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Abstract. Threshold password-authenticated secret sharing (TPASS)
protocols allow a client to secret-share a secret s among n servers and
protect it with a password pw, so that the client can later recover s
from any subset of t of the servers using the password pw, but so that
no coalition smaller than t learns anything about s or can mount an
offline dictionary attack on the password pw. Some TPASS protocols
have appeared in the literature recently. The protocol by Bagherzandi
et al. (CCS 2011) leaks the password if a client mistakenly executes
the protocol with malicious servers. The first t-out-of-n TPASS protocol
for any n > t that does not suffer from this shortcoming was given by
Camenisch et al. (CRYPTO 2014). This protocol, proved to be secure in
the UC framework, requires the client to involve in many communication
rounds so that it becomes impractical for the client. In this paper, we
present a practical TPASS protocol which is in particular efficient for
the client, who only needs to send a request and receive a response. In
addition, we have provided a rigorous proof of security for our protocol
in the standard model.

Keywords: Threshold password-authenticated secret sharing protocol ·
ElGamal encryption scheme · Shamir secret sharing scheme · Diffie-
Hellman problems

1 Introduction

Threshold password-authenticated secret sharing (TPASS) protocols consider a
scenario [5], inspired by the movie “Memento” in which the main character suf-
fers from short-term memory loss, leads to an interesting cryptographic problem,
can a user securely recover his secrets from a set of servers, if all the user can or
wants to remember is a single password and all of the servers may be adversarial?
In particular, can he protect his previous password when accidentally trying to
run the recovery with all-malicious servers? A solution for this problem can act
as a natural bridge from human-memorisable passwords to strong keys for cryp-
tographic tasks. Practical applications include secure password managers (where
the shared secret is a list of strongly random website passwords) and encrypting
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data in the cloud (where the shared secret is the encryption key) based on a
single master password.

The first TPASS protocol was given by Bagherzandi et al. [1]. It is built on the
PKI model, secure under the decisional Diffie-Hellman assumption, using non-
interactive zero-knowledge proofs. The basic idea is: The client initially generates
an ElGamal public and private key pairs (sk, pk = gsk) [7] and secret-shares sk
among servers using an t-out-of-n secret sharing [15] and outputs public parame-
ters including the public key pk and the encryptions E(gpw, pk) and E(s, pk) of
password pw and secret s, respectively, under the public key pk. When retrieving
the secret from the servers, the client encrypts the password pw′ he remembers
and sends the encryption E(gpw

′
, pk) to the servers, each of which computes

and returns Ai = [E(gpw, pk)/E(gpw
′
, pk)]ti = E(gti(pw−pw′), pk). The client then

computes A =
∏n

i=1 Ai and sends it to the servers. In the end, t servers cooperate
to decrypt B = E(s, pk)A = E(sg

∑
ti(pw−pw′), pk) and sends partial decryptions

to the client through secure channels, respectively. When pw′ = pw, the client is
able to retrieve the secret s by combining t partial decryptions. This protocol is
secure against honest-but-curious adversaries but not malicious adversaries. A
protocol against malicious adversaries was also given by Bagherzandi et al. [1]
using non-interactive zero-knowledge proofs.

In Bagherzandi et al. protocol, it is easy to see that the client must correctly
remember the public key pk and the exact set of servers, as he sends out an
encryption of his password attempt pw′ he remembers. If pk can be tampered
with and changed so that the adversary knows the decryption key, then the
adversary can decrypt pw′. Although the protocol actually encrypt gpw

′
, the

malicious servers can perform an offline dictionary attack on gpw
′
to obtain the

password pw′.
Authenticating to the wrong servers is a common scenario when users are

tricked in phishing attacks. To overcome this shortcoming, Camenisch et al. [5]
proposed the first t-out-of-n TPASS protocol for any n > t that does not require
trusted, user-specific state information to be carried over from the setup phase.
The protocol requires the client to only remember a username and a password,
assuming that a PKI is available. If the client misremember his list of servers and
tries to retrieve his secret from corrupt servers, the protocol prevents the servers
from learning anything about the password or secret, as well as from planting a
different secret into the user’s mind than the secret that he stored earlier.

The construction of Camenisch et al. protocol is inspired by Bagherzandi
et al. protocol based on a homomorphic threshold encryption scheme, but the
crucial difference is that in the retrieval protocol of Camenisch et al., the client
never sends out an encryption of his password attempt. Instead, the client derives
an encryption of the (randomised) quotient of the password used at setup and
the password attempt. The servers then jointly decrypt the quotient and ver-
ify whether it yields “1”, indicating that both passwords matched. In case the
passwords were not the same, all the servers learn is a random value.

Camenisch et al. protocol, proved to be secure in the UC framework,
requires the client to involve in many communication rounds so that it becomes
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impractical for the client. The client has to do 5n + 15 exponentiations in G for
the setup protocol and 14t + 24 exponentiations in the retrieval protocol. Each
server has to perform n + 18 and 7t + 28 exponentiations in these respective
protocols.

Our Contribution. We provide a practical t-out-of-n TPASS protocol for any
n > t. The basic idea is: The client initially secret-shares a password, a secret
and the digest of the secret with n servers, such as t out of the n servers can
recover the secret. When retrieving the secret from the servers, the client submits
to the servers A = gr1g

pwC
2 , where r is randomly chosen and pwC is the password,

and then t servers cooperate to generate and return an ElGamal encryption of
the secret and an ElGamal encryption of the digest of the secret, both under
the public key gr1. In the end, the client then decrypts the two ciphertexts and
accepts the secret if one decrypted value is another’s digest.

Our protocol is significantly more efficient than Camenisch et al. protocol [5]
in terms of communication rounds for the client and computation and commu-
nication complexities as well. In our protocol, the client only needs to send a
request and receive a response. In addition, the client needs to do 3n evaluations
of polynomials of degree t − 1 in Zq for the initialization and 7 exponentiations
for the retrieval protocol. Each server only needs to do t + 10 exponentiations
in the retrieval protocol. The computation and communication complexities for
the client are independent of the number of the servers n and the threshold t.

We have provided a rigorous proof of security for our protocol in the standard
model. Like Camenisch et al. protocol [5], our protocol can protect the password
of the client even if he communicates with all-malicious servers by mistake. In
addition, it prevents the servers from planting a different secret into the user’s
mind than the secret that he stored earlier.

Related Work. A close work related to TPASS is threshold password - authen-
ticated key exchange (TPAKE), which lets the client agree on a fresh session
key with each of the servers, but does not allow the client to store and recover
a secret. Depending on the desired security properties, one can build a TPASS
scheme from a TPAKE scheme by using the agreed-upon session keys to transmit
the stored secret shares over secure channels [1].

The first TPAKE protocols, due to Ford and Kaliski [8] and Jablon [9],
were not proved secure. The first provably secure TPAKE protocol, a t-out-
of-n protocol in a PKI setting, was proposed by MacKenzie et al. [12]. The
1-out-of-2 protocol of Brainard et al. [3] is implemented in EMC’s RSA Dis-
tributed Credential Protection [14]. Both protocols either leak the password or
allow an offline dictionary attack when the retrieval is performed with corrupt
servers. The t-out-of-n TPAKE protocols by Di Raimondo and Gennaro [13]
and the 1-out-of-2 protocol by Katz et al. [11] are proved secure in a hybrid
password-only/PKI setting, where the user does not know any public keys, but
the servers and an intermediate gateway do have a PKI. These protocols actually
remain secure when executed with all-corrupt servers, but are restricted to the
cases that n > 3t and (t, n) = (1, 2). Based on identity-based encryption (IBE),
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an 1-out-of-2 protocol where the client is required to remember the identities of
the two servers besides his password, was proposed by Yi et al. [17]. In case that
the public parameters for IBE can be tampered and changed by the adversary,
the protocol leaks the password.

In addition, the 1-out-of-2 TPASS by Camenisch et al. [4] leaks the password
when the client tries to retrieve his secret from a set of all-malicious servers.

2 Definition of Security

In this section, we define the security for TPASS protocol on the basis of the
security models for PAKE [2,10].

Participants, Initialization, Passwords, Secrets. A TPASS protocol
involves three kinds of protocol participants: (1) A group of clients (denoted
as Client), each of which requests TPASS services from t servers on the network;
(2) A group of n servers S1,S2, · · · ,Sn (denoted as Server = {S1,S2, · · · ,Sn}),
which cooperate to provide TPASS services to clients on the network; (3) A gate-
way (GW), which coordinates TPASS. We assume that User = Client

⋃
Server

and Client
⋂
Server = ∅. When the gateway GW coordinates TPASS, it simply

forwards messages between a client and t servers.
Prior to any execution of the protocol, we assume that an initialization phase

occurs. During initialization, the n servers cooperate to generate public parame-
ters for the protocol, which are available to all participants.

We assume that the client C chooses its password pwC independently and
uniformly at random from a “dictionary” D = {pw1, pw2, · · · , pwN} of size N ,
where N is a fixed constant which is independent of any security parameter.
The client then secretly shares the password with the n servers such that any t
servers can restore the password.

In addition, we assume that the client C chooses its secret sC independently
and uniformly at random from Z

∗
q , where q is a public parameter. The client

then secretly shares the secret with the n servers such that any t servers can
recover the secret.

We assume that at least n−t+1 servers are trusted not to collude to determine
the password and the secret of the client. The client C needs to remember pwC

only to retrieve its secret sC .

Execution of the Protocol. In the real world, a protocol determines how
users behave in response to input from their environments. In the formal model,
these inputs are provided by the adversary. Each user is assumed to be able
to execute the protocol multiple times (possibly concurrently) with different
partners. This is modeled by allowing each user to have unlimited number of
instances with which to execute the protocol. We denote instance i of user U
as U i. A given instance may be used only once. The adversary is given oracle
access to these different instances. Furthermore, each instance maintains (local)
state which is updated during the course of the experiment. In particular, each
instance U i is associated with the following variables, initialized as NULL or
FALSE (as appropriate) during the initialization phase.
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– sidiU is a variable containing the session identity for an instance U i. The session
identity is simply a way to keep track of the different executions of a partic-
ular user U . Without loss of generality, we simply let this be the (ordered)
concatenation of all messages sent and received by instance U i.

– siC is a variable containing the secret sC for a client instance Ci. Retrieval of
the secret is, of course, the ultimate goal of the protocol.

– acciU and termi
U are boolean variables denoting whether a given instance U i

has been accepted or terminated, respectively. Termination means that the
given instance has done receiving and sending messages, acceptance indicates
successful termination. When an instance U i has been accepted, sidiU is no
longer NULL. When a client instance Ci has been accepted, siC is no longer
NULL.

– stateiU records any state necessary for execution of the protocol by U i.
– usediU is a boolean variable denoting whether an instance U i has begun exe-

cuting the protocol. This is a formalism which will ensure each instance is
used only once.

The adversary A is assumed to have complete control over all communications
in the network (between the clients and servers, and between servers and servers)
and the adversary’s interaction with the users (more specifically, with various
instances) is modelled via access to oracles. The state of an instance may be
updated during an oracle call, and the oracle’s output may depend upon the
relevant instance. The oracle types include:

– Send(C, i,M) – This sends message M to a client instance Ci. Assuming
termi

C = FALSE, this instance runs according to the protocol specification,
updating state as appropriate. The output of Ci (i.e., the message sent by
the instance) is given to the adversary, who receives the updated values of
sidiC , acciC , and termi

C . This oracle call models an active attack to the protocol.
If M is empty, this query represents a prompt for C to initiate the protocol.

– Send(S, j, U,M) – This sends message M to a server instance Sj , supposedly
from a user U (either a client or a server) or even a set of servers. Assuming
termj

S = FALSE, this instance runs according to the protocol specification,
updating state as appropriate. The output of Sj (i.e., the message sent by
the instance) is given to the adversary, who receives the updated values of
sidjS , accjS , and termj

S . If S is corrupted, the adversary also receives the entire
internal state of S. This oracle call also models an active attack to the protocol.

– Execute(C, i,S) – If the client instance Ci and t server instances, denoted as
S, have not yet been used, this oracle executes the protocol between these
instances and outputs the transcript of this execution. This oracle call repre-
sents passive eavesdropping of a protocol execution. In addition to the tran-
script, the adversary receives the values of sid, acc, and term for client and
server instances, at each step of protocol execution. In addition, if any server
in S is corrupted, the adversary is given the entire internal state of the server.

– Corrupt(S) – This sends the password and secret shares of all clients stored in
the server S to the adversary. This oracle models possible compromising of a
server due to, for example, hacking into the server.
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– Corrupt(C) – This query allows the adversary to learn the password of the
client C and then the secret of the client, which models the possibility of
subverting a client by, for example, witnessing a user typing in his password,
or installing a “Trojan horse” on his machine.

– Test(C, i) – This oracle does not model any real-world capability of the adver-
sary, but is instead used to define security. If acciC = TRUE, a random bit b
is generated. If b = 0, the adversary is given siC , and if b = 1 the adversary is
given a random number. The adversary is allowed only a single Test query, at
any time during its execution.

Correctness. To be viable, a TPASS protocol must satisfy the following notion
of correctness: If a client instance Ci and t server instances S runs an honest
execution of the protocol with no interference from the adversary, then acciC =
accjS = TRUE for any server instance Sj in S.

Freshness. To formally define the adversary’s success we need to define a notion
of freshness for a secret of a client, where freshness of the secret is meant to
indicate that the adversary does not trivially know the value of the secret. We
say a secret siC is fresh if (1) C is not corrupted and (2) at least n − t + 1 out of
n servers are not corrupted.

Advantage of the Adversary. Informally, the adversary succeeds if it can
guess the bit b used by the Test oracle. We say an adversary A succeeds if it
makes a single query Test(C, i) to a fresh client instance Ci, with acciC = TRUE
at the time of this query, and outputs a single bit b′ with b′ = b (recall that b is
the bit chosen by the Test oracle). We denote this event by Succ. The advantage
of adversary A in attacking protocol P is then given by

AdvPA(k) = 2 · Pr[Succ] − 1

where the probability is taken over the random coins used by the adversary
and the random coins used during the course of the experiment (including the
initialization phase).

An adversary can always succeed by trying all passwords one-by-one in an
on-line impersonation attack. A protocol is secure if this is the best an adversary
can do. The on-line attacks correspond to Send queries. Formally, each instance
for which the adversary has made a Send query counts as one on-line attack.
Instances with which the adversary interacts via Execute are not counted as on-
line attacks. The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1. Protocol P is a secure TPASS protocol if, for all dictionary size
N and for all PPT adversaries A making at most Q(k) on-line attacks, there
exists a negligible function ε(·) such that for a security parameter k,

AdvPA(k) ≤ Q(k)/N + ε(k)
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3 Our TPASS Protocol

3.1 Description of Our Protocol

Initialization. Given a security parameter k ∈ Z
∗, the initialization includes:

Parameter Generation: On input k, the n servers agree on a cyclic group G of
large prime order q with a generators g1 and a hash function H : {0, 1}∗ → Zq.
Then the n servers cooperate to generate g2, like [16], such that none knows the
discrete logarithm of g2 based on g1 if one out of the n server is honest. The
public parameters for the protocol is params = {G, q, g1, g2,H}.

Password Generation: On input params, each client C ∈ Client with identity
IDC uniformly draws a string pwC , the password, from the dictionary D =
{pw1, pw2, · · · , pwN}. The client then randomly chooses a polynomial f1(x) of
degree t − 1 over Zq such that pwC = f1(0), and distributes {IDC , i, f1(i)} to
the server Si via a secure channel, where i = 1, 2, · · · , n.

Secret Sharing: On input params, each client C ∈ Client randomly chooses s
from Z

∗
q . The client then randomly chooses two polynomials f2(x) and f3(x) of

degree t − 1 over Zq such that s = f2(0) and H(gs2) = f3(0), and distributes
{IDC , i, f2(i), f3(i)} to the server Si via a secure channel, where i = 1, 2, · · · , n.
We define the secret sC as gs2.

Protocol Execution. Given the public params = {G, q, g1, g2,H}, the client C
(knowing its identity IDC and password pwC) runs TPASS protocol P with t
servers (each server knowing {ID, i, f1(i), f2(i), f3(i)}) to retrieve the secret sC
as shown in Fig. 1.

In Fig. 1, TPASS protocol is executed in three phases as follows.

Retrieval Request. Given the public parameters {G, g1, g2, q,H}, the client C
with the identity IDC validates if q is a large prime and gq1 = gq2 = 1. If so,
the client, who remembers the password pwC , randomly chooses r from Z

∗
q and

computes
A = gr1g

−pwC
2 .

Then the client submits msgC = 〈IDC , A〉 to the gateway GW for the n servers.

Remark. The purpose for the client to validate the public parameters is to
ensure that the discrete logarithm over {G, q, g1, g2} is hard in case that the
adversary can change the public parameters.

Retrieval Response. After receiving the request msgC from the client C, the gate-
way GW forwards it to t available servers to response the request. Without loss
of generality, we assume that the first t servers, denoted as S = {S1,S2, · · · ,St},
cooperate to generate a response as follows.

Based on the identity IDC of the client, each server Si (i = 1, 2, · · · , t)
randomly chooses ri, ci, di from Z

∗
q and computes

Bi = gri1 g
aif1(i)
2 , Ci = gci1 ,Di = gdi

1 , δi = g
H(IDC ,A,Bi,Ci,Di)
1
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Fig. 1. Our TPASS protocol P
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where ai =
∏

1≤j≤t,j �=i
j

j−i .
Then Si broadcasts msgi = 〈IDC , δi, Bi, Ci,Di〉 in S in two phases. In the

commit phase, Si broadcasts its commitment 〈IDC , δi〉. After receiving all com-
mitments 〈IDC , δj〉 (1 ≤ j ≤ t), Si broadcasts its opening 〈IDC , Bi, Ci,Di〉 in
the reveal phase.

Each server Si verifies if δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for all j �= i. If so, based on

the identity IDC of the client, Si computes

C =
t∏

j=1

Cj ,D =
t∏

j=1

Dj , hi = H(IDC , A,C,D)

Ei = g
aif2(i)hi

2 C−ri(A
t∏

j=1

Bj)ci , Fi = g
aif3(i)hi

2 D−ri(A
t∏

j=1

Bj)di

and sets accSi
= TRUE.

Then Si sends msg∗
i = {IDC , C,D,Ei, Fi} to the gateway GW.

The gateway GW computes

E =
t∏

i=1

Ei, F =
t∏

i=1

Fi

and returns to the client with msgS = {IDC , C,D,E, F}.

Secret Retrieval. After receiving the response msgS = {IDC , C,D,E, F} from
the gateway, the client computes

h = H(IDC , A,C,D), S = (E/Cr)h
−1

, T = (F/Dr)h
−1

and verifies if T = g
H(S)
2 . If so, the client sets accC = TRUE and ⊥ otherwise.

3.2 Correctness and Efficiency

Correctness. Assume that a client instance Ci and t server instances S run
an honest execution of our TPASS protocol P with no interference from the
adversary. With reference to Fig. 1, it is obvious that accSj

= TRUE for 1 ≤ j ≤ t.
In addition, we have

C =
t∏

j=1

Cj = g
∑t

j=1 cj
1

D =
t∏

j=1

Dj = g
∑t

j=1 dj

1

Ei = g
aif2(i)hi

2 C−ri(A
t∏

j=1

Bj)ci
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= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2 )ci

= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 g
ci
∑t

j=1 rj
1 gcir1

Fi = g
aif3(i)hi

2 D−ri(A
t∏

j=1

Bj)di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2 )di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

h = h1 = h2 = · · · = ht

= H(IDC , A,C,D)

E =
t∏

i=1

Ei =
t∏

i=1

g
aif3(i)h
2 g

−ri
∑t

j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

= gsh2 g
−∑t

i=1 ri
∑t

j=1 cj
1 g

∑t
i=1 ci

∑t
j=1 rj

1 g
r
∑t

i=1 ci
1

= gsh2 Cr

F =
t∏

i=1

Fi =
t∏

i=1

g
aif3(i)h
2 g

−ri
∑t

j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

= g
H(gs

2)h
2 g

−∑t
i=1 ri

∑t
j=1 dj

1 g
∑t

i=1 di

∑t
j=1 rj

1 g
r
∑t

i=1 di

1

= g
H(gs

2)h
2 Dr

We can see that (C,E) and (D,F ) are in fact the EGamal encryptions of gsh2 and
g
H(gs)h
2 under the public key gr1, respectively. Therefore, we have accC = TRUE

because

h = H(IDC , A,C,D)

S = (E/Cr)h
−1

= (gsh2 )h
−1

= gs2

T = (F/Dr)h
−1

= (gH(gs
2)h

2 )h
−1

= g
H(gs

2)
2

T = g
H(S)
2 .

In summary, our TPASS protocol has correctness.

Efficiency. In our TPASS protocol, the client needs to compute 7 exponenti-
ations in G and send or receive 5 group elements in G. Each server needs to
compute t + 10 exponentiations in G and send or receive 4t + 5 group elements
in G.

The client involves only two communication rounds with the gateway, i.e.,
sending msgC to the gateway and receiving msgS from the gateway. Each server
Si participates in six communication rounds with other servers and the gateway,
i.e., receiving msgC from the gateway, broadcasting the commitment 〈IDC , δi〉
to other servers, receiving 〈IDC , δj〉 for all j �= i from other servers, broadcasting
〈IDC , Bi, Ci,Di〉, receiving 〈IDC , Bj , Cj ,Dj〉 for all j �= i, and finally sending
msg∗

i to the gateway.
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The performance comparison of Camenisch et al. protocol [5] and our protocol
can be shown in Table 1.

Table 1. Performance comparison of Camenisch et al. protocol and our protocol

Camenisch et al. protocol [5] Our protocol

Public keys Client: username Client: username

Server Si: epki, spki, tpki Server Si: none

Private keys Client: pwC Client: pwC

Server Si: eski, sski, tski Server Si: f1(i), f2(i), f3(i) where

E(pwC , pk), E(s, pk), pk =
∏

epki
∑

aif1(i) = pwC ,
∑

aif2(i) = s

E(pwC , tpk), E(s, tpk), tpk =
∏

tpki and
∑

aif3(i) = H(gs2)

Setup Comp. Client: 5n+ 15 (exp.) Client: 3n polynomial evaluations

Complexity Server: n+ 18 (exp.) Server: none

Setup Comm. n(2.5n+ 18.5)|g| Client: 3n|q|
Complexity Server: 3|q|
Setup Comm. 4 Client: 1

Round Server: 1

Retrieve Comp. Client: 14t+ 24 (exp.) Client: 7 (exp.)

Complexity Server: 7t+ 28 (exp.) Server: t+ 10 (exp.)

Gateway: 0 (exp.)

Retrieve Comm. (t+ 1)(36.5 + 2.5n Client: 5|g|
Complexity +10.5t(t+ 1))|g| Server: (4t+ 5)|g|

Gateway: (4t+ 5)|g|
Retrieve Comm. 10 Client: 2/Server: 6

Rounds Gateway: 4

In Table 1, exp. represent the computation complexity of a modular expo-
nentiation, |g| is the size of a group element in G and |q| is the size of a group
element in Zq. In Camenisch et al. protocol [5], a hash value is counted as half
a group element.

In our initialization, the client secret-shares the password, secret and the
digest of the secret with the n servers via n secure channels which may be
established with PKI. In the setup protocol of Camenisch et al., the client setups
the shares with the n servers based on PKI. Our retrieval protocol does not rely
on PKI, but the retrieval protocol of Camenisch et al. still requires PKI. In view
of this, our retrieval protocol can be implemented easier than Camenisch et al.
retrieval protocol.

From Table 1, we can see that our retrieval protocol is significantly more
efficient than the retrieval protocol of Camenisch et al. not only in communica-
tion rounds for client but also in computation and communication complexities.
In particular, the performance of the client in our retrieval protocol is indepen-
dent of the number of the servers and the threshold.
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4 Security Analysis

Based on the security model defined in Sect. 2, we have the following theorem:

Theorem 1. Assuming that the decisional Diffie-Hellman (DDH) problem [6] is
hard over {G, q, g1} and H is a collision-resistant hash function, then our TPASS
protocol P illustrated in Fig. 1 is secure according to Definition 1.

Proof. In the security analysis, we consider the worst case where t − 1 servers
have been corrupted and only one server is honest in our protocol as shown in
Fig. 1. Without loss of generality, we assume that the first server S1 is honest
and the rest have been corrupted.

Given an adversary A attacking the protocol, we imagine a simulator S that
runs the protocol for A.

First of all, the simulator S initializes the system by generating public para-
meters params = {G, q, g1, g2,H}. Next, Server = {S1,S2, · · · ,Sn} and Client sets
are determined. For each C ∈ Client, a password pwC and a secret sC are chosen
at random and then secret-shared with the n servers. In addition, the digest of
the secret H(sC) is also secret-shared with the n servers.

The public parameters params and the shares {IDC , i, f1(i), f2(i), f3(i)} for
i = 2, 3, · · · , t are provided to the adversary. When answering to any oracle
query, the simulator S provides the adversary A with the internal state of the
corrupted servers Si (i = 2, 3, · · · , t).

We view the adversary’s queries to its Send oracles as queries to four different
oracles as follows:

– Send(C, i) represents a request for instance Ci of client C to initiate the pro-
tocol. The output of this query is msgC = 〈IDC , A〉.

– Send(S1, j, C,msgC) represents sending message msgC to instance Sj1 of the
server S1, supposedly from the client C. The input of this query is msgC =
〈IDC , A〉 and the output of this query is msg1 = 〈IDC , δ1, B1, C1,D1〉.

– Send(S1, j,S2,S3, · · · ,St,M) represents sending message M to instance Sj1 of
the server S1, supposedly from the servers S2,S3, · · · ,St. The input of this
query is M = msg2‖msg3‖ · · · ‖msgt and the output of this query is msg∗

1 =
〈IDC , C,D,E1, F1〉 or ⊥.

– Send(C, i,msgS) represents sending the message msgS to instance Ci of the
client C. The input of this query is msgS = 〈IDC , C,D,E, F 〉 and the output
of this query is either acciC = TRUE or ⊥.

When A queries the Test oracle, the simulator S chooses a random bit b.
When the adversary completes its execution and output a bit b′, the simulator
can tell whether the adversary succeeds by checking if (1) a single Test query was
made regarding some fresh client session, and (2) b′ = b. Success of the adversary
is denoted by event Succ. For any experiment P , we denote AdvPA = 2·Pr[Succ]−1,
where Pr[·] denotes the probability of an event when the simulator interacts with
the adversary in accordance with experiment P .
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We will use some terminology throughout the proof. A given message is
called oracle-generated if it was output by the simulator in response to some
oracle query. The message is said to be adversarially-generated otherwise. An
adversarially-generated message must not be the same as any oracle-generated
message.

We refer to the real execution of the experiment, as described above, as P0.
We introduce a sequence of transformations to the experiment P0 and bound the
effect of each transformation on the adversary’s advantage. We then bound the
adversary’s advantage in the final experiment. This immediately yields a bound
on the adversary’s advantage in the original experiment.

As shown in the appendix, we have AdvP0
A (k) ≤ Q(k)/N + ε(k) for some

negligible function ε(·). This completes the proof of the theorem. �

In our retrieval protocol, the client sends out one message A = gr1g
pwC
2 only

after validating the public parameters {G, q, g1, g2}. Even if the client commu-
nicates with all malicious servers by mistake and the adversary can change the
public parameters, our retrieval protocol does not leak the password because r
in A is randomly chosen from Z

∗
q by the client.

In addition, in the appendix, we have modified the definition of the security
in order to take into account the attack where the adversary attempts to plant a
different secret into the user’s mind than the secret that he stored earlier. This
attack is restricted to online dictionary attack.

5 Conclusion

In this paper, we have presented a practical t-out-of-n TPASS protocol for any
n > t that protects the password of the client when he tries to retrieve his secret
from all corrupt servers as well as prevents the adversary from planting a different
secret into the user’s mind than the secret that he stored earlier. Our protocol
is significantly more efficient than existing TPASS protocols. Furthermore, we
have provide a rigorous proof of security for our protocol in the standard model.

Our future work will study how efficiently to detect the corrupted servers
and implement our protocol in light-weight mobile devices to support cloud-
based services/management.

Appendix: Security Proof

Experiment P1: In this experiment, the simulator interacts with the adversary
as P0 except that the adversary does not succeed, and the experiment is aborted,
if any of the following occurs:

1. At any point during the experiment, an oracle-generated message (e.g., msgC ,
msgi, msg∗

i , or msgS) is repeated.
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2. At any point during the experiment, a collision occurs in the hash function
H (regardless of whether this is due to a direct action of the adversary, or
whether this occurs during the course of the simulator’s response to an oracle
query).

It is immediate that events 1 occurs with only negligible probability, event
2 occurs with negligible probability assuming H as collision-resistant hash func-
tions. Put everything together, we are able to see that

Claim 1. If H is a collision-resistant hash function, |AdvP0
A (k) − AdvP1

A (k)| is
negligible.

Experiment P2: In this experiment, the simulator interacts with the adversary
A as in experiment P1 except that the adversary’s queries to Execute oracles
are handled differently: in any Execute(C, i,S), where the adversary A has not
queried corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g

pwC
2

is replaced with a random number pw in Z
∗
q .

Because r in A = gr1g
pwC
2 is randomly chosen from Z

∗
q by the simulator, the

adversary cannot distinguish gr1g
pwC
2 with gr1g

pw
2 . Therefore, we have

Claim 2. |AdvP1
A (k) − AdvP2

A (k)| is negligible.

Experiment P3: In this experiment, the simulator interacts with the adversary
A as in experiment P2 except that: for any Execute(C, i,S) oracle, where the
adversary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in msg1 =
〈IDC , δ1, B1, C1,D1〉 where B1 = gr11 g

a1f1(1)
2 is replaced by a random number

in Z
∗
q .

Although the adversary who has corrupted S2,S3, · · · ,St can obtain B′
1 =

B1g
a2f1(2)+···+atf1(t)
2 = gr11 g

pwC
2 for B1, he cannot distinguish gr11 g

pwC
2 with gr11 gpw2

for a randomly chosen pw because r1 is randomly chosen by the simulator.
This leads that he cannot distinguish gr11 ga1f1

2 = gr11 g
pwC−a2f1(2)−···−atf1(t)
2 with

gr11 g
pw−a2f1(2)−···−atf1(t)
2 for a randomly chosen pw. Therefore, we have

Claim 3. |AdvP2
A (k) − AdvP3

A (k)| is negligible.

Experiment P4: In this experiment, the simulator interacts with the adver-
sary A as in experiment P3 except that: for any Execute(C, i,S) oracle, where
the adversary A has not queried corrupt(C) and corrupt(S1), E1 in msg∗

1 =
〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

The difference between the current experiment and the previous one is
bounded by the probability to solve the decisional Diffie-Hellman (DDH) prob-
lem over {G, q, g1}. More precisely, we have

Claim 4. If the decisional Diffie-Hellman (DDH) problem over {G, q, g1} is
hard, |AdvP3

A (k) − AdvP4
A (k)| is negligible.
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If |AdvP3
A (k) − AdvP4

A (k)| is non-negligible, we show that the simulator can
use A as a subroutine to solve the DDH problem with non-negligible probability
as follows.

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in
A = gr1g

pwC
2 with gx1 , C1 = gc11 with gy1 , and (gc11 , gc1r1 ) in

E1 = g
a1f2(1)h1
2 g

−r1
∑t

j=1 cj
1 g

c1
∑t

j=1 rj
1 gc1r1

with gy1 , Z, respectively, where rj (j = 1, 2, · · · , t) and cj (j = 2, 3, · · · , t) are
randomly chosen by the simulator. When Z = gxy, the experiment is the same
as the experiment P3. When Z is a random element z in G, the experiment is the
same as the experiment P4. If the adversary can distinguish the experiments P3

and P4 with non-negligible probability, the simulator can solve the DDH problem
with non-negligible probability.

Experiment P5: In this experiment, the simulator interacts with the adver-
sary A as in experiment P4 except that: for any Execute(C, i,S) oracle, where
the adversary A has not queried corrupt(C) and corrupt(S1), F1 in msg∗

1 =
〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

Like the experiment P4, we have

Claim 5. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP4

A (k) − AdvP5
A (k)| is negligible.

Experiment P6: In this experiment, the simulator interacts with the adversary
A as in experiment P5 except that: for any Execute(C, i,S) oracle, where the
adversary A has not queried corrupt(C) and corrupt(S1), the secret sC of the
client is replaced with a random element in the group G.

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in
A = gr1g

pwC
2 with gx1 , C1 = gc11 with gy1 , and (gr1, g

c1r
1 ) in

sC = (E/Cr)h
−1

= (E/g
r
∑t

i=1 ci
1 )h

−1
= (E/(gr

∑t
i=2 ci

1 grc11 ))h
−1

with gx1 , Z, respectively, where h = H(IDC , A,C,D), cj (j = 2, 3, · · · , t) are
randomly chosen by the simulator. When Z = gxy, the experiment is the same
as the experiment P5. When Z is a random element z in G, the experiment is the
same as the experiment P6. If the adversary can distinguish the experiments P5

and P6 with non-negligible probability, the simulator can solve the DDH problem
with non-negligible probability. Therefore, we have

Claim 6. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP5

A (k) − AdvP6
A (k)| is negligible.

In experiment P6, the adversary’s probability of correctly guessing the bit b
used by the Test oracle is exactly 1/2 when the Test query is made to a fresh



362 X. Yi et al.

client instance Ci invoked by an Execute(C, i,S) oracle. This is so because the
secret sC is chosen at random from G, and hence there is no way to distinguish
whether the Test oracle outputs a random secret or the “actual” secret (which
is a random element, anyway). Therefore, all passive adversaries cannot win
the game.

The rest of the proof concentrates on the instances invoked by Send oracles.

Experiment P7: In this experiment, the simulator interacts with the adversary
A as in experiment P6 except that the adversary’s queries to Send(C, i) oracles
are handled differently: in any Send(C, i), where the adversary A has not queried
corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g

pwC
2 is replaced

with a random number pw in Z
∗
q .

Like the experiment P2, we have

Claim 7. |AdvP6
A (k) − AdvP7

A (k)| is negligible.

Experiment P8: In this experiment, the simulator interacts with the adversary
A as in experiment P7 except that the adversary’s queries to Send(S1, j, C,msgC)
oracles are handled differently: in any Send(S1, j, C,msgC), where the adver-
sary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in msg1 =
〈IDC , B1, C1,D1〉 where B1 = gr11 g

a1f1(1)
2 is replaced by a random number in Z

∗
q .

Like the experiment P3, we have

Claim 8. |AdvP7
A (k) − AdvP8

A (k)| is negligible.

Experiment P9: In this experiment, the simulator interacts with the
adversary A as in experiment P8 except that the adversary’s queries to
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt) oracles are handled differently: in any
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt), where A has not queried corrupt(C) and
corrupt(S1), E1 in msg∗

1 = 〈IDC , C,D,E1, F1〉 is replaced with a random element
in the group G.

If msgC ,msg2,msg3, · · · ,msgt are all oracle-generated, we can replace E1

with a random element in G as in the experiment P4.
If some of msgC ,msg2,msg3, · · · ,msgt are adversarially-generated, the adver-

sary A cannot produce A, (Bj , Cj ,Dj) (j = 2, 3, · · · , t), such as A
∏t

j=1 Bj

excludes B1 and δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for j = 2, 3, · · · , t still hold because

A and the commitments δj (j = 2, 3, · · · , t) must be broadcast and received by
the server S1 at first and H is a collision-resistant hash function.

Because B1 = gr11 g
a1f1(1)
2 , we have

E1 = g
a1f2(1)h1
2 C−r1(A

t∏

j=1

Bj)ci

= g
a1f2(1)h1
2 C−r1(A

t∏

j=2

Bj)cigc1r11 (gc12 )a1f1(1).



Practical Threshold Password-Authenticated Secret Sharing Protocol 363

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces g2
with gx1 , C1 = gc11 with gy1 , and (gc11 , gc12 ) in the above E1 with gy1 , Z, respectively,
where r1 is randomly chosen by the simulator. When Z = gxy, the experiment
is the same as the experiment P8. When Z is a random element z in G, the
experiment is the same as the experiment P9. If the adversary can distinguish
the experiments P8 and P9 with non-negligible probability, the simulator can
solve the DDH problem with non-negligible probability. Therefore, we have

Claim 9. If the decisional Diffie-Hellman (DDH) problem is hard over {G, q, g1},
|AdvP8

A (k) − AdvP9
A (k)| is negligible.

Experiment P10: In this experiment, the simulator interacts with the
adversary A as in experiment P9 except that the adversary’s queries to
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt) oracles are handled differently: in any
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt), where A has not queried corrupt(C) and
corrupt(S1), F1 in msg∗

1 = 〈IDC , C,D,E1, F1〉 is replaced with a random element
in the group G.

Like the experiment P9, we have

Claim 10. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP9

A (k) − AdvP10
A (k)| is negligible.

Experiment P11: In this experiment, the simulator interacts with the adversary
A as in experiment P10 except that we change the definition of the adversary’s
success as follows: (1) If the adversary queries Send(S1, j, C,msgC) oracle to a
fresh client instance Ci for adversarially-generated msgC = 〈IDC , A′〉 where
A′ = gr

′
1 g

pw′
C

2 , which results in T ′ = g
H(S′)
2 where h′ = H(IDC , A′, C ′,D′),

S′ = (E′/C ′r′
)h

′−1
, T ′ = (F ′/D′r′

)h
′−1

and C ′,D′, E′, F ′ are generated by t hon-
est servers and the honest gateway according the protocol, the simulator halts
and the adversary succeeds (let Succ1 denote this event); (2) If the adversary
ever queries Send(C, i,msgS) oracle to a fresh client instance Ci for adversarially-
generated msgS = 〈IDC , C ′,D′, E′, F ′〉, which results in acciC = TRUE, the sim-
ulator halts and the adversary succeeds (let Succ2 denote this event); Otherwise
the adversary’s success is determined as in experiment P10.

The distribution on the adversary’s view in experiments P10 and P11 are
identical up to the point when either Succ1 or Succ2 occurs. If both Succ1 and
Succ2 never occur, the distributions on the view are identical. Therefore, we have

Claim 11. AdvP10
A (k) ≤ AdvP11

A (k).

Remark. The modified definition of security takes into account the attack where
the adversary attempts to plant a different secret into the user’s mind than the
secret that he stored earlier.

In experiment P11, msgC , msg1, msg∗
1 in Execute and Send oracles have

become independent of the password pwC used by the client C and the secret
sC and g

H(sC)
2 in the view of the adversary A, if A has not require Corrupt(C)

and Corrupt(S1). In view of this, any off-line dictionary attack cannot succeed.
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The adversary A succeeds only if one of the following occurs: (1) Succ1 occurs;
(2) Succ2 occurs; (3) neither Succ1 nor Succ2 occurs, the adversary wins the game
by a Test query to a fresh instance Ci.

To evaluate Pr[Succ1] and Pr[Succ2], we consider three cases as follows.
Case 1. The adversary A forges msg′

C = 〈IDC , A′〉 where A′ = gr
′

1 g
pw′

C
2 by

choosing his own r′ from Z
∗
q and pw′

C from the dictionary D. In this case, if
Succ1 occurs, the adversary can conclude that the password used by the client
is pw′

C . Therefore, the probability Pr[Succ1] = Q1(k)/N , where Q1(k) denotes
the number of queries to Send(S1, j, C,msgC) oracle.

Case 2. Given msgC = 〈IDC , A〉, the adversary A forges msgS =
〈IDC , C ′,D′, E′, F ′〉 by choosing his own s′, c′, d′ from Z

∗
q and pw′

C from the

dictionary D and computing C ′ = gc
′

1 ,D′ = gd
′

1 , E′ = gs
′h′

2 (Ag
pw′

C
2 )c

′
, F ′ =

g
H(gs′

2 )h′

2 (Ag
pw′

C
2 )d

′
where h′ = H(IDC , A,C ′,D′). When pwC = pw′

C , we have
acciC = TRUE. Therefore, in this case, the probability Pr[Succ2] = Q2(k)/N ,
where Q2(k) denotes the number of queries to Send(C, i,msgS) oracle.

Case 3. Given msgC = 〈IDC , A〉, the adversary A forwards msgC to t
servers twice to get two responses msgS = 〈IDC , C,D,E, F 〉 and msg′

S =
〈IDC , C ′,D′, E′, F ′〉. Then the adversary A sends to the client a forged mes-

sage msgS = 〈IDC , C ′/C,D′/D, gs
∗h∗

2 E′/E, g
H(gs∗

2 h∗)
2 F ′/F 〉, where E′/E =

g
s(h′−h)
1 (C ′/C)r, F ′/F = g

H(gs
1)(h

′−h)
1 (D′/D)r, h = H(IDC , A,C,D), h′ =

H(IDC , A,C ′,D′), h∗ = H(IDC , A,C ′/C,D′/D) and s∗ is chosen from Z
∗
q

by the adversary. The client accepts msgS if and only if h′ = h. Because H
is a collision-resistant hash function, the probability Pr[Succ2] is negligible in
this case.

In summary, Pr[Succ1 ∨ Succ2] = Q(k)/N , where Q(k) denotes the number
of on-line attacks.

In experiment P11, the adversary’s probability of success when neither Succ1
nor Succ2 occurs is 1/2. The preceding discussion implies that

PrP11
A [Succ] ≤ Q(k)/N + 1/2 · (1 − Q(k)/N)

and thus the adversary’s advantage in experiment P11

AdvP11
A (k) = 2PrP11

A [Succ] − 1
≤ 2Q(k)/N + 1 − Q(k)/N − 1
= Q(k)/N

The sequence of claims proved above show that

AdvP0
A (k) ≤ AdvP11

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof of the theorem.
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