
Transforming Out Timing Leaks, More or Less

Heiko Mantel and Artem Starostin(B)

Computer Science Department, TU Darmstadt, Darmstadt, Germany
{mantel,Starostin}@mais.informatik.tu-darmstadt.de

Abstract. We experimentally evaluate program transformations for
removing timing side-channel vulnerabilities wrt. security and overhead.
Our study of four well-known transformations confirms that their per-
formance overhead differs substantially. A novelty of our work is the
empirical investigation of channel bandwidths, which clarifies that the
transformations also differ wrt. how much security they add to a pro-
gram. Interestingly, we observe such differences even between transfor-
mations that have been proven to establish timing-sensitive noninterfer-
ence. Beyond clarification, our findings provide guidance for choosing a
suitable transformation for removing timing side-channel vulnerabilities.
Such guidance is needed because there is a trade-off between security and
overhead, which makes choosing a suitable transformation non-trivial.

1 Introduction

Side channels are unintended communication channels that transmit informa-
tion during the execution of programs. Running time [4,15,34], power consump-
tion [35], EM radiation [26,49], cache behavior [48], and other characteristics
can cause side channels. Side channels might reveal information about secrets
processed by a program, and this makes them a serious security concern. Timing
side channels are particularly critical since they can be exploited remotely [4,15].

The idea of program transformations, in general, dates back to the seven-
ties [33] and since then has attracted a lot of attention for improving programs,
e.g., [5,12,16]. More specifically, a spectrum of program transformations has
been proposed for removing timing side-channel vulnerabilities [2,13,38,47]. The
objective of such transformations is to improve the security of programs. That
a program is secure wrt. timing side channels can be formalized by a timing-
sensitive noninterference-like property (see, e.g., [2]). That a transformation is
sound wrt. its objective can then be shown by proving that each transformed
program satisfies the property based on a timing-sensitive program semantics [2].

The objective of our research project was to improve the understanding of
program transformations for eliminating timing side-channel vulnerabilities. We
wanted to better understand how much security is added by such transforma-
tions at which costs, in practice. Hence, we chose an experimental approach.
In our study we focused on four well-known source-to-source transformations:
cross-copying [2], conditional assignment [47], transactional branching [13], and
unification [38]. Each of these transformations is transparent in the sense that it
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 447–467, 2015.
DOI: 10.1007/978-3-319-24174-6 23

448 H. Mantel and A. Starostin

does not change a sequential program’s input/output behavior. Hence, the only
negative consequence of these transformations is the overhead that they induce.

Our experimental results clarify that all four program transformations reduce
the capacity of timing side channels. These capacity reductions are substantial,
but they differ between the transformations. Regarding negative consequences,
our experimental results show that all four program transformations cause some
performance overhead. The worst-case overhead substantially differs between the
transformations, ranging from 18 to 372 % in our experiments.

Previously, the effectiveness of program transformations for removing timing
side-channel vulnerabilities was evaluated mostly analytically. In [2,13,38], it is
proven that cross-copying, transactional branching, and unification, respectively,
establish timing-sensitive noninterference. In [47], it is proven that conditional
assignment establishes the program counter security (PC-Security). The only
prior experimental study of the effectiveness of transformations is the investiga-
tion of cross-copying in [3]. The overhead of program transformations also was
evaluated mostly analytically, based on the code-size blow-up wrt. the definitions
of transformations. The only prior experimental study of the overhead induced
by transformations is the investigation of conditional assignment in [47].

In contrast to most prior work, we perform our evaluation empirically. We
measure the running time of baseline and transformed programs in a series of
experiments. From these experimental results, we estimate the performance over-
head induced by a transformation by computing the percentage increase of a
program’s mean running time caused by the transformation. We estimate the
effectiveness of a transformation by computing the percentage reduction of the
timing side-channel capacity in a program achieved by the transformation. We
run all our experiments on a contemporary laptop using realistic Java programs.

Our observation, which might be surprising, is that there are substantial dif-
ferences in the capacity reduction even between transformations that have been
proven before to establish fairly similar definitions of timing-sensitive noninter-
ference. This suggests that analytical investigations of the security established
by such program transformations are not yet satisfactory wrt. practice.

In summary, the two main novel contributions of this article are

– the quantification of the positive and negative consequences of different pro-
gram transformations based on experiments, and

– the clarification of the trade-off between performance overhead and security
in this context.

In addition, we provide guidance for selecting a suitable transformation by
exploiting our results of the performance and security evaluations in combination.

The article is structured as follows. In Sect. 2, we define the class of timing
side channels relevant for this article. In Sect. 3, we recall the aforementioned
transformations and explain our implementations of them. In Sect. 4, we intro-
duce our benchmark programs and our experimental setup. In Sects. 5 and 6
we present the performance and security evaluation, respectively. In Sect. 7 we

Transforming Out Timing Leaks, More or Less 449

analyze the performance-security trade-off. After a discussion of related work in
Sect. 8, we conclude in Sect. 9.

2 Timing Side Channels

An illustrative example [34] of a timing side channel can be found in the square-
and-multiply modular exponentiation. Such exponentiation is used, e.g., during
private-key operations in RSA [50] for computing R = yk mod n, where n is pub-
lic, y can be eavesdropped by the attacker, and k is the secret key. A vulnerable
Java implementation containing a timing side channel is given in Fig. 1.

public int modExp(int y, int k) {
int r = 1;
for (int i = 0; i < 32; i++) {

if (k % 2 == 1)
r = (r ∗ y) % n;

y = (y ∗ y) % n;
k >>= 1;

}
return r % n;

}

Fig. 1. Square-and-multiply modu-
lar exponentiation.

The secret key is stored in integer parame-
ter k. It is processed bitwise starting from the
least significant bit. Each bit of k is tested.
If the current bit is set, extra multiplication
and modulo operations are performed (high-
lighted lines in Fig. 1). Since these extra oper-
ations are performed only for the set bits of
the secret key, the running time of this imple-
mentation varies depending on the number
of the set bits. More concretely, the running
time encodes the Hamming weight of the
secret key. Therefore, the Hamming weight
of the secret key is leaked through the timing
behavior in one run.

This example illustrates how a conditional statement may result in a timing
side channel. If the Boolean condition of a conditional statement contains secret
information, then the resulting timing side channel leaks secret information.
We will refer to conditional statements that may result in timing side channels
leaking secret information as critical conditionals.

Previously proposed program transformations for removing timing side chan-
nels [2,13,38,47] aim at eliminating timing side channels that result from critical
conditionals, like the one in the above example program. This is the class of tim-
ing side channels on which we focus in this article.

3 Program Transformations

We consider four transformations: cross-copying [2], conditional assignment [47],
transactional branching [13] and unification [38]. Their original definitions from
the respective articles assume special statements like skip, dummy assignments,
etc. Such statements are not available in real-world programming languages
by default. In order to analyze program transformations in practice one first
needs to implement the missing special statements. These implementations are
not obvious because for each special statement there is a spectrum of design
decisions.

450 H. Mantel and A. Starostin

The four transformations were defined for different programming languages.
For instance, transactional branching was defined for an object-oriented pro-
gramming language in [13], while unification was defined for a simple language
with conditionals and loops in [38]. For our comparison, we use a language that
provides all features that are in the intersection of the languages in [2,13,38,47].
This resulting language is a high-level programming language that restricts bod-
ies of critical conditionals to contain only assignments to variables or fields of
primitive data types or arrays, and other conditional statements.

3.1 Cross-Copying

Cross-copying [2] pads the branches of critical conditionals in order to equal-
ize the timing behavior of both branches. Technically, cross-copying appends
a sequence of dummy statements that shall mimic the timing behavior of one
branch to the respective other branch, hence the name “cross-copying”. The
inserted dummy statements perform the same computations as the statements
that shall be mimicked, but dummy statements do not update program variables
that are relevant for the program’s behavior.

Realization in [2]. Padding is realized with the help of a special statement
SkipAsn x e. It shall take the same time to execute as the assignment x :=
e, but that does not change the value of x. SkipAsn-versions of all assignments
in one branch of a critical conditional are appended to the other branch, and
vice versa. For instance, the critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { r = (r ∗ y) % n; } else { SkipAsn r ((r ∗ y) % n); }
Our Implementation in Java. We implement SkipAsn by assignments to dummy
variables. For each statement SkipAsn x e that needs to be inserted, we intro-
duce a dummy field xSkip assuming xSkip is not present in the original program.
We implement then SkipAsn x e by xSkip = e. Such implementation is transpar-
ent because assignments to dummy fields do not affect the values in the original
computation while introducing the desired delays in the running time.

3.2 Conditional Assignment

Conditional assignment [47] removes critical conditionals, so that both branches
are consecutively executed. Boolean conditions of the removed conditionals are
encoded directly in the assignments from both branches of the original code.
The encoding is done with the help of bit masks and bitwise logical operators.

Realization in [47]. Function Mask(b) is used for encoding a boolean condition b
of a critical conditional. It satisfies Mask(false)=0 and Mask(true)=2l−1, where
l is the length in bits of the variables assigned under the critical conditional. Sup-
pose that in a program, x is assigned et if b evaluates to true, and ef if b evaluates
to false. Then, in the transformed program, x is assigned (m & et)| (˜m & ef),
where m = Mask(b) and &, |, and ˜ are bitwise conjunction, disjunction, and
negation. For instance, the critical conditional from Fig. 1 is transformed to

r = (Mask(k % 2 == 1) & ((r ∗ y) % n)) | (˜Mask(k % 2 == 1) & r);

Transforming Out Timing Leaks, More or Less 451

Our Implementation in Java. In [47], it is shown that Mask can be implemented
in C without conditional statements by defining Mask(b) as −b. Such implemen-
tation is not suitable for Java because type casting from booleans to integers is
not allowed in Java. We came up with a different solution: Mask(a == b) is
implemented for 32-bit integers as ˜(((a−b)>>31) | ((b−a)>>31)), where >> is
the sign-extending right shift. Such implementation is correct because Java uses
two’s complement integer numbers, and the check whether two integers a and b
are equal is equivalent to checking ¬(((a − b) < 0) ∨ ((b − a) < 0)).

3.3 Transactional Branching

Transactional branching [13] leverages a transaction mechanism for cross-
copying. Each branch of a critical conditional is wrapped in a transaction and
sequentially composed with the respective other branch. The transaction of the
original branch is committed, while the transaction of the cross-copied branch
is aborted.

Realization in [13]. Three transaction primitives are used. BeginT starts a new
transaction. AbortT aborts a transaction dismissing all changes made since
BeginT. CommitT commits a transaction making all changes since BeginT
effective. The original branch is wrapped by the pair BeginT-CommitT. The
cross-copied branch is wrapped by the pair BeginT-AbortT. For instance, the
critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { BeginT; AbortT; BeginT; r = (r ∗ y) % n; CommitT; }
else { BeginT; r = (r ∗ y) % n; AbortT; BeginT; CommitT; }

Our Implementation in Java. We implement transaction primitives by methods
that operate on copies of variables that are not yet committed. For each assign-
ment x := e under a critical conditional we introduce a field xCopy assuming
that xCopy is not present in the original program. We implement then BeginT
as xCopy = x, AbortT as x = xCopy, and leave the body of CommitT empty.
Such implementation is correct because it straightforwardly realizes the required
functionality of the transaction primitives.

3.4 Unification

Unification [38] is similar to cross-copying in the sense that dummy statements
are added to the branches of critical conditionals in order to equalize the timing
behavior of both branches. In contrast to cross-copying, these dummy statements
might be inserted into the branches instead of being appended only at the end of
branches. A unification algorithm is used to determine where dummy statements
need to be inserted into each branch, hence the name “unification”. Unification
can be viewed as an optimization of cross-copying that inserts never more, but
often fewer dummy statements into a program.

452 H. Mantel and A. Starostin

Realization in [38]. In [38], unification assumes a program semantics in which
execution of every statement consumes one time unit, but its adaptation
to a more fine-grained timing-sensitive program semantics is straightforward.
Padding is realized in [38] using the special statement Skip. It has no effect on
the values of variables, but its execution consumes one time unit. For instance,
the critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { r = (r ∗ y) % n; } else { Skip; }
Note that the advantage of unification over cross-copying does not become appar-
ent in this example, because the critical conditional in the original program lacks
an else-branch.

Our Implementation in Java. In our implementation of unification, we use the
same dummy statements as in our implementation of cross-copying. Such imple-
mentation is transparent because assignments to dummy fields do not affect the
values in the original computation while introducing the desired delays.

4 Our Benchmark Programs and Experimental Setup

An existing suite of benchmark Java programs that contain timing side-channel
vulnerabilities would be an ideal candidate for an empirical evaluation of pro-
gram transformations for removing such vulnerabilities. To the best of our knowl-
edge, there is unfortunately no such suite. That is why, we identify meaningful
candidates for benchmark programs ourselves. We choose four programs: (i)
square-and-multiply modular exponentiation from RSA [50], (ii) computation of
a share’s value [2], (iii) Kruskal’s algorithm for calculating the minimum span-
ning tree (MST) of a graph [40], and (iv) modular multiplication from the IDEA
cipher [41]. These four programs should not be seen as a complete benchmark
that is sufficient to investigate transformations in full detail. However, since these
programs come from different domains and have different degree of sophistica-
tion, they offer themselves as meaningful candidates for our experiments.

4.1 Our Benchmark Programs

Modular Exponentiation. Program modExp is the square-and-multiply modular
exponentiation discussed in Sect. 2. The security concern is that the Hamming
weight of the secret key k is leaked via a timing side channel.

Share’s Value. Program shareValue computes the total market value of a specified
share form the user’s portfolio. In [2], similar program was used to illustrate
timing side channels. The portfolio is represented by two arrays, ids and qty, that
store identifiers of shares and the number of corresponding shares possessed by
the user, respectively. Which shares are possessed by the user is a secret. Method
public int shareValue(int [] ids , int [] qty) computes the total market value of a
specified share from the portfolio. The security concern is that the fact whether
the user possess the specified share is leaked via a timing side channel.

Transforming Out Timing Leaks, More or Less 453

Kruskal’s Algorithm. Program kruskal implements Kruskal’s algorithm [40] for
calculating the minimum spanning tree of a graph. Kruskal’s algorithm is used
among others for compression of database queries and responses to them [29].
In case a secret is stored in a database, both queries and responses may contain
secret information. Method public int [] kruskal (int [] g) computes the MST for
graph g represented by its adjacency array. The security concern is that the
number of graph’s vertices is leaked via a timing side channel.

Modular Multiplication. Program mulMod16 is a modular multiplication from
the IDEA cipher’s [41] implementaion in cryptographic library FlexiProvider [1].
The encryption and decryption of this IDEA’s implementation use mulMod16{
several times for computing with the secret key. Method private int

mulMod16(int a, int b) implements multiplication modulo 216+1 for operands a
and b. The security concern is that 16 bits of the secret key leak via a timing side
channel. Corresponding timing side-channel attacks have been reported [32,43].

4.2 Our Experimental Setup

We run all experiments on a typical laptop, a Lenovo ThinkPad T510 with Intel
Core i7 CPU @2.67 GHz×4 and 4 Gb RAM under Ubuntu 12.04 LTS with Open-
JDK 64-Bit Server VM. We measure the running time of programs in nanosec-
onds using System.nanoTime(). We want to stay close to the program semantics
in which the transformations have been originally defined. In particular, we
want to avoid aggressive compiler optimizations that might revert transforma-
tions. Because of that we disable the JIT compilation. This might be seen as a
simplification of a practical environment, however the main goal of this research
project is to empirically evaluate theoretical concepts of different program trans-
formations and to clarify the relationship between them. It is not the goal of this
research project to fully solve the problem of timing side channels in practice.

5 A Performance Evaluation

Our goal is to quantify the performance overhead induced by program transfor-
mations in practice. Estimating performance of Java programs in a statistically
sound fashion requires a careful experimental design and analysis of the obtained
data. We guide our decisions for such a design and analysis by the principles of
statistically rigorous Java performance evaluation by Georges et al. [28].

5.1 Experimental Design

We estimate the running time of Java programs by random sampling. We draw
each sample of the running time from a different invocation of the Java VM. This
is necessary because the running time samples drawn from the same invocation
will not be independent. We measure the running time of a program directly
after the invocation of the Java VM, i.e., we do not perform any warm-up com-
putations. It has been recognized [28] that because of the JIT compilation the

454 H. Mantel and A. Starostin

performance of Java programs may improve after certain amount of warm-up
computation is made. We however excluded the JIT compilation from our setup.

To estimate the running time of a program, we first generate a vector of
random inputs. We run the program on each input in a freshly invoked Java VM.
We measure the running time of the program within each Java VM invocation
in nanoseconds using System.nanoTime(). The measured time value constitutes
a sample of the running time. From all collected samples, we reject outliers that
lie further than three median absolute deviations from the median.

5.2 Experiments and Experimental Results

We apply each of the 4 transformations to each of the 4 benchmark programs.
By that we obtain 17 unique programs: 4 baseline and 13 transformed ones.
We obtain 13 unique transformed programs instead of 16 because the resulting
programs for cross-copying and unification coincide for modExp, shareValue, and
kruskal. Next, we perform the timing measurements for these 17 programs.

The inputs to modExp are pairs of random integers. The inputs to shareValue
are pairs of arrays of random integers. Each array has 10 elements. The inputs to
kruskal are random graphs. Each graph has 7 vertices and 7 edges. That is, each
input is an array of 15 integers: The first element stores the number of vertices,
and the next 14 elements store 7 edges as the pairs of source and target vertices.
The inputs to mulMod16 are pairs of random integers.

We collect 1000 samples of the running time for each baseline and transformed
programs. From these samples we compute 95 % confidence intervals [11] for the
estimated mean running time. The results are presented in Fig. 2.

modExp

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

B CCCA TB U

shareValue

 0

 2000

 4000

 6000

 8000

 10000

 12000

B CCCA TB U

kruskal

 0

 5000

 10000

 15000

 20000

 25000

B CCCA TB U

mulMod16

 0

 2000

 4000

 6000

 8000

 10000

 12000

B CCCA TB U

modExp shareValue kruskal mulMod16

baseline (B) 5528.56±8.67 6544.11±7.65 8264.75±12.09 2201.58±3.96
cross-copying (CC) 6530.77±8.3 7306.83±5.79 9326.25±9.87 4116.23±5.42
cond. assign. (CA) 6468.12±6.93 7095.51±6.62 9450.69±10.56 3751.69±5.43
trans. bran. (TB) 13808.48±10.17 11284.31±11.15 21348.65±92.77 10393.93±10.97
unification (U) 6530.77±8.3 7306.83±5.79 9326.25±9.87 2231.09±3.93

Fig. 2. Estimated mean running time, in ns, 95 % confidence intervals.

Transforming Out Timing Leaks, More or Less 455

5.3 Our Findings in the Performance Evaluation

In order to clarify how much overhead is introduced by transformations, we use
the estimated mean running time to compute the percentage increase of the
running time due to each transformation. The result of this is given in Fig. 3.

We observe that program transformations generally introduce some perfor-
mance overhead. The observed overhead substantially differs between the trans-
formations. Altogether, the observed overhead varies from 1 to 372 %. The worst-
case overhead of transformations among different benchmark programs varies
from 18 to 372 %. The experimental results suggest that transactional branching
introduces the largest overhead that varies from 72 to 372 %. We observe moder-
ate difference between the overhead introduced by cross-copying and conditional
assignment. For mulMod16 we observe substantial difference between unification
and all other transformations. In this case, unification introduces only a marginal
overhead of about 1 %.

modExp

 0
 20
 40
 60
 80

 100
 120
 140
 160

CC CA TB U

shareValue

 0
 10
 20
 30
 40
 50
 60
 70
 80

CC CA TB U

kruskal

 0
 20
 40
 60
 80

 100
 120
 140
 160

CC CA TB U

mulMod16

 0
 50

 100
 150
 200
 250
 300
 350
 400

CC CA TB U

modExp shareValue kruskal mulMod16 worst case

cross-copying (CC) 18.13 11.66 12.84 86.97 86.97
cond. assignment (CA) 16.99 8.43 14.35 70.41 70.41
trans. branching (TB) 149.77 72.43 158.31 372.11 372.11
unification (U) 18.13 11.66 12.84 1.34 18.13

Fig. 3. Performance overhead based on the estimated mean running time, in %.

Comparison with Findings in [47]. The only prior experimental study of the over-
head induced by transformations is the investigation of conditional assignment
by Molnar et al. in [47]. The experiments were done on three programs imple-
mented in C. The experimental results in [47] indicate a much larger overhead
for conditional assignment than the one observed in our experiments. The worst
case overhead observed in [47] is about 480 %. Interestingly, in [47] a modular
exponentiation from RSA and a modular multiplication from IDEA are also used
as benchmark programs. For these programs, the overhead observed in [47] is
about 150 and 200 %, respectively. We, however, observe an overhead of only 17
and 70 % for our versions of these programs, respectively. Note that the versions
of these programs in [47] and in our work originate from different cryptographic
libraries and are implemented in C and Java, respectively.

456 H. Mantel and A. Starostin

6 A Security Evaluation

Our goal is to quantify the effectiveness of program transformations in prac-
tice. In the spirit of Millen [46], we model a timing side channel as a discrete
information-theoretic channel [21] with input X and output Y . The input alpha-
bet of the channel models the space of secret inputs to a program and the out-
put alphabet models possible timing observations. We measure the correlation
between the secret inputs and possible timing observations with the Shannon’s
channel capacity [51], denoted C(X;Y). We statistically estimate [17] the chan-
nel capacity C(X;Y) from empirically collected timing observations. To quantify
the positive effects of a transformation we compute the percentage reduction of
the timing side-channel capacity achieved by the transformation.

6.1 Experimental Design

For each benchmark program we design the following experiment to which we
will refer as the distinguishing experiment. We generate two distinct secret input
values for a program. Our security concern is that the fact whether the program
has received the first or the second secret input value is leaked via a timing
side channel. For each of the two secret input values we repeatedly run the
program. For each run we freshly invoke the Java VM. We measure the run-
ning time of the program within each Java VM invocation in nanoseconds using
System.nanoTime(). The resulting value of the time measurement constitute a
sample of the running time. From all collected samples, we reject outliers that
lie further than three median absolute deviations from the median. We augment
each sample with a Boolean variable that stores whether the sample resulted
from the first or from the second secret input value. We pass the list of such
augmented samples into the procedure for statistical measurement of informa-
tion leakage [17]. This procedure estimates the capacity C(X;Y) of the timing
side channel using iterative Blahut-Arimoto algorithm [8,14].

6.2 Experiments

Similarly to our performance evaluation, we run our security evaluation exper-
iments on 4 baseline and 13 transformed programs. We run a distinguishing
experiment for each of these 17 programs.

Two distinct secret inputs for each of the programs are generated as follows.
In modExp, the timing side channel of our interest results from a critical

conditional with the Boolean condition over parameter k. Hence, we supply two
different secret inputs to k: fixed integers with the Hamming weight of 5 and of
25, respectively. The other parameter of modExp receives a fixed integer.

In shareValue, the timing side channel of our interest results from a critical
conditional with the Boolean condition over parameter ids. Hence, we supply two
different secret inputs to ids: an array of 10 fixed integers that does not contain
the value representing the user’s specified share, and an array of 10 fixed integers

Transforming Out Timing Leaks, More or Less 457

that contains at one element a value representing the user’s specified share. The
other parameter of shareValue receives an array of 10 fixed integers.

In kruskal, the timing side channel of our interest results from a critical condi-
tional with the Boolean condition depending on parameter g. Hence, we supply
two different secret inputs to g: an array encoding a fixed graph with 5 vertices
and 7 edges, and an array encoding a fixed graph with 7 vertices and 7 edges.

In mulMod16, the timing side channel of our interest results from a critical
conditional with the Boolean condition over parameter a. Hence, we supply two
different secret inputs to a: a fixed integer whose 16 least significant bits are all
zeros, and a fixed integer whose 16 least significant bits contain ones and zeros.
The other parameter of mulMod16 receives a fixed integer.

We collect 10000 samples of the running time for each of the two secret inputs
for each baseline and each transformed version of benchmark programs.

6.3 Experimental Results

Already just by visualizing the collected samples of the running time one can
get a first impression about timing side channels in each program and about the
effects of program transformations on these timing side channels.

Figure 4a depicts a portion of the collected running time samples for the
baseline version of modExp. Blue (filled) boxes correspond to the first 800 run-
ning time samples that resulted from executing modExp on the secret input with
the Hamming weight of 5. Red (unfilled) boxes correspond to the first 800 run-
ning time samples that resulted from executing modExp on the secret input with
the Hamming weight of 25. Figure 4b depicts the frequency with which different
running time samples occurred in the experiment. Again, blue (filled) and red
(unfilled) bars correspond to the samples that resulted from executing modExp
on the secret inputs with the Hamming weights of 5 and 25, respectively. On
both Figs. 4a and b we can clearly observe differences in the running time values
that correspond to two different secret input values. This gives us a hint that
modExp indeed contains a timing side channel.

Similarly, Fig. 4c depicts a portion of the collected running time samples for
modExp transformed with cross-copying. Figure 4d depicts the frequency with
which different running time samples occurred in the experiment. Blue and red
(filled and unfilled, respectively) correspond to the running time samples that
resulted from executing the transformed program on the secret inputs with the
Hamming weights of 5 and 25, respectively. In contrast to Figs. 4a and b, we
cannot observe much difference in the running time values that correspond to
two different secret input values. This gives us a hint that cross-copying was
effective in removing the timing side channel in modExp.

From the collected samples we estimate the capacity of the timing side chan-
nels using a procedure for statistical measurement of information leakage [17].
The resulting estimated capacity is depicted in Fig. 5. Since in our distinguishing
experiments the size of the secret is 1 bit, the maximal possible capacity of the
timing side channel in each program is also 1 bit.

458 H. Mantel and A. Starostin

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4900 5000 5100 5200 5300 5400 5500

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5900 6000 6100 6200 6300 6400

 5900

 6000

 6100

 6200

 6300

 6400

(a) (b)

(c) (d)

Fig. 4. Running time values and frequencies of their occurrence in the distinguishing
experiment for modExp in the baseline and cross-copied versions.

modExp

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

shareValue

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

kruskal

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

mulMod16

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

modExp shareValue kruskal mulMod16

baseline (B) 0.5833±0.0142 0.2586±0.0132 0.1216±0.0104 0.7115±0.0121
cross-copying (CC) 0.0202±0.004 0.2204±0.0134 0.0974±0.0097 0.1943±0.0115
cond. assign. (CA) 0.0007±0.0014 0.0±0.0008 0.0743±0.0087 0.0±0.0007
trans. bran. (TB) 0.0062±0.0034 0.1657±0.012 0.0244±0.0066 0.1266±0.0114
unification (U) 0.0202±0.004 0.2204±0.0134 0.0974±0.0097 0.0727±0.0069

Fig. 5. Estimated capacity of timing side channels, in bits, 95 % confidence intervals.

Transforming Out Timing Leaks, More or Less 459

6.4 Our Findings in the Security Evaluation

The results of our experiments show that executing each benchmark program
opens timing side channels that have various capacities. The experimental results
also show that all program transformations in all experiments reduce the capacity
of timing side channels, i.e., all considered transformations have positive effects
wrt. side-channel mitigation. In order to clarify how large these positive effects
of transformations are, we use the estimated capacity of timing side channels
to compute the percentage reduction of the side channel’s capacity due to each
transformation. The result of this is given in Fig. 6.

We observe that program transformations generally reduce the capacity
of timing side channels, and that the observed reduction substantially differs
between the transformations. Altogether, the observed reduction varies from
about 15 to 100 %. We also observe that the reduction of the capacity of timing
side channels varies between cross-copying, transactional branching, and unifica-
tion. These transformations have been previously proven in [2,13,38] to establish
respective definitions of timing-sensitive noninterference.

The transformation “conditional assignment” has been proven in [47] to
establish PC-Security. We observe that, in shareValue and mulMod16, condi-
tional assignment completely removes timing side channels, and, in modExp, it
achieves a 99.88 % reduction of the estimated timing side-channel capacity. For
these three programs, conditional assignment removes timing side channels more
effectively than the other transformations. One might wonder: Why is conditional
assignment so much worse for kruskal, achieving a reduction of only 38.9 % and
being outperformed by transactional branching? We investigated this question
and suspect that the remaining timing side-channel capacity in kruskal is caused
by the recursive function find (see Fig. 9 in the appendix).

Our experimental results clarify that, in practice, there are differences in the
effectiveness of program transformations for removing timing side-channel vul-
nerabilities. The differences are substantial, and therefore our results indicate
that there is still much to be understood about such transformations. Under
which conditions should a program developer prefer one transformation over
another? Can a program developer maximize the positive effects of a transfor-
mation by his programming style, and, if yes, how? Such questions will require
answers until we fully understand how to use program transformations for writ-
ing programs that are free from timing-side channel vulnerabilities.

Comparison with Findings in [3]. The only prior experimental study of the effec-
tiveness of transformations is the investigation of a Java bytecode implementa-
tion of cross-copying by Agat in [3]. This investigation had a qualitative nature
and did not consider bandwidths of timing side channels. The experiments were
done on synthetic benchmark programs. In contrast to our findings, no signifi-
cant timing differences for the transformed programs have been observed. There
might be several reasons for that: The transformation was implemented in Java
bytecode, and different experiments, programs, and a setup were used.

460 H. Mantel and A. Starostin

modExp

 0

 20

 40

 60

 80

 100

CC CA TB U

shareValue

 0

 20

 40

 60

 80

 100

CC CA TB U

kruskal

 0

 20

 40

 60

 80

 100

CC CA TB U

mulMod16

 0

 20

 40

 60

 80

 100

CC CA TB U

modExp shareValue kruskal mulMod16

cross-copying (CC) 96.54 14.77 19.9 72.69
cond. assign. (CA) 99.88 100.0 38.9 100.0
trans. branching (TB) 98.94 35.92 79.93 82.21
unification (U) 96.54 14.77 19.9 89.78

Fig. 6. Reduction of the estimated capacity of timing side channels, in %.

7 Navigating in the Performance-Security Trade-Off

Usually security comes at a price. Our evaluation of the overhead introduced by
four program transformations for removing timing side-channel vulnerabilities
shows that these transformations are no exception. But what is the relationship
between the security and its price?

In this section we attempt to explore this relationship for the considered pro-
gram transformations. In Fig. 7 we plot together the results of our performance
and security evaluations. The ordinate denotes the values of the performance
overhead from Fig. 3. The abscissa denotes the values of the side-channel capac-
ity reduction from Fig. 6. Red crosses, yellow triangles, blue circles, and green
boxes correspond to cross-copying, conditional assignment, transactional branch-
ing, and unification, respectively. There are four markers of each marker type.
Each marker corresponds to an experiment with one benchmark program.

We are interested in analyzing which transformations satisfy a performance-
security requirement of the form “We are willing to pay α percent in performance
overhead for 1 % of side-channel capacity reduction” for different values of α. Let
p denote the performance overhead in percent, and let s denote the side-channel
capacity reduction in percent. Equation p=αs represents the above performance-
security requirement. In Fig. 7 we plot beams that satisfy the equation p = αs
for different values of α. Whenever all four markers of the same marker type lie
below the beam for particular α, the transformation that corresponds to this
marker type satisfies the performance-security requirement for this α. We vary
α from 0 to 5 with the step 0.25.

Our experimental results suggest: (1) Conditional assignment satisfies p =
0.75s. (2) Unification satisfies p = s. (3) Cross-copying satisfies p = 1.25s. (4)
Transactional branching satisfies p=4.75s. (In three cases, it satisfies p=2.25s.)

We conclude that conditional assignment satisfies our performance-security
requirement of interest for the smallest value of α among all transformations.
Furthermore, the above list allows us to identify the ordering between the trans-

Transforming Out Timing Leaks, More or Less 461

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

pe
rf

or
m

an
ce

 o
ve

rh
ea

d,
 in

 %

side-channel capacity reduction, in %

cross-copying
cond. assign.

trans. branching
unification

p=0.75s
p=s

p=1.25s
p=2.25s
p=4.75s

Fig. 7. Analyzing performance-security requirements for transformations.

formations wrt. how expensive is the security offered by them. This list can
serve as an initial guidance for reducing the search space of candidate program
transformations that one may want to deploy in practice.

One weakness of the considered requirement is that it suggests that a trans-
formation not impacting performance, but only very slightly decreasing the side-
channel capacity might be considered superior to any other transformation. This
weakness can be overcome by requiring in addition all transformations to achieve
a minimum threshold in reduction of the side-channel capacity. Naturally, further
performance-security requirements may also be of one’s interest. In this section,
we illustrate how one can use our experimental results for analyzing how good
different program transformations satisfy such requirements.

8 Related Work

There is a large body of work on the analysis of side channels from the attacker’s
perspective, e.g., [4,15,19,26,32,34,35,48,49]. Timing side channels have been
for the first time exploited by Kocher to attack an implementation of RSA [34].

A successful attack against an implementation proves that the implementa-
tion is vulnerable. On the contrary, timing-sensitive noninterference-like prop-
erties have been used to express that an implementation is secure wrt. timing
side channels [2,13,23,30,38]. Noninterference-like properties express very strong
security, which usually implies that an attacker cannot gain any information
about given secrets. In practice, however, some leakage might be unavoidable.

Quantitative theories of information-flow security allow one to limit how
much information is actually leaked [52]. In the eighties, Millen [46] proposed to
use the Shannon’s channel capacity [51] for quantifying the capacity of covert
channels. Later, attention was attracted by the development of new leakage

462 H. Mantel and A. Starostin

measures that more closely express the danger of real attacks, most notably min-
entropy [52] and g-leakage [7]. Generalizing the Shannon’s capacity, a theory of
channel capacity applicable to g-leakage has also been recently proposed [6].

For quantitative analysis of side channels, in general, Köpf and Basin [36]
present an information-theoretic model of side-channel attacks that allows quan-
tification of the information revealed to an attacker. Macé et al. [44] propose
an approach for information-theoretic evaluation of side-channel resistant logic
styles. Standaert et al. [53] present a framework for analysis of side-channel
attacks that enables comparisons of different implementations wrt. side channels.

For quantitative analysis of timing side channels, Köpf and Backes [10] pro-
pose an approach for quantifying resistance to unknown-message side-channel
attacks and use this approach to assess the resistance of cryptographic imple-
mentations against timing attacks. Köpf and Smith [39] derive leakage bounds
for blinded cryptography under timing attacks. Doychev et al. [24] present a tool
for automatic derivation of upper bounds on the cache side-channel leakage in
x86 binaries, including cache-related side channels that are based on timing.

Yet, there seems to be a deficit of reports on empirical quantitative evaluation
of timing side channels. We are aware only of the work by Cock et al. [19] who
present an empirical evaluation of timing side channels on the seL4 microkernel.
The results of our own research project contribute to this line of research.

Related to side channels, the problem of covert channels [42] has also
attracted a lot of attention. For covert channels that are based on timing, there
are reports on their informal [55], analytical [45], and empirical [19,27] analysis.

Besides program transformations [2,13,38,47], there is a spectrum of other
techniques for controlling timing side channels. Hu [31] proposes to reduce timing
channels by adding noise to the observable timing signal. Kocher [34] proposes
blinding that unpredictably changes the correlation between the secret input of
a cryptographic operation and its observable running time. Chevallier-Mames et
al. [18] propose side-channel atomicity, a method to convert a cryptographic algo-
rithm into an algorithm protected against simple side-channel attacks. Köpf and
Dürmuth [37] improve blinding to allow a choice between the strength of the
security guarantee and the resulting performance overhead. Svenningsson and
Sands [54] present a method for controlled declassification of the side-channel
leakage. Coppens et al. [20] propose to remove timing side channels by a transfor-
mation in a compiler backend. Askarov et al. [9] introduce black-box mitigators
for controlling timing side channels in a system by delaying the system’s outputs.
Zhang et al. [56] leverage this approach for a programming language. Crane et
al. [22] propose automated software diversity to mitigate cache side channels.

While performance costs of side-channel mitigation are generally addressed
in the literature, e.g., in [20,23,37,47,56], a trade-off between the performance
and security in this context is explored to a lesser extent. Köpf and Dürmuth [37]
study such a trade-off for their countermeasure. Di Pierro et al. [23] investigate
such a trade-off for a probabilistic variant of cross-copying, but only analyt-
ically. Doychev and Köpf [25] propose a game-theoretic approach for finding
cost-effective configurations for countermeasures against side channels.

Transforming Out Timing Leaks, More or Less 463

9 Conclusion

We presented the first systematic empirical evaluation of source-to-source trans-
formations for removing timing side-channel vulnerabilities wrt. security and
overhead. Our experimental results suggest that there are substantial differences
between the transformations both in the introduced performance overhead and
in the achieved reduction of timing side-channel capacities. In prior work, such
transformations were analyzed mostly theoretically. However, it was speculated
that some of the transformations are of unclear practical significance due to
their potential inefficiency [54] or ineffectiveness [38]. In this research project,
we obtain objective numbers that allow one to clarify such concerns wrt. one’s
own criteria of efficiency and effectiveness. Beyond this clarification, our findings
provide guidance for choosing a suitable program transformation. Such choice is
non-trivial because of the trade-off between security and performance.

Our work deepens the understanding about the effectiveness and efficiency
of program transformations for removing timing side-channel vulnerabilities in
practice, but this is only a first step in the empirical evaluation of such trans-
formations. As future work, we will experimentally investigate effects of JIT
compilation on program transformations. We also plan to consider alternative
implementations of transformations as well as alternative measures of leakage.

Acknowledgements. We thank Boris Köpf, David Sands, and the anonymous review-
ers for valuable comments. We thank Patrick Metzler for help in the early phase of this
work. This work has been partially funded by the DFG as part of project E2 within
the CRC 1119 CROSSING and by CASED (www.cased.de).

A Source Code of Benchmarks

(see Figs. 8, 9, and 10)

public int shareValue(int[] ids, int[] qty) {
shareVal = 0;
int i = 0;
while (i < ids.length) {
int id = ids[i];
int val = lookupVal(id) ∗ qty[i];
if (id == SPECIAL SHARE)
shareVal = shareVal + val;

i++;
}
return shareVal;

}

Fig. 8. Benchmark program shareValue, the critical conditional is highlighted.

www.cased.de

464 H. Mantel and A. Starostin

public int[] kruskal(int[] g) {
int[] mst = new int[g.length];
par = new int[g.length];
for (int i = 0; i < par.length; ++i) {
mst[i] = −1;
par[i] = i;

}
int idx = 0;
for (int i = 1; i < g.length; i += 2) {
int src = find(g[i]);
int tgt = find(g[i + 1]);
if (src != tgt) {
mst[++idx] = src;
mst[++idx] = tgt;
par[src] = tgt;

}
}
mst[0] = idx / 2 + 1;
return mst;

}

private int find(int x) {
if (par[x] != x)
return find(par[x]);

return x;
}

Fig. 9. Benchmark program kruskal, the critical conditional is highlighted.

private int mulMod16(int a, int b) {
int p;
a &= mulMask;
b &= mulMask;
if (a == 0) {
a = mulModulus − b;

} else if (b == 0) {
a = mulModulus − a;

} else {
p = a ∗ b;
b = p & mulMask;
a = p >>> 16;
a = b − a + (b < a ? 1 : 0);

}
return a & mulMask;

}

Fig. 10. Benchmark program mulMod16, the critical conditional is highlighted.

Transforming Out Timing Leaks, More or Less 465

References

1. FlexiProvider (Version 1.7p7) (2013). http://www.flexiprovider.de
2. Agat, J.: Transforming out Timing Leaks. In: POPL 2000, pp. 40–53. ACM (2000)
3. Agat, J.: Type Based Techniques for Covert Channel Elimination and Register

Allocation. PhD thesis, Chalmers University of Technology (2000)
4. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS

Record Protocols. In: S&P 2013, pp. 526–540. IEEE (2013)
5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak

memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

6. Alvim, M.-S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and Multiplicative Notions of Leakage, and Their Capacities. In: CSF
2014, pp. 308–322. IEEE (2014)

7. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring Informa-
tion Leakage using Generalized Gain Functions. In: CSF 2012, pp. 265–279. IEEE
(2012)

8. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Trans. Inf. Theory 18(1), 14–20 (1972)

9. Askarov, A., Zhang, D., Myers, A.C., Predictive Black-Box Mitigation of Timing
Channels. In: CCS 2010, pp. 297–307. ACM (2010)

10. Backes, M., Köpf, B.: Formally bounding the side-channel leakage in unknown-
message attacks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 517–532. Springer, Heidelberg (2008)

11. Baron, M.: Probability and Statistics for Computer Scientists. CRC Press (2006)
12. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-

execution through static program transformation. In: Giese, H., Rosu, G. (eds.)
FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 186–202. Springer,
Heidelberg (2012)

13. Barthe, G., Rezk, T., Warnier, M.: Preventing Timing Leaks Through Transac-
tional Branching Instructions. In: QAPL 2005, pp. 33–55. Elsevier (2006)

14. Blahut, R.E.: Computation of channel capacity and rate-distortion functions. IEEE
Trans. Inf. Theory 18(4), 460–473 (1972)

15. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

16. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

17. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010)

18. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

19. Cock, D., Ge, Q., Murray, T.C., Heiser, G.: The last mile: an empirical study of
timing channels on seL4. In: CCS 2014, pp. 570–581. ACM (2014)

20. Coppens, B., Verbauwhede, I., De Bosschere, K., De Sutter, B.: Practical miti-
gations for timing-based side-channel attacks on modern x86 processors. In: S&P
2009, pp. 45–60. IEEE (2009)

21. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd ed. Wiley (2006)

http://www.flexiprovider.de

466 H. Mantel and A. Starostin

22. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS 2015. The Inter-
net Society (2015)

23. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic timing covert channels: to
close or not to close? Int. J. Inf. Sec. 10(2), 83–106 (2011)

24. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for
the static analysis of cache side channels. In: USENIX Security 2013, pp. 431–446.
USENIX (2013)

25. Doychev, G., Köpf, B.: Rational protection against timing attacks. In: CSF 2015.
IEEE (2015)

26. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

27. Gay, R., Mantel, H., Sudbrock, H.: An empirical bandwidth analysis of interrupt-
related covert channels. In: QASA 2013 (2013)

28. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. In: OOPSLA 2007, pp. 57–76. ACM (2007)

29. Guttoski, P.B., Sunyé, M.S., Silva, F.: Kruskal’s algorithm for query tree optimiza-
tion. In: IDEAS 2007, pp. 296–302. IEEE (2007)

30. Hedin, D., Sands, D.: Timing aware information flow security for a JavaCard-like
Bytecode. El. Notes Th. Comp. Science 141(1), 163–182 (2005)

31. Hu, W.-M.: Reducing timing channels with fuzzy time. In: S&P 1991, pp. 8–20.
IEEE (1991)

32. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

33. Knuth, D.: Structured programming with go to statements. ACM Comput. Surv.
6(4), 261–301 (1974)

34. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

35. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

36. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: CCS 2007, pp. 286–296. ACM (2007)

37. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: CSF 2009, pp. 324–335. IEEE (2009)

38. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Sec. 6(2–3), 107–131 (2007)

39. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tograph under timing attacks. In: CSF 2010, pp. 44–56. IEEE (2010)

40. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. American Math. Soc. 7(1), 48–50 (1956)

41. Lai, X.: On the design and security of block ciphers. PhD thesis, ETH Zürich
(1992)

42. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

43. Lux, A., Starostin, A.: A tool for static detection of timing channels in Java. J.
Crypt. Eng. 1(4), 303–313 (2011)

Transforming Out Timing Leaks, More or Less 467

44. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

45. Mantel, H., Sudbrock, H.: Comparing countermeasures against interrupt-related
covert channels in an information-theoretic framework. In: CSF 2007, pp. 326–340.
IEEE (2007)

46. Millen, J.K.: Covert channel capacity. In: S&P 1987, pp. 60–66. IEEE (1987)
47. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security

model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006)

48. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

49. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

50. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

51. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 623–656 (1948)

52. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

53. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

54. Svenningsson, J., Sands, D.: Specification and Verification of Side Channel Declas-
sification. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp.
111–125. Springer, Heidelberg (2010)

55. Wray, J.C.: An analysis of covert timing channels. In: S&P 1991, pp. 2–7. IEEE
(1991)

56. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: PLDI 2012, pp. 99–110. ACM (2012)

	Transforming Out Timing Leaks, More or Less
	1 Introduction
	2 Timing Side Channels
	3 Program Transformations
	3.1 Cross-Copying
	3.2 Conditional Assignment
	3.3 Transactional Branching
	3.4 Unification

	4 Our Benchmark Programs and Experimental Setup
	4.1 Our Benchmark Programs
	4.2 Our Experimental Setup

	5 A Performance Evaluation
	5.1 Experimental Design
	5.2 Experiments and Experimental Results
	5.3 Our Findings in the Performance Evaluation

	6 A Security Evaluation
	6.1 Experimental Design
	6.2 Experiments
	6.3 Experimental Results
	6.4 Our Findings in the Security Evaluation

	7 Navigating in the Performance-Security Trade-Off
	8 Related Work
	9 Conclusion
	A Source Code of Benchmarks
	References

