be
explored is introduced, and a proof of optimality is provided.

Questions such as how the efficiency changes when a TMTO built on some
distribution is applied to another distribution, or whether it is possible to find
optimal memory division analytically remain to be explored.

The efficiency of the technique is practically demonstrated to crack
7-character passwords selected in a 96-character alphabet. Password length and
alphabet size have been chosen in compliance with tools currently used by secu-
rity experts to crack LM Hash passwords. The password distributions used to
evaluate the efficiency of the technique come from recently leaked password data-
bases of well-known websites. It has been shown that the time required to crack
such passwords is divided by up 76 when the technique introduced in this paper
is applied, compared to current methods. The efficiency can be even better when
considering distributions with a higher standard deviation. As far as we know,
this is the first time an improvement on time-memory trade-off divides by more
than two the cracking time since Hellman’s seminal work.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments.

A Proof of Theorem 5

For the sake of clarity, the following simplified notations are used in this proof:

o= (-1) -)

9(b; k) = €[Cr]p-

Interleaving Cryptanalytic Time-Memory Trade-Offs 181

Let V be a vector describing an arbitrary order of visit. Let V* be a vector
describing the order of visit dictated by the metric given in Theorem 4. V' is thus
an arbitrary permutation of V*. Sy (resp. Sj) is defined as in Theorem 2, that
is how many times Vi (resp. V;*) has been visited up to step k included:

Sk = #{i < k|Vi = Vi},
Sp=#{i <KV =V}
Additionally, let o(b, k) be the position of the k-th apparition of the sub-TMTO

bin V (and o*(b, k) its V* equivalent). In particular, the following identity binds
these notations:

>

o(V;,Si) =o0" (V7,5) =1 V1<i<

The goal is to minimize (1), that is:

t _
O T T
=1
n [t

D> e

b=1 s=1

n [t]ut

> (1-7512

+

i

2
Zf Vi, Sk) Zg(Vi,Si)—Fconstant.

k=1 =1

Note that the second term of this expression is constant, regardless of the choice
for V. Therefore, in order to prove the optimality of the metric and thus the
optimality of the choice of V*, it suffices to show that G > G*, with:

|
M~
™M=

G F(Vky, Sk)) g(Vi, Si), (5)

i=1

b
S|
—_

G* 9(Vi*, 57), (6)

f(vk 7Sk)

M»

>
Il
-

1=1

and with V any permutation of V*. Equation 5 can be re-written such that sub-
TMTOs are considered in consecutive order rather than considering them in the
order of visit (this is a mere re-ordering of the terms in the sum):

n [t o(b,k)
G=> > fbk) Y 9V, Sy,
b=1 k=1 i=1

and likewise for the sum in (6). It is now possible to factorize the difference
G — G* as such:

[t o (b,k) o (b;k)

=D Sk 9Vir i) = > 9V S| (7)
i=1

b=1 k=1 i=1

182 G. Avoine et al.

Some terms cancel each other out in the two sums of the bracketed factor in (7),
i.e. terms that appear in both sums. Let Al‘:k (resp. A, ;) be the set of positions
in V (resp. V*) that only appear in the left (resp. right) sum. Formally,

Af={j<obk)|o*(V;,8;) > o*(bk)},
Ay ={i <o (k)| a(V},S;) > b k)}.

This allows to rewrite the difference (7) as:

n [t
G- =3STfk) | D gV Sy - > gVt S| (8)
b=1 k=1 €AY, i€A;

By construction, the following implication holds between At and A~:
o(bk) € AY . = 0" (V' K) € Ay, (9)
Indeed, we have:
o(bk) € A,
= o(bk) <oV, k) No"(Vok)s Sepr)) > o (',)
<~ o(bk) <o, k)Nc*(bk) > " (b, K) (10)

The first equivalence is the definition of Azk, and the second comes from the
fact that V,) = b and S, %) = k, by definition of V' and S. Likewise,

o (b, k') € Ay,
— O'*(b/,k/) < O'*(b, k') A\ O'(;*(b/,k’)’S:'*(b’,k')) > O'(b, k)
— o*(V, k') <" (bk) Na(V', k") > a(bk) (11)

The implication (9) comes from the equivalence between (10) and (11). As a
particular case of (9), we have:

JED, = obk) €AY ..

This means that for each negative term —f (b, k)g(V}",S7) in (8), there is also

a positive counterpart f(V;",S7)g(b, k). This allows to rewrite the difference (8)

as a simple sum of opposed crossed terms:
GG =" £V, 87)9(b, k) = f(b,)g(V}', S7)] (12)

We have that o*(b, k) > j = o*(V}", S7), for all j € A}, by definition of A, .

3%
Moreover, since the metric used to construct V* is decreasing (see Lemma 1),

we have that:
n(b, k) > n(v', k'),
Fb,k)g(V' ') > f(V', K)g(b, k),

for all b, k,b', k' such that o*(b, k) < o*(b’, k’). Using this fact in (12) shows that
each term of the sum is positive, and thus G > G*.

B

Interleaving Cryptanalytic Time-Memory Trade-Offs 183

Subsets of 10 Million Combos

The partition in three subsets that yields the best speedup on the 10 million
combos dataset is depicted in Table 4.

Table 4. Subset indices for the partitioning done on 10 million combos.

| Length || Special | Lower | Upper | Digit | Alpha | Alnum ‘
0 3 3 3 3 3

W W W w wl w w
Do Wl Wl W w w
DN W W Wl W w w
DN B Lo W W| w| w
DN Lo Lo Wl W w w

DO DN Lo Wo| W Wl w

| O U | W N~

References

10.

Atom: The Hashcat password cracker (2014). http://hashcat.net/hashcat/
Avoine, G., Carpent, X.: Optimal storage for rainbow tables. In: Lee, H.-S.,
Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 144-157. Springer, Heidelberg
(2014)

Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: false alarm detection
using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183-196. Springer, Heidelberg (2005)
Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. TISSEC
11(4), 1-22 (2008)

Barkan, E., Biham, E., Shamir, A.: Rigorous Bounds on cryptanalytic time/memory
tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 1-21. Springer,
Heidelberg (2006)

Barkan, E.P.: Cryptanalysis of ciphers and protocols. Ph.D. thesis, Technion -
Israel Institute of Technology, Haifa, Israel, March 2006

Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70
million passwords. In: IEEE Symposium on Security and Privacy - S&P 2012,
San Francisco, CA, USA. IEEE Computer Society, May 2012

Denning, D.: Cryptography and Data Security, p. 100. Addison-Wesley, Boston
(1982)

Hellman, M.: A cryptanalytic time-memory trade off. IEEE Trans. Inf. Theory IT
26(4), 401-406 (1980)

Hoch, Y.Z.: Security analysis of generic iterated hash functions. Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel, August 2009

http://hashcat.net/hashcat/

184

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Avoine et al.

Hong, J., Jeong, K.C., Kwon, E.Y., Lee, I.-S., Ma, D.: Variants of the distinguished
point method for cryptanalytic time memory trade-offs. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 131-145. Springer, Heidelberg
(2008)

Lee, G.W., Hong, J.: A comparison of perfect table cryptanalytic tradeoff algo-
rithms. Cryptology ePrint Archive, report 2012/540 (2012)

Lestringant, P., Oechslin, P., Tissieres, C.: Limites des tables rainbow et comment
les dépasser en utilisant des méthodes probabilistes optimisées (in French). In: Sym-
posium sur la sécurité des technologies de 'information et des communications -
SSTIC, Rennes, France, June 2013

Massey, J.L.: Guessing and entropy. In: International Symposium on Information
Theory - ISIT 1994, Trondheim, Norway, p. 204. IEEE, June 1994

Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: ACM Conference on Computer and Communications Security -
CCS 2005, Alexandria, VA, USA, pp. 364-372. ACM, November 2005

Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617-630. Springer, Heidelberg (2003)
Oechslin, P.: The ophcrack password cracker (2014). http://ophcrack.source
forge.net/

Peslyak, A.: The John the Ripper password cracker (2014). http://www.openwall.
com/john/

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, vol. 2. Pearson
Education, Upper Saddle River (2003)

Shuanglei, Z.: The RainbowCrack project (2014). http://project-rainbowcrack.
com/

Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A time-memory
tradeoff using distinguished points: new analysis & FPGA results. In: Kaliski, B.S.,
Kog, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593-609. Springer,
Heidelberg (2002)

http://ophcrack.sourceforge.net/
http://ophcrack.sourceforge.net/
http://www.openwall.com/john/
http://www.openwall.com/john/
http://project-rainbowcrack.com/
http://project-rainbowcrack.com/

	Interleaving Cryptanalytic Time-Memory Trade-Offs on Non-uniform Distributions
	1 Introduction
	2 Cryptanalytic Time-Memory Trade-Offs
	2.1 Hellman Scheme
	2.2 Oechslin Scheme
	2.3 Related Works

	3 Interleaving
	3.1 Description
	3.2 Analysis

	4 Order of Visit
	4.1 Discussion
	4.2 Analysis

	5 Input Set Partition and Memory Allocation
	5.1 Input Set Partition
	5.2 Memory Allocation

	6 Results
	6.1 Statistics
	6.2 RockYou
	6.3 10 Million Combos
	6.4 Discussion

	7 Conclusion
	A Proof of Theorem
	B Subsets of 10 Million Combos
	References

