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Abstract. Classification of time series as early as possible is a valuable
goal. Indeed, in many application domains, the earliest the decision, the
more rewarding it can be. Yet, often, gathering more information allows
one to get a better decision. The optimization of this time vs. accuracy
tradeoff must generally be solved online and is a complex problem.

This paper presents a formal criterion that expresses this trade-off in
all generality together with a generic sequential meta algorithm to solve
it. This meta algorithm is interesting in two ways. First, it pinpoints
where choices can (have to) be made to obtain a computable algorithm.
As a result a wealth of algorithmic solutions can be found. Second, it
seeks online the earliest time in the future where a minimization of the
criterion can be expected. It thus goes beyond the classical approaches
that myopically decide at each time step whether to make a decision or
to postpone the call one more time step.

After this general setting has been expounded, we study one simple
declination of the meta-algorithm, and we show the results obtained on
synthetic and real time series data sets chosen for their ability to test
the robustness and properties of the technique. The general approach
is vindicated by the experimental results, which allows us to point to
promising perspectives.

Keywords: Early classification of time series · Sequential decision
making

1 Introduction

In many applications, it is natural to acquire the description of an object
incrementally, with new measurements arriving sequentially. This is the case
in medicine, when a patient undergoes successive examinations until it is deter-
mined that enough evidence has been acquired to decide with sufficient certainty
the disease he/she is suffering from. Sometimes, the measurements are not con-
trolled and just arrive over time, as when the behavior of a consumer on a web
site is monitored on-line in order to predict what add to put on his/her screen.
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In these situations, one is interested in making a prediction as soon as possi-
ble, either because each measurement is costly or because it is critical to act as
early as possible in order to yield higher returns. However, this generally induces
a tradeoff as less measurements commonly entail more prediction errors that can
be expensive. The question is therefore how to decide on-line that now is the
optimal time to make a prediction.

The problem of deciding when enough information has been gathered to make
a reliable decision has historically been studied under the name of sequential
decision making or Optimal statistical decisions [1,2]. One foremost technique
being Wald’s Sequential Probability Ratio Test [3] which applies to two-classes
classification problems and uses the likelihood ratio:

Rt =
P (〈xi

1, . . . , x
i
t〉 | y = −1)

P (〈xi
1, . . . , x

i
t〉 | y = +1)

where 〈xi
1, . . . , x

i
t〉 is the sequence of t measurements so far that must be classified

to either class −1 or class +1. As the number of measurements t increases, this
ratio is compared to two thresholds set according to the required error of the
first kind α (false positive error) and error of the second kind β (false negative
error). The main difficulty lies in the estimation of the conditional probabilities
P (〈xi

1, . . . , x
i
t〉 | y). (See also [4], a modern implantation of this idea).

A prominent limitation of this general approach is that the cost of delaying
the decision is not taken into account. More recent techniques include the two
components of the cost of early classification problems: the cost associated with
the quality of the prediction and the cost of the delay before a prediction is made
about the incoming sequence. However, most of them compute an optimal deci-
sion time from the learning set, which is then applied to any incoming example
whatever their characteristics are. The decision is therefore not adaptive since
the delay before making a prediction is independent on the input sequence.

The originality of the method presented here is threefold. First, the prob-
lem of early classification of time series is formalized as a sequential decision
problem involving the two costs: quality and delay of the prediction. Second, the
method is adaptive, in that the properties of the incoming sequence are taken
into account to decide what is the optimal time to make a prediction. And third,
in contrast to the usual sequential decision making techniques, the algorithm
presented is not myopic. At each time step, it computes what is the optimal
expected time for a decision in the future, and it is only if this expected time
is the current time that a decision is made. A myopic procedure would only
look at the current situation and decide whether it is time to stop asking for
more data and make a decision or not. It would never try to estimate in advance
the best time to make the prediction. The capacity of conjecturing when in the
future an optimal prediction should be made with regard to the quality and
delay of the prediction is however important and offers valuable opportunities
compared to myopic sequential decisions. Indeed, when the prediction is about
the breakdown of an equipment or about the possible failure of an organ in a
patient, this forecast capacity allows one to make preparations for thwarting as
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best as possible the breakdown or failure, rather than reacting in haste at the
last moment.

The paper is organized as follows. We first review some related work in
Section (2). The formal statement of the early classification problem (Section
(3)) leads to a generic sequential decision making meta algorithm. Our early
decision making proposed approach and its optimal decision rule are formalized
in Section (4). In Section (5), we propose one simple implementation of this meta
algorithm to illustrate our approach. Experiments and results on synthetic data
as well as on real data are presented and discussed in Section (6). The conclusion,
in Section (7), underlines the promising features of the approach presented and
discusses future works.

2 A Generic Framework and Positions of Related Works

In the following, we will assume that we have a set S of m training sequences
with each training sequence being a couple (xi

T , yi) ∈ R
T × Y, meaning that

it is composed of T real valued measurements 〈xi
1, . . . , x

i
T 〉, and an associated

label yi ∈ Y, where Y is a finite set of classes. The question is to choose
the earliest time t∗ at which a new incoming and still incomplete sequence
xt∗ = 〈x1, x2, . . . , xt∗〉 can be optimally labeled. Algorithm (1) provides a generic
description of early classification methods.

Algorithm 1. Framework of early classification methods
Input:

– xt ∈ R
t, t ∈ {1, . . . , T}, an incoming time series;

– {ht}t∈{1...,T} : R
t −→ Y, a set of predictive functions ht learned from the

training set;
– xt ∈ R, a new incoming real measurement;
– T rigger : R

t × ht −→ B, t ∈ {1, . . . , T} , B ∈ {true, false}, a boolean decision
function that decides whether it is time or not to output the prediction ht(xt)
on the class of xt;

1: xt ←− ∅

2: t ←− 0
3: while (¬T rigger(xt, ht)) do /* wait for an additional measurement

4: xt ←− Concat(xt, xt) /* a new measurement is added at the end of xt

5: t ←− t + 1
6: if (T rigger(xt, ht) || t = T ) then
7: ŷ ←− ht(xt) /* predict the class of xt and exit the loop

8: end if
9: end while

In the framework outlined above, we suppose that the training set S has been
used in order to learn a series of hypotheses ht(t ∈ {1, . . . , T}), each hypothesis
ht being able to classify examples of length t: xt = 〈x1, x2, . . . , xt〉.
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Then, the various existing methods for early classification of time series can
be categorized according to the T rigger function which decides when to stop
measuring additional information and output a prediction ht(xt) for the class
of xt.

Several papers that are openly motivated by the problem of early classifi-
cation turn out indeed to be concerned with the problem of classifying from
incomplete sequences rather than with the problem of optimizing a tradeoff
between the precision of the prediction and the time it is performed. (see for
instance [5] where clever classification schemes are presented, but no explicit
cost for delaying the decision is taken into account). Therefore there is stricto
sensu no T rigger function used in these algorithms.

In [6], the T rigger function relies on an estimate of the earliest time at which
the prediction ht(xt) should be equal to the one that would be made if the com-
plete example xT was known: hT (xT ). The so-called minimum prediction length
(MPL) is introduced, and is estimated using a one nearest neighbor classifier.

In a related work [7,8], the T rigger function is based on a very similar idea.
It outputs true when the probability that the assigned label ht(xt) will match
the one that would be assigned using the complete time series hT (xT ) exceeds
some given threshold. To do so, the authors developed a quadratic discriminant
analysis that estimates a reliability bound on the classifier’s prediction at each
time step.

In [9], the T rigger function outputs true if the classification function ht has
a sufficient confidence in its prediction. In order to estimate this confidence level,
the authors use an ensemble method whereby the level of agreement is translated
into a confidence level.

In [10], an early classification approach relying on uncertainty estimations
is presented. It extends the early distinctive shapelet classification (EDGC) [11]
method to provide an uncertainty estimation for each class at each time step.
Thus, an incoming time series is labeled at each time step with the class that
has the minimum uncertainty at that time. The prediction is triggered once a
user-specified uncertainty threshold is met.

It is remarkable that even if the earliness of the decision is mentioned as a
motivation in these papers, the decision procedures themselves do not take it
explicitly into account. They instead evaluate the confidence or reliability of the
current prediction(s) in order to decide if the time is ripe for prediction, or if it
seems better to wait one more time step. In addition, the procedures are myopic
in that they do not look further than the current time to decide if it a prediction
should be made.

In this paper, we present a method that explicitly balance the expected gain
in the precision of the decision at all future time steps with the cost of delaying
the decision. In that way, the optimizing criterion is explicitly a function of both
aspects of the early decision problem, and, furthermore, it allows one to estimate,
and update if necessary, the future optimal time step for the decision.
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3 A Formal Analysis and a Näıve Approach

The question is to learn a decision procedure in order to determine the earliest
time t∗ at which a new incoming sequence xt∗ = 〈x1, x2, . . . , xt∗〉 can be opti-
mally labeled. To do so we associate a cost with the prediction quality of the
decision procedure and a cost with the time step when the prediction is finally
made:

– We assume that a misclassification cost function Ct(ŷ|y) : Y × Y −→ R is
given, providing the cost at time t of predicting ŷ when the true class is y.

– Each time step t is associated with a real valued time cost function C(t)
which is non decreasing over time, which means that it is always more
costly to wait for making a prediction. Note that, in contrast to most other
approaches, this function can be different from a linear one, reflecting the
peculiarities of the domain. For instance, if the task is to decide if an elec-
trical power plant must be started or not, the waiting cost rises sharply as
the last possible time approaches.

We can now define a cost function f associated with the decision problem.

f(xt) =
∑

y∈Y
P (y|xt)

∑

ŷ∈Y
P (ŷ|y,xt)Ct(ŷ|y) + C(t) (1)

This equation corresponds to the expectation of the cost of misclassification
after t measurements have been made, added to the cost of having delaying
the decision until time t. The optimal time t∗ for the decision problem is then
defined as :

t∗ = ArgMin
t∈{1,...,T}

f(xt) (2)

However, this formulation of the decision problem requires that one be able
to compute the conditional probabilities P (y|xt) and P (ŷ|y,xt). The first one
is unknown, otherwise there would be no learning problem in the first place.
The second one is associated with a given classifier, and is equally difficult to
estimate.

Short of being able to estimate these terms, one can fall back on the expec-
tation of the cost for any sequence (hence the function now denoted f(t)):

f(t) =
∑

y∈Y
P (y)

∑

ŷ∈Y
P (ŷ|y)Ct(ŷ|y) + C(t) (3)

From the training set S, it is indeed easy to compute the a priori probabilities
P (y) and the conditional probabilities P (ŷ|y) which are nothing else that the
confusion matrix associated with the considered classifier. One gets then the
optimal time for prediction as:

t∗ = ArgMin
t∈{1,...,T}

f(t)
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This can be computed before any new incoming sequence, and, indeed, t∗ is
independent on the input sequence. Of course, this is intuitively unsatisfactory
as one could feel, regarding a new sequence, very confident (resp. not confident)
in his/her prediction way before (resp. after) the prescribed time t∗. If such is
the case, it seems foolish to make the prediction exactly at time t∗. This is why
we propose an adaptive approach.

4 The Proposed Approach

The goal is to estimate the conditional probability P (ŷ|y,xt) in Equation (1)
by taking into account the incoming time series xt in order to determine the
optimal time t∗. There are several possibilities for this.

In this paper, the idea is to identify a set C of K clusters ck (k ∈ {1, . . . , K})
of complete sequences using a training set so that, later, an (incomplete) input
sequence xt = 〈x1, . . . , xt〉 can have a membership probability assigned to each of
these clusters: P (ck | xt), and therefore will be recognized as more or less close
to each of the prototype sequences corresponding to the clusters. A complete
explanation is given below in Section 5.

The set C of clusters should obey two constraints as well as possible.

1. Different clusters should correspond to different confusion matrices. Other-
wise, Equation (1) will not be able to discriminate the cost between clusters.

2. Clusters should contain similar time series, and be dissimilar to other clus-
ters, so that an incoming sequence will generally be assigned markedly to
one of the clusters.

For each time step t ∈ [1, . . . , T ], a classifier ht is trained using a learning set
S ′. One can then estimate the associated confusion matrix for each cluster and
classifier ht: ck: Pt(ŷ|y, ck) over a distinct learning set S”.

When a new input sequence xt of length t is considered, it is compared to
each cluster ck (of complete time series) and is given a probability membership
Pt(ŷ|y, ck) for each of them (as detailed in Section (5)). In a way, this compares
the input sequence to all families of its possible continuations.

Given that, at time t, T − t measurements are still missing on the incoming
sequence, it is possible to compute the expected cost of classifying xt at each
future time step τ ∈ {0, . . . , T − t}:

fτ (xt) =
∑

ck∈C
P (ck|xt)

∑

y∈Y

∑

ŷ∈Y
Pt+τ (ŷ|y, ck)C(ŷ|y) + C(t + τ) (4)

Perhaps not apparent at first, this equation expresses two remarkable properties.
First, it is computable, which was not the case of Equation (1). Indeed, each

of the terms P (ck|xt) and Pt+τ (ŷ|y, ck) can now be estimated through frequencies
observed in the training data (see Figure (1)). Second, the cost depends on the
incoming sequence because of the use of the probability memberships P (ck|xt).
It is therefore not computed beforehand, once for all.
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Fig. 1. An incoming (incomplete) sequence is compared to each cluster ck obtained
from the training set of complete time series. The confusion matrices for each time
step t and each cluster ck are computed as explained in the text.

Fig. 2. The first curve represents an incoming time series xt. The second curve rep-
resents the expected cost fτ (xt) given xt, ∀τ ∈ {0, . . . , T − t}. It shows the balance
between the gain in the expected precision of the prediction and the cost of waiting
before deciding. The minimum of this tradeoff is expected to occur at time τ�. New
measurements can modify the curve of the expected cost and the estimated τ�.

In addition, the fact that the expected cost fτ (xt) can be computed for each
of the remaining τ time steps allows one to forecast what should be the optimal
horizon τ� for the classification of the input sequence (see Figure (2)):

τ∗ = ArgMin
τ∈{0,...,T−t}

fτ (xt) (5)
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Of course, these costs, and the expected optimal horizon τ�, can be re-
evaluated when a new measurement is made on the incoming sequence. At any
time step t, if the optimal horizon τ� = 0, then the sequential decision process
stops and a prediction is made about the class of the input sequence xt using
the classifier hk

t :

ŷ = hk
t (xt), where k = ArgMax

k∈{1,...,K}
P (ck|xt)

Returning to the general framework outlined for the early classification prob-
lem in Section (3), the proposed function that triggers a prediction for the incom-
ing sequence is given in Algorithm (2):

Algorithm 2. Proposed T rigger(xt, ht) function.
Input: xt, t ∈ {1, . . . , T}, an incoming time series;
1: T rigger ←− false
2: for all τ ∈ {0, . . . , T − t} do
3: compute fτ (xt) /* see Equation (4)*/

4: end for
5: τ∗ = ArgMin

τ∈{0,...,T−t}
fτ (xt)

6: if (τ∗ = 0) then
7: T rigger ←− true
8: end if

5 Implementation

Section (3) has outlined the general framework for the early classification prob-
lem while Section (4) has presented our proposed approach where the problem is
cast as a sequential decision problem with three properties: (i) both the quality of
the prediction and the delay before prediction are taken into account in the total
criterion to be optimized, (ii) the criterion is adaptive in that it depends upon
the incoming sequence xt, and (iii) the proposed solution leads to a non myopic
scheme where the system forecasts the expected optimal horizon τ∗ instead of
just deciding that now is, or is not, the time to make a prediction.

In order to implement the proposed approach, choices have to be made about:

1. The type of classifiers used. For each time step t ∈ {1, . . . , T}, the input
dimension of the classifier is t.

2. The clustering method, which includes the technique (e.g. k-means), the dis-
tance used (e.g. the euclidean distance, the time warping distance, ...), and
the number of clusters that are looked for.

3. The method for computing the membership probabilities P (ck|xt).



Early Classification of Time Series 441

In this paper, we have chosen to use simple, direct, techniques to implement
each of the choices above, so as to clearly single out the properties of the approach
through “baseline results”. Better results can certainly be obtained with more
sophisticated techniques.

Accordingly, (1) for the classifiers, we have used Näıve Bayes classifiers and
Multi-layer Perceptrons with one hidden layer of �t + 2/2� neurons. In Section
(6), we only show results obtained using the Multi-Layer Perceptron since both
classifiers give similar results. (2) The clustering over complete time series is
performed using k-means with euclidean distance. The number Ky of clusters
for each of the target classes y = −1 and y = +1 corresponds to the maximum
silhouettes factor [12]. (3) The membership probabilities P (ck|xt) are computed
using the following equation:

P (ck|xt) =
sk∑K
i si

, where sk =
1

1 + exp−λΔk
(6)

The constant λ used in the sigmoid function sk is empirically learned from
the training set, while Δk = D − dk is the difference between the average
of the distances between xt and all the clusters, and the distance between xt

and the cluster ck. The distance between an incomplete incoming time series
x′

t = 〈x1, . . . , xt〉 and a complete one x”T = 〈x1, . . . , xT 〉 is done here using the
Euclidian distance between the first t components of the two series.

6 Experiments

Our experiments aimed at checking the validity of the proposed method and at
exploring its capacities for various conditions. To this end, we devised controlled
experiments with artificial data sets for which we could vary the control param-
eters: difference between the two target classes, noise level, number of different
time series shapes in each class and the cost of waiting before decision C(t).
We also applied the method to the real data set TwoLeadECG from UCR Time
Series Classification/Clustering repository [13].

6.1 Controlled Experiments

We devised our experiments so that there should be a gain, that we can control, in
the prediction accuracy if more measurements are made (increasing t). We have
also devised the target classes so that they are composed of several families of
time sequences, with, possibly, families that share a strong resemblance between
different target classes.

In the reported experiments, the time series in the training set and the testing
set are generated according to the following equations:

xt = a sin(ωi t + phase) + b t + ε(t) (7)

The constant b is used to set a general trend, for instance either ascending
(b > 0) or descending (b < 0), while the first term a sin(ωi t + phase) provides
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Fig. 3. Subgroups of sequences generated for classes y = +1 and y = −1, when the
trend parameter b = −0.08 or b = +0.08, and the noise level ε(t) = 0.5.

a shape for this particular family of time series. The last term is a noise factor
that makes the overall prediction task more or less difficult.

For instance, Figure (3) shows a set of time series (one for each shape) where:

– b = −0.08 or b = +0.08
– a = 5 and phase = 0
– ω1 = 10 or ω2 = 10.3 (here, there are 2 groups of time sequences per class)
– ε(t) is a gaussian term of mean = 0 and standard deviation = 0.5
– T = 50

In this particular setting, it is apparent that it is easy to mix up the two
classes y = −1 and y = +1 until intermediate values of t. However, the wait-
ing cost C(t) may force the system to make a decision before there is enough
measurements to make a reasonably sure guess on the class y.

In our experiments, the training set S contained 2,500 examples, and the
testing set T contained 1000 examples, equally divided into the two classes
y = −1 and y = +1. (Nota: In case of imbalanced classes, it is easy to compensate
this by modifying the misclassification cost function Ct(ŷ|y)). Each class was
made of several subgroups: K−1 ones for class −1 and K+1 ones for class +1.
The misclassification costs were set as: C(ŷ|y) = 1, ∀ ŷ, y , and the time cost
function C(t) = d × t, where d ∈ {0.01, 0.05, 0.1}.

We varied:

– The level of distinction between the classes controlled by b
– The number of subgroups in each class and their shape (given by the term

a sin(ωi t + phase))
– The noise level ε(t)
– The cost of waiting before decision C(t)

The results for various combinations of these parameters are shown in Table
(1) as obtained on the time series of the testing set. It reports τ�, the average of
computed optimal times of decision and its associated standard deviation σ(τ�).
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Table 1. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}×
t, the noise level ε(t) and the trend parameter b.

±b 0.02 0.05 0.07
C(t)

ε(t) τ� σ(τ�) AUC τ� σ(τ�) AUC τ� σ(τ�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Additionally, the Area Under the ROC Curve AUC evaluates the quality of the
prediction at the optimal decision time τ� computed by the system.

Globally, one can see that when the noise level is low (ε ≤ 1.5) and the
waiting cost is low too (C(t) = ct × t, with ct ≤ 0.05), the system is able to reach
a high level of performance by waiting increasingly as the noise level augments.
When the waiting cost is high (C(t) = 0.1 × t), on the other hand, the system
takes a decision earlier at the cost of a somewhat lower prediction performance.
Indeed, with rising levels of noise, the system decides that it is not worth waiting
and makes a prediction early on, often at the earliest possible moment, which
was set to 4 in our experiments1.

More specifically:

– Impact of the noise level ε(t): As expected, up to a certain value, rising
levels of noise ε(t) entails increasing delays before a decision is decided upon
by the system. Then, a decrease of τ� is observed, which corresponds to the

1 Below 4 measurements, the classifiers are not effective.
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fact that there is no gain to be expected by waiting further. Accordingly, the
performance, as measured with the AUC, decreases as well when ε(t) rises.

– Impact of the waiting cost C(t): The role of the waiting cost C(t) appears
clearly. When C(t) is very low, the algorithm tends to wait longer before
making a decision, often waiting the last possible time. On the other hand,
with rising C(t), the optimal decision time τ� decreases sharply, converging
to the minimal possible value of 4.

– Impact of the trend parameter b: While the value of b, which controls
the level of distinction of the classes y = +1 and y = −1, is not striking
on the average time of decision τ�, one can notice however the decrease of
the standard deviation when b increases from b = 0.02 to b = 0.05. At the
same time, the AUC increases as well. For small values of the noise level, the
decrease of the standard deviation is further observed when b = 0.07.

– Impact of the number of subgroups in each class: In order to measure
the effect of the complexity of each class on the decision problem, we changed
the number of shapes in each class as well. This is easily done in our setting by
using sets of different values of the parameters in Equation (7). For instance,
Table (2) reports the results obtained when the number of subgroups of class
y = −1 was set to K−1 = 3 while it was set to K+1 = 5 for class y = +1.
When the waiting cost is very low (C(t) = 0.01), the number of subgroups
in each class, and hence the complexity of the classes, does not influence
the results. However, when the waiting cost increases (C(t) = 0.05 × t), the
decision task becomes harder, and the decision time increases while the AUC
decreases.

The above results, in Table (1) and Table (2), aggregate the measures on
the whole testing set. It is interesting to look as well at individual behaviors.
For instance, Figure (4) shows the expected costs fτ (x1

t ) and fτ (x2
t ) for two

different incoming sequences x1
t and x2

t , for each of the potentially remaining τ
time steps. First, one can notice the overall shape of the cost function fτ (xt) with
a decrease followed by a rise. Second, the dependence on the incoming sequence
appears clearly, with different optimal times t�. This confirms that the algorithm
takes into account the peculiarities of the incoming sequence.

6.2 Experiments on a Real Data Set

In order to test the ability of the method to solve real problems, we have realized
experiments using the real data set TwoLeadECG from the UCR repository.
This data set contains 1162 ECG signals all together, that we randomly and
disjointedly re-sampled and split into a training set of 70% of examples and the
remainder for the test set. Each signal is composed of 81 data point representing
the electrical activity of the heart from two different leads. The goal is to detect
an abnormal activity in the heart. Our experiments show that it is indeed possible
to make an informed decision before all measurements are made.
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Table 2. Experimental results in function of the noise level ε(t), the trend parameter
b, and the number of subgroups k+1 and k−1 in each class. The waiting cost C(t) is
fixed to 0.01.

±b 0.02 0.05 0.07
(K−1, K+1)

ε(t) τ� σ(τ�) AUC τ� σ(τ�) AUC τ� σ(τ�) AUC

(3,2)

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 1.00
5.0 26.0 7.78 0.84 30.0 18.90 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

(3,5)

0.2 7.0 2.47 0.86 7.0 2.15 0.89 7.0 3.00 0.85
0.5 11.0 5.10 0.87 10.0 4.87 0.88 14.0 7.07 0.91
1.5 20.0 12.69 0.85 18.0 11.80 0.87 26.0 16.33 0.89
5.0 44.0 4.75 0.83 46.0 2.81 0.87 38.0 11.49 0.81
10.0 42.0 6.34 0.67 39.0 7.59 0.68 25.0 8.57 0.61
15.0 28.0 5.99 0.58 32.0 6.51 0.59 19.0 10.12 0.58
20.0 17.0 11.72 0.50 13.0 10.72 0.56 17.0 5.93 0.55

Fig. 4. For two different incoming sequences (top figure), the expected costs (bottom
figure) are different. The minima have different values and occur at different instants.
These differences confirm that deciding to make a prediction depends on the incoming
sequence. (Here, b = 0.05, C(t) = 0.01 × t and ε = 1.5).
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Table 3. Experimental results on real data in function of the waiting cost C(t).

C(t) 0.01 0.05 0.1

τ� 22.0 24.0 10.0
σ(τ�) 6.1214 15.7063 9.7506
AUC 0.9895 0.9918 0.9061

Since the costs involving quality and delay of decision are not provided with
this data set, we arbitrarily set these costs to C(ŷ|y) = 1, ∀ ŷ, y , and C(t) = d×t,
where d ∈ {0.01, 0.05, 0.1}. The question here is whether the method is able to
make reliable prediction early and provide reasonable results.

Table (3) reports the average of optimal times of decision τ� of test time
series, its associated standard deviation σ(τ�), and the performance of the pre-
diction AUC. It is remarkable that a very good performance, as measured by the
AUC, can be obtained from a limited set of measurements: E.g. 22 out of 81 if
C(t) = 0.01, 24 out of 81 if C(t) = 0.05, and 10 out of 81 if C(t) = 0.1.

We therefore see that the baseline solution proposed here is able to (1) adapt
to each incoming sequence and (2) to predict an estimated optimal time of
prediction that yields very good prediction performances while controlling the
cost of delay.

7 Conclusion and Future Works

The problem of online decision making has been known for decades, but numer-
ous new applications in medicine, electric grid management, automatic trans-
portation, and so on, give a new impetus to research works in this area. In this
paper, we have formalized a generic framework for early classification methods
that underlines two critical parts: (i) the optimization criterion that governs the
T rigger boolean function, and (ii) the manner by which the current information
about the incoming time sequence is taken into account.

Within this framework, we have proposed an optimization criterion that bal-
ances the expected gain in the classification cost in the future with the cost of
delaying the decision. One important property of this criterion is that it can be
computed at each time step for all future instants. This prediction of the future
gains is updated given the current observation and is therefore never certain,
but this yields a non myopic sequential decision process.

In this paper, we have sought to determine the baseline properties of our
proposed framework. Thus, we have used simple techniques as: (i) clustering of
time series in order to compare the incoming time sequence to known shapes
from the training set, (ii) a simple formula to estimate the membership proba-
bility P (ck|xt), and (iii) not optimized classifiers, here: näıve Bayes or a simple
implementation of Multi-Layer Perceptrons.

In this baseline setting, it is a remarkable feat that the experiments exhibit
a remarkable fit with desirable properties for an early decision classification
algorithm, as stated in Section 6. The system indeed controls the decision time
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so as to ensure a high level of prediction performance as best as possible given
the level of difficulty of the task and the cost of delaying the decision. It is also
adaptive by taking into account the peculiarities of the incoming time sequence.

While we have obtained quite satisfying and promising results in the exper-
iments carried out on controlled data and on a real data set, one direction for
future work is to boost up this baseline implementation. In particular, we have
ideas about how to use training sequences in order to predict the future decision
cost of an incoming time sequence without using a clustering approach. Besides,
dedicated methods for classifying time sequences should be used rather than
näıve Bayes or simple MLP.

Still, even as it is, the method presented here should prove a useful tool for
many early classification tasks.
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