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Abstract. Reconfigurable systems are increasingly used in different domains,
due to the advantages they offer in terms of flexibility: reconfigurability can also
be used for managing possible faults affecting a circuit, when fault tolerance is
the target. In this case the system must be able to (1) detect any possible fault,
(2) identify the module (or partition) including it, and (3) take proper actions able
to overcome the problem (e.g., by substituting the faulty module with a spare
one). In this chapter, we address the point (2) when a Very Long Instruction Word
(VLIW) processor is used by resorting to a Software-Based Self-Test (SBST)
approach. SBST techniques have shown to represent an effective solution for
permanent fault detection and diagnosis, both at the end of the production process,
and during the operational phase. When VLIW processors are addressed, SBST
techniques can effectively exploit the parallelism intrinsic in these architectures.
In this chapter, we propose a new approach that starting from existing detection-
oriented programs generates a diagnosis-oriented test program. Moreover, we
propose (1) a detailed analysis of the generated equivalence classes and (2) a
solution aimed to maximize the diagnosability of the modules composing the
VLIW processor under test, thus perfectly suiting the needs of reconfigurable
systems. Experimental results gathered on a case study VLIW processor show
the effectiveness of the proposed approach: at the end of the presented method,
the faulty module is always identified.

Keywords: Software-based diagnosis · Partition-based diagnosis · VLIW
processor

1 Introduction

Reconfigurable processors [1] are increasingly used in different domains. Their key
characteristic lies in the fact that they can be easily configured to match the specific
requirements of the target application, e.g., in terms of performance, size, and power
consumption, thus possibly making them more convenient than traditional processors.
Very Long Instruction Word (VLIW) processors [2] represent a popular choice among
reconfigurable processors.

When the system is used for a safety- or mission-critical application, dynamic
reconfigurability may be exploited to face the effects of permanent faults: in this case
the processor undergoes some test during the operational phase, aiming at detecting
possible faults affecting the hardware. The test can be activated either at a specific
moment in time (e.g., at power on), or periodically. As soon as a permanent fault is
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detected, a diagnostic procedure is activated to identify the faulty partition, so that proper
actions can be taken, e.g., by substituting it with a spare one, thus restoring the system
integrity.

When adopting this solution, we need an effective test procedure, able to detect the
highest percentage of possible faults while matching the requirements of a test performed
during the operational phase (e.g., in terms of duration, size, invasiveness). Some
previous works in the area [3, 4] showed that when considering VLIW processors, these
goals can be achieved resorting to a functional approach, in which a suitable test program
is executed and the produced results are observed (Software-Based Self-Test or SBST
[5]). The SBST test programs can be generated starting from the processor netlist or
(with some limitations) from its RT-level description [6]. Some recent work demon‐
strated that thanks to their regular structure, test program generation can be even auto‐
mated in the case of VLIW processors [4, 7], thus overcoming the major limitation of
the SBST approach, lying in the high cost for manually generating the test. On the other
side, the SBST approach shows some advantages with respect to the structural approach
(e.g., based on scan) when the in-field test is considered, mainly due to its easier usage
and much lower area overhead.

On fault detection, the application code is typically suspended in the faulty system,
thus preventing the fault to produce critical misbehaviors. Then, the system activates a
diagnostic procedure, whose goal is to identify the faulty partition out of those
composing the processor: in this context, each partition represents the minimal unit that
can be repaired or substituted if faulty. This procedure can resort once more to SBST,
i.e., to the execution of a suitable test program, whose results allow identifying the faulty
partition [8].

Since the basic motivation for this work is to support the design of highly dependable
systems based on dynamic reconfiguration, the goal of our diagnostic approach is to
identify the faulty partition, rather than the specific fault responsible for a given misbe‐
havior, as in other works (e.g., [9]). A similar approach was followed in [10], where the
issue of self-adapting the test so that it takes into account possible units, which have
been already, labeled as faulty is considered. However, no one of the previous works
gives a systematic method to generate diagnosis-oriented test programs, as we do in this
chapter.

This chapter proposes a method able to identify the module including the fault
affecting a VLIW processor, taking into account the intrinsic features of this particular
kind of processors. The proposed method is mainly composed of two parts: initially, we
focus on the issue of writing an accurate diagnostic SBST test program for a generic
VLIW processor. The proposed approach is based on exploiting an existing test program
(targeting to fault detection, only), and on applying a set of techniques for improving it
so that it can hold sufficient diagnostic properties [11] with respect to a previously
defined partitioning of the processor. In the second part, the method acts on the initial
partitioning, optimizing it so that the achieved diagnosability is maximized. Besides this
optimization algorithm, with respect to [11] this chapter also presents a detailed analysis
of the results obtained through the diagnostic test program, highlighting a number of
cases in which the faults belonging to different partitions cannot be distinguished using
a software-based solution (i.e., they are functionally equivalent).
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The basic idea behind the first part of the method is to exploit the regularity and
parallelism characterizing a VLIW processor. In particular, the technique we propose is
based on splitting the original test program in small pieces (called fragments), and then
modifying each fragment in such a way that it performs the same operation using
different resources (e.g., different registers, or different ALUs). By checking which ones
of the replicas of the original fragment (called brother fragments) generates a misbe‐
havior, we can identify the faulty module.

In the last part of the chapter we explain how to further improve the diagnosability
of a generic VLIW processor by implementing a clever partitioning. More in particular,
since in the dynamic reconfigurability scenario the aim is the identification of the faulty
module and not of the single possible fault, analyzing the composition of the equivalence
classes generated by the diagnostic program allows to understand that (1) due to the
implementation rules of the processor under test, it is not always possible to distinguish
the faults in a module from those in other modules, and (2) by slightly modifying the
partitioning it is possible to achieve a very high level of diagnosability.

The method we propose has been experimentally evaluated resorting to a sample
VLIW processor [12]: initially, an existing test program aimed at fault detection, only,
has been modified and improved, thus obtaining a diagnostic test program whose char‐
acteristics (in terms of size, duration and diagnostic capabilities) have been evaluated
and compared with those of the original test program. Secondly, applying the second
part of the method, the diagnosability of the considered processor has been maximized.

The chapter is organized as follows. Section 2 includes some background about the
architecture of a VLIW processor. Section 3 provides an overview about diagnosis of
circuits and processors and introduces some notation and vocabulary. Section 4 explains
the proposed method. Experimental results on the selected case study and their analysis
are presented in Sect. 5. In Sect. 6 we explain how to further improve the diagnosability
of the considered VLIW processor by acting on the partitioning. Finally, conclusions
and future works are described in Sect. 7.

2 VLIW Architecture Summary

VLIW processors are increasingly employed in systems requiring high performance
combined with low power consumption. From a hardware point of view, the two most
significant differences between a superscalar processor and a VLIW processor are:

• all the operations are executed by parallel independent Computational Domains
(CDs), each one characterized by its own Functional Units;

• the scheduling adopted by the processor for instruction execution is totally static,
since the compiler assigns the execution of each instruction to a determinate CD.
Consequently, in a traditional VLIW processor there isn’t any hardware scheduler of
the operations.

As shown in Fig. 1-a, from a software point of view the VLIW assembly code is
composed of a sequence of macro-instructions (also called Bundles): each macro-
instruction is composed of a sequence of instructions. Each instruction code embeds the
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information items required to assign its execution to a specific Computational Domain,
which is selected at the compile time.

   (a)              (b) 
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Fig. 1. Example of a VLIW Instruction Code format (a) and of a VLIW Architecture (b)

This scheme proved to be able, in some applications, to significantly reduce the
power consumption and the silicon area if compared to traditional superscalar
processors. Furthermore, the Instruction Level Parallelism (ILP) can be adequately
exploited (at least in the case of data intensive applications), since a good compiler is
able to detect which instructions can be executed in parallel by checking the entire
program at compile time [2].

As shown in Fig. 1-b, the architecture of a generic VLIW processor is fully para‐
metric, so that different options, such as the number and type of functional units (FUs),
the number of multi-ported registers (i.e., the size of the register file), the width of the
memory buses and the type of different accessible FUs can be modified depending on
the application requirements. The VLIW manifest collects all the characteristics of a
specific VLIW processor: it specifies the number of Computational Domains, the
number and type of the Functional Units embedded into each of them, the size and access
mode of the multiport Register File [4] and any other feature that must be taken in
account when developing the code for the considered processor.

Considering the regularity and simplicity of the typical VLIW architecture, this kind
of processors is perfectly suited for being adopted in reconfigurable systems [13], either
(1) to match variable application constraints and goals, or (2) to implement highly
dependable systems [14]. In the first case, the processor is implemented resorting to a
programmable device, and the different components are dynamically mapped on the
available resources in such a way to optimize the execution of the target application; in
the second case, some spare resources are embedded in the architecture, and they are
used to replace some faulty module as soon as a permanent fault is detected.

3 Basics on Diagnosis

Let call F = {f0, f1, …, fn-1} the set of n faults that can affect the Unit Under Test (UUT)
we are considering. Each of these faults causes the UUT to produce a given output
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behavior b (also called syndrome) when a given sequence of input stimuli I is applied;
let denote by bi the output behavior produced by fault fi, and bg the output behavior of
the fault-free circuit. Clearly, bi = bg for all undetected faults fi. When SBST is consid‐
ered, the assumption is often made, that the output behavior corresponds to the set of
values left by the program in memory at the end of its execution. We will make this
assumption throughout this chapter. The key rationale behind it is the ease of its imple‐
mentation in practice, when test (or diagnosis) are run during the operational phase.
Therefore, bi = bj iff the two faults fi and fj produce the same output values in memory
at the end of the execution of the test (or diagnosis) program. From a practical point of
view, storing a signature of the values produced by each fault may allow to easily identify
the existing faults [11]. Alternative solutions avoiding the storage even of this
compressed form of fault dictionary can also be considered [15].

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of input
stimuli I iff bi ≠ bj. Otherwise, they are said to be equivalent wrt I. All faults that are
equivalent wrt to a given sequence of input stimuli I are said to belong to the same
Equivalence Class wrt I. A detected fault fi is said to be fully diagnosed by a sequence
of input stimuli I iff any couple of faults (fi, fj) including fi is distinguished by I. Since
two faults fi, fj can never be distinguished if they are functionally equivalent, the number
of fully diagnosed faults in a circuit is typically rather low [11].

Several possible metrics can be adopted to measure the diagnostic capabilities of a
sequence of input stimuli I [16].

When diagnosis is used in a reconfigurable system for identifying the partition
including the fault, the precision required is lower than in other situations where diag‐
nosis is required (e.g., for yield ramp-up): in fact, the final goal in this case is to be able
to distinguish all pairs of faults belonging to different partitions, while distinguishing
pairs of faults belonging to the same partitions is not of interest. Hence, for the purpose
of this chapter we will exploit a metric called Diagnostic Capability, or DC(I), which
corresponds to the percentage of faults belonging to an Equivalence Class wrt I
composed of faults all belonging to the same partition. In the ideal case in which DC(I)
is 100 %, this would mean that I is able to always identify the partition where the fault
is located. We will also exploit the notion of Fully Diagnosed Fault with respect to
Partitions (FDP), which is a fault belonging to an Equivalence Class composed of faults
all belonging to the same partition. Clearly, DC(I) is the percentage of FDP faults with
respect to the total number of faults.

4 Diagnostic Test Program Generation

In this section we describe a new method that allows to generate diagnostic programs
for a generic VLIW processor, once its specific configuration is known.

As shown in Fig. 2, the flow aimed at the generation of the diagnostic program is
composed of two main parts, denoted as classification and brother fragment genera‐
tion. The result of these two steps is an accurate test program with an improved diag‐
nostic capability.

212 D. Sabena et al.



Classification

VLIW 
Manifest

VLIW SBST 
Fragments

Brothers 
Fragment 

Generation
Accurate 

diagnostic 
Fragments

Fragments 
partition scenario

Equivalence 
Classes Set

Fig. 2. The flow of the proposed diagnosis method

The proposed flow requires two main inputs. The former is the manifest of the VLIW
processor under analysis, which contains all the features of the processor itself (which is
supposed to be organized into a few partitions). The latter is a collection of small test
programs aimed at fault detection, called fragments: each fragment performs a few test
instructions (aimed at exciting a specific fault or group of faults) plus some other instruc‐
tions needed to prepare the required parameters and make the results of the test instruction
observable. The fragments have been generated splitting the original SBST programs [4]:
the fragments should contain the lowest possible number of instructions and detect the
lowest possible number of faults (while still maintaining the same total fault coverage). The
set of the initial fragments is called Initial Test Program.

4.1 Classification

The classification part aims at computing the Equivalence Classes with respect to the
Initial Test Program. This task can be easily performed resorting to commercial Fault
Simulation tools and its final result (which requires some further custom post-
processing) is the assignment of each fault either to an Equivalence Class composed of
faults belonging to a single partition (in which case the fault is labeled as FDP) or to an
Equivalence Class including faults belonging to different partitions.

In practice, this phase requires performing the Fault Simulation of each fragment,
then processing the data base storing the syndrome of each fault, and finally computing
the Equivalence Classes.

The result of this part of the method is the Fragment Partition Scenario, which
consists of a database storing for each partition the list of faults belonging to it as well
as their syndrome.

4.2 Brother Fragment Generation

The brother fragment generation part is oriented to the generation of new diagnostic
fragments capable to improve the overall custom fragment diagnostic capability, thus
increasing the DC(I) metric of the addressed VLIW partitions. The flow, illustrated in
Fig. 3, is composed of four phases: (1) analysis of multiple partitions, (2) couple faults
extraction, (3) module identification and (4) creation of new fragments. The 4 phases
are repeated until a given stopping condition (e.g., based on maximum computational
time, or on the achieved diagnostic capabilities) is reached.
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Fig. 3. The flow of the brother fragment generation

The “analyze multiple partition” phase elaborates the fragment partition scenario
database comparing equivalence classes including faults belonging to two partitions. In
details, in this step, all the equivalence classes are compared and the couple of faults
equivalent and belonging to different VLIW partitions are identified.

Once the list of equivalent faults is generated, the “couple faults extraction” phase
selects each couple of two fault locations, one belonging to the partition i and the other
belonging to j.

The “module identification” phase identifies the location of the two faults i and j,
analyzing the fault location hierarchy with respect to the VLIW manifest information;
the result of this phase is the identification of the VLIW circuit resources involved by
each fault.

Finally, the “create new fragments” phase is executed. Basically, this phase
elaborates the original test fragments involved into the VLIW resource module
identified by the Module identification phase and generates a new set of fragments
modifying the resource used by the original test instructions. In this way, the final
test program includes two or more different fragments, which are supposed to fail
alternatively, depending on whether one or the other of the two partitions we want
to distinguish are faulty. The pseudo-code of the Create New Fragments phase is
reported in Fig. 4.

The algorithm needs the code of the original test fragment (OF), the VLIW manifest
(VM) and the selected rule (R) which is provided by the module identification phase.
There are two main rules that can be used for the generation of the new fragments: the
first, denoted as R1, is a register re-allocation rule and it implies that the brother frag‐
ment will contain the same instructions of the original one, but each instruction will use
different registers. In this way, by checking the results of the two fragment execution,
we are able to understand if the fault is the register file (in case the two fragments results
are both wrong) or one of the other VLIW module involved by the two fragments. The
second rule, denoted as R2, is a resource re-allocation rule: simply, the new brother
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fragment will use a different VLIW Functional Unit to execute the test instruction of the
fragment.

Fig. 4. The pseudo-code for the “create new fragments” phase

According to OF, VM, and R the algorithm analyzes the original test fragment
considering the used test instruction (TI), the VLIW functional unit (FU), the registers
used as operands (RI) and the registers used to forward the produced results to observable
locations (RO). Finally, it selects a new set of resources and on the basis of the defined
rules it generates a new fragment.

In Table 1, an example of original fragment and two corresponding brother fragments
is shown; in this example we address a fragment in which the test instruction aims at
the adder functional unit embedded in the Computational Domain 0 (referred as CD0).
The first brother fragment has been generated with the rule R1 (i.e., the register re-
allocation rule), in order to dismember an equivalence class containing faults embedded
in the register file and in the adder functional unit of CD0. Consequently, the new brother
fragment will be generated changing all the registers used to perform the test instruction
and to forward the result in the data memory, without changing the functionality of the
original fragment. The second brother fragment, instead, has been generated with the
rule R2 (i.e., the resource re-allocation rule): practically, the test instruction of the orig‐
inal fragment has been moved from the computational domain 0 to the computational
domain 1, leaving unaltered the other instructions composing the original fragment. In
this way, if the results of the two fragments are both wrong, the fault is definitely not
embedded in one of the two functional units executing the test instructions, but it belongs
to another module used by the two fragments.
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Table 1. An example of two brother fragments generated from the same original fragment.

5 Experimental Results

In this section we present the experimental results obtained using the ρ-VEX VLIW [12]
processor as a case study. The ρ-VEX processor is a generic and reconfigurable VLIW
processor written in VHDL language by researchers of the Delft University of Tech‐
nology. The ρ-VEX processor includes most of the features of VLIW processors used
by industry. For the purpose of this chapter, we considered the stuck-at fault model,
although the method can be easily extended to deal with other fault models. In order to
perform the stuck-at fault simulation experiments, we synthesized and implemented the
ρ-VEX processor using a standard ASIC gate library. The total number of stuck-at faults
in the resulting netlist is 335,336.

We divided the ρ-VEX processor in 10 partitions: the fetch unit, the decode unit, the
general-purpose register file, the branch-management register file, the write-back unit,
and the four Computational Domains in which the functional units are embedded.
Clearly, these partitions are not uniform (in terms of number of contained resources).
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In Sect. 6.3 we present a method able to create homogeneous partitions without changing
the diagnostic results achieved by the method described in the following paragraphs.

Considering the diagnosis goal, in this Section we address only the most relevant
partitions of the ρ-VEX processor, i.e., the register file and the four Computational
Domains (CD0 to CD3). The number of faults enclosed in each of the four Computa‐
tional Domains is not exactly the same, since some of the functional units embedded in
each of them are different: for example, CD0 includes a branch unit, while CD3 embeds
a memory access unit, while all the CDs include an ALU unit.

We also wrote a program (composed of about 1,200 lines of C++ code) able to
compare the fault lists generated by the fault simulation step; the goal of this program
is to implement the classification phase, i.e., performing the computation of the equiv‐
alence classes with respect to the adopted test programs. Our tool also identifies FDP
faults, and provides information about the remaining faults.

By referring to the above 5 partitions in the ρ-VEX processor we applied the proposed
method and generated the diagnostic test program. As a starting test program we use the
set of fragments used for the optimized generation of an SBST program addressing the
ρ-VEX processor, generated with the method proposed in [4]; this set is a selection, from
an exhaustive set of possible fragments, of the fragments that allow to maximize the
stuck-at fault coverage, minimizing the test size and length.

The experimental results we gathered are reported in Table 2, which includes the
percentage of FDP faults with respect to the total number of faults of each partition, i.e.,
the Diagnostic Capability. The first column of Table 2 (denoted as Optimized SBST) is
the original test set, composed of 244 fragments; its diagnostic level is rather low for all
the considered partitions, since this is optimized in terms of size and length, which are
often conflicting goals with respect to diagnosis. The stuck-at fault coverage reached by
this test program is 98.2 % with respect to all the resources of the considered VLIW
processor.

Table 2. Diagnostic capability

Partition Method

Optimized
SBST

Exhaustive
fragments set

Proposed
approach

Register file 62.82 % 84.23 % 87.17 %

CD0 77.12 % 77.79 % 83.74 %

CD1 80.12 % 81.56 % 88.39 %

CD2 79.99 % 80.34 % 88.23 %

CD3 70.80 % 72.14 % 81.65 %
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The first step towards the improvement of the Diagnostic Capability is the use of the
whole fragments set generated resorting to the method described in [4]. The results
obtained with this approach are shown in the second column of Table 2 (Exhaustive
Fragments Set). The improvement of the diagnosis resolution is greater when the register
file is considered (the improvement for this partition is more than 21 %), while it is
limited for the Computational Domains. This is mainly because the considered set of
fragments is composed of 748 fragments, and 68 % of them target the test of a portion
of the register file itself.

The final step of the proposed flow is the evaluation of the diagnostic capabili‐
ties of an ad-hoc fragments set, composed of the fragments of the Exhaustive Frag‐
ments Set with an additional set of fragments brothers, developed with the method
proposed in Sect. 4. For the purpose of this chapter, we generated the brother frag‐
ments only for the fragments addressing the test of the ALUs (that are the most
relevant components of each CD in terms of number of stuck-at faults). Moreover,
we developed the brother fragments also for the memory unit (which is embedded
in CD3), since this unit is used by all the fragments in order to save the results of the
test instructions in the data memory; consequently, there are many equivalence
classes containing a fault of this unit and an efficient diagnostic of this module is
required. The resulting set of fragments is composed of 1,056 fragments, of which
308 are brother fragments. The CPU generation time for the brother fragments was
approximately 21 h, of which about 85 % used for the fault simulation; the compu‐
tational time has been evaluated on a workstation with an Intel Xeon Processor
E5450. As shown in Table 2, the improvements due to this approach are evident if
the partitions containing the ALUs (referred as CD1, CD2, CD3 and CD4) are
considered: the capability to recognize if a fault is enclosed in one of these parti‐
tions is improved of about 8 % with respect to the previous approaches. The resulting
diagnosability is not uniform for all the four CDs since, as explained previously, the
functional units embedded into these partitions are not the same.

We also made an analysis about the Equivalence Classes wrt the last test set, focusing
on those that include faults belonging to more than one partition (i.e., neglecting all FDP
faults). Analyzing these equivalence classes, only, it is possible to notice that about 95 %
of them are classes only including faults belonging to the same partition; moreover, if
the remaining classes are considered, about 60 % of them are equivalence classes
enclosing faults belonging to 2 partitions, while about 35 % are classes enclosing faults
belonging to 3 different partitions, as shown in the graph of Fig. 5. The above results
show that even when the diagnostic resolution of our method is not enough to identify
the single partition including a fault, still it is able to identify the couple of “candidate”
partitions in about 60 % of the cases.

Finally, in Table 3 some more information about the size and the execution time of
the final fragments set are shown. These results confirm that optimizations, in terms of
size and length, are often conflicting goals with respect to diagnosis.
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Table 3. Size and duration of the different test sets

Method Size [KBs] Execution time
[Clock Cycles]

Optimized SBST 1,926 10,601

Exhaustive fragments set 3,429 17,049

Proposed approach 4,899 24,356

6 Equivalence Classes Analysis

In this section, we present a detailed analysis aimed at (1) better understanding the
achieved results, i.e., identifying the reasons that prevent the diagnostic metrics to be
further increased, and (2) understanding how it is possible to reach a complete diag‐
nosability of the partitions composing the addressed VLIW processor. Finally, we
present an equivalence class-based technique aimed at improving the partitioning of the
processor resources in order to achieve a scenario in which all the partitions are
composed of a comparable number of logic resources, in order to make the proposed
method suitable to be used in a dynamic partial reconfiguration environment [13].

6.1 VLIW Equivalence Classes Analysis

Using the Software-Based diagnosis method described in the previous sections, it is
possible reach a high level of diagnosability. However, due to the hardware structure of

59,27%34,43%

3,88%

1,74%
4,80% 0,80%

More than 1 partition equivalence classes analysis

2 Partitions

3 Partitions

4 Partitions

5 Partitions

6 Partitions
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Fig. 5. Analysis of Equivalence Classes including faults belonging to more than one partition
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the considered VLIW processor there is the possibility that several faults belonging to
different VLIW partitions are not distinguishable; here, we present a list of examples of
equivalent faults belonging to two or more partitions that are not distinguishable using
a software-based method, only. This analysis has been performed using the equivalence
classes generated with the flow explained in Sect. 4 (Fig. 2), and it is a sort of motivation
for the method explained in Sect. 6.2, where the partitioning of VLIW processor
resources is modified in order to reach the maximum diagnosability.

The first case is shown in Fig. 6 and represents a chain of flip-flops spanning the
various pipeline stages of the VLIW processor. Let us consider, for example, a flip-flop
that contains one of the bits devoted to identify the destination register of a generic
instruction: clearly, this value is provided by the decode stage, and it is available in all
the following pipeline stages. Each stage thus contains a flip-flop devoted to save this
value. Consequently, we have a set of flip-flops connected in a chain. The behaviour of
the processor when a stuck-at fault affects one of the inputs or outputs of these flip-flops
is always the same, thus making impossible to identify the root cause fault. Hence, all
these faults belong to the same equivalence class. Based on the partitioning strategy
adopted so far (which mainly assigns to each partition a single stage) these faults belong
to different VLIW partitions (i.e., the decode stage, the execute stage, and the write-back
stage). Clearly, this decreases the maximum diagnosability attainable by any SBST
program.

Decode Stage

D
Q

R
CK

Execute Stage

D
Q

R
CK

WriteBack
Stage

D
Q

R
CK

Address_dest_reg Address_dest_reg Address_dest_reg

FF_1 FF_2 FF_3

Fig. 6. Example of equivalent faults in different stages of the pipeline; stuck-at faults are
highlighted with red x (Color figure online)

The second case is shown in Fig. 7, and it corresponds to the logic gates devoted to
the decoding of a generic instruction, and to the flip-flop that contains one bit of the
result of the decode operation. Also in this case, if a stuck-at fault affects one of the logic
gates embedded in the decoder module or in the flip-flop that stores the result of the
decoding, the resulting processor behavior is the same. Hence, it will never be possible
to identify if the faulty module is the decoder belonging to the second computational
domain or the flip-flop belonging to the generic decode stage module. Consequently,
these faults belong to the same equivalence class but to different partitions, and
contribute to decreasing the maximum achievable diagnosability.

The third case is shown in Fig. 8, and it corresponds to the register file and the generic
flip-flop that contains one bit of the data retrieved from the register file itself. More in
particular, both the stuck-at fault affecting the flip-flop of a register and that affecting the
flip-flop containing the value of that register in another module (e.g., the generic decode
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stage module) cause the processor to behave in the same way. Hence, by only checking
the signature provided by the diagnostic program, it will never be possible to detect the
faulty module; consequently, these faults belong to the same equivalence class. By only
checking the signature generated by the diagnostic program explained in Sect. 4 (or by any
other test program), it will never be possible to understand if the faulty module is the
register file or the decode stage.
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Register File
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R CK

Data[0]

FF

Fig. 8. Example of equivalent faults, considering the register file and the logic resources of the
decode stage; stuck-at faults are highlighted with red x (Color figure online)

6.2 Maximization of the Diagnosability of the VLIW Partitions

As described in the previous sub-section, the hardware structure of the VLIW processor
is organized in a way that several faults are equivalent wrt the adopted test program and
not physically distinguishable using a software-based diagnosis method. In case VLIW
partitions are selected on the basis of the VLIW hierarchical structure, equivalent faults
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Decoder D
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R
CK

Computational
Domain 1

Computational
Domain 2

Address_dest_reg

FF

FF

Address_dest_reg

Fig. 7. Example of equivalent faults, considering the decoder module of the second
computational domain and the decode stage containing all the instruction decode modules; stuck-
at faults are highlighted with red x (Color figure online)
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may negatively affect the diagnosability, since they can be located in different partitions
not uniquely identifiable in case only one of these faults is excited. Therefore, VLIW
partitioning based only on hierarchical module became an ineffective solution if applied
to a reconfigurable system, since it is slightly effective to identify a particular portion
of the processor to be repaired through reconfiguration. As illustrated in Fig. 9, two
partitions related to the VLIW hierarchical modules contain two faults belonging to the
same equivalent class making impossible their diagnosability.

Decoder
D Q

R
CK

FF

Address_dest_reg

Partition A Partition B

Equivalent 
faults

Fig. 9. Example of faults belonging to the same equivalent class traversing two different VLIW
partitions

In order to improve the diagnosability, we defined a metric called Equivalent Cross
metric (EC metric), which for a given set of VLIW partitions, counts the number of
equivalent fault classes crossing two or more partitions (i.e., including faults belonging
to two or more partitions). In case the EC metric is nullified, the set of VLIW partitions
allows a complete diagnosability of the grouped faults. This result is viable, since the
EC metric supports two possible actions. The former consists in the identification of
fault groups belonging to a equivalence class traversing more partitions; the latter is the
possibility to move the identified equivalence class to a unique partition removing not
diagnosable conditions. As an example (reported in Fig. 10), let us consider two faults
belonging to a single equivalence class originally related to the partition A and partition
B respectively, applying the EC metric we obtain that the two faults are in the single
partition A. The minimization of the EC metric allows to obtain a DC metric equal to
100 %, however, the application of this metric is not realistic practicable just by moving
equivalence fault classes between the various partitions without considering the logical
composition of the VLIW modules, therefore we developed a VLIW partitioning algo‐
rithm which is able to take in account the VLIW physical implementation characteristics
(e.g., the logical dimension of each VLIW partition) which is depicted in the following
sub-section.

6.3 Improved VLIW Partitioning

The equivalence classes generated with the flow described in Sect. 4.2 can be used also
to improve the VLIW partitioning, in order to obtain partitions composed of a compa‐
rable number of logic resources.
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When a device is used in a dynamic reconfiguration environment, and a fault occurs,
a diagnostic procedure is required in order to detect the faulty module; moreover, the
considered system has to be divided in homogeneous partitions (i.e., having a compa‐
rable size), in order to guarantee that the reconfiguration time is always the same.

In Fig. 11 we present an algorithm that, starting from the equivalence classes set,
divides a user selected partition P in several partitions, which dimension D is also
selected by the user. The first step of the algorithm is aimed at the selection of the set
of equivalence classes composed of faults belonging only to the addressed partition P;
in this way, each addressed fault has no equivalent faults in any other partition of the
considered VLIW processor. In the second step, the set of the new partitions is defined:
the user selects how many partitions will contain the resources of the original one. Then,
in the step 3, the resources of each equivalence class are iteratively inserted in one of
the new partitions. The insertion process starts from the largest equivalence class, in
order to guarantee that the equivalence classes composed of a larger number of faults
are contained entirely in a single partition. At the end of the algorithm execution, we
obtain a set of homogeneous partitions that contain the same resources of the original
one.

Considering the diagnosability of the new partitions, the DC metric remains
unchanged, since the creation of the new partitions has been done taking into account
the equivalence classes: simply, the new partitions have been generated avoiding the
allocation of an equivalence classes to more than one partition.

In Figs. 12 and 13 we present the results obtained applying the proposed technique
to the ρ-VEX processor, where the register file module has been divided in seven
different partitions, denoted as Register_File_A, Register_File_B, etc. More in partic‐
ular, Fig. 12 shows the composition of the partitions, in terms of number of faults, before
the application of the algorithm proposed in Fig. 11; as it is possible to notice, the number
of faults belonging to the register file is high if compared with the one of the others
partitions. This peculiarity is not acceptable in a dynamic reconfiguration environment,
since if the diagnostic procedure detects a fault in the register file this means that a large
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Fig. 10. Example of equivalent fault grouped in a unique partition in order to increase
diagnosability
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part of the processor has to be reconfigured. Figure 13, instead, shows the results
obtained after the module reorganization technique presented in this section; the
obtained partitions are more homogeneous than those before the application of the
proposed method.

Fig. 11. The pseudo-code for the redistribution of the faults belonging to a single large partition
to several partitions

Partition dimension AVG [# faults]

Fig. 12. Fault distribution in the different VLIW partitions before the module reorganization
phase based on the equivalence classes

In conclusion, adopting the techniques proposed in this section and in Sect. 6.2, we
obtain a complete diagnosability of the considered VLIW partitions; moreover, since
the obtained partitions are quite homogeneous in terms of size, the required reconfigu‐
ration time of the partitions itself is almost the same.

224 D. Sabena et al.



7 Conclusions and Future Work

In this chapter we presented a new method that starting from existing detection-oriented
programs generates a diagnosis-oriented test program for a generic VLIW processor.
The method exploits the parallelism (and the presence of several alternative resources)
intrinsic in VLIW processors to enhance the original test program. The resulting diag‐
nostic program is thus able in most cases to identify the faulty module and is therefore
highly suitable for being used within reconfigurable systems. Moreover, we demon‐
strated that using the equivalence classes generated by the software-based approach, it
is possible to maximize the diagnosability of the modules composing the VLIW
processor under test.

As future work we plan to estimate the overall performance overhead introduced by
the proposed approach and to apply the proposed method to a self-repair system based
on reconfigurable device.
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