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Abstract. Many real-world datasets are represented by multiple fea-
tures or modalities which often provide compatible and complementary
information to each other. In order to obtain a good data representa-
tion that synthesizes multiple features, researchers have proposed differ-
ent multi-view subspace learning algorithms. Although label information
has been exploited for guiding multi-view subspace learning, previous
approaches either fail to directly capture the semantic relations between
labeled items or unrealistically make Gaussian assumption about data
distribution. In this paper, we propose a new multi-view nonnegative sub-
space learning algorithm called Multi-view Semantic Learning (MvSL).
MvSL tries to capture the semantic structure of multi-view data by a
novel graph embedding framework. The key idea is to let neighboring
intra-class items be near each other while keep nearest inter-class items
away from each other in the learned common subspace across multiple
views. This nonparametric scheme can better model non-Gaussian data.
To assess nearest neighbors in the multi-view context, we develop a mul-
tiple kernel learning method for obtaining an optimal kernel combination
from multiple features. In addition, we encourage each latent dimension
to be associated with a subset of views via sparseness constraints. In
this way, MvSL is able to capture flexible conceptual patterns hidden in
multi-view features. Experiments on two real-world datasets demonstrate
the effectiveness of the proposed algorithm.

Keywords: Multi-view learning · Nonnegative matrix factorization ·
Graph embedding · Multiple kernel lerning · Structured sparsity

1 Introduction

In many real-world data analytic problems, instances are often described with
multiple modalities or views. It becomes natural to integrate multi-view repre-
sentations to obtain better performance than relying on a single view. A good
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integration of multi-view features can lead to a more comprehensive descrip-
tion of the data items, which could improve performance of many related
applications.

An emerging area of multi-view learning is multi-view latent subspace learn-
ing, which aims to obtain a compact latent representation by taking advantage
of inherent structure and relation across multiple views. A pioneering technique
in this area is Canonical Correlation Analysis (CCA) [7], which tries to learn
the projections of two views so that the correlation between them is maximized.
Recently, a lot of methods have been applied to multi-view subspace learning,
such as matrix factorization [9], [4], [11], [18], graphical models [3] and spectral
embedding [22].

Matrix factorization techniques have received more and more attention as
fundamental tools for multi-view latent subspace learning. Since a useful repre-
sentation acquired by matrix factorization typically makes latent structure in the
data explicit (through the basis vectors), and usually reduces the dimensionality
of input views, so that further analysis can be effectively and efficiently carried
out. Nonnegative Matrix Factorization (NMF) [13] is an attractive matrix fac-
torization method due to its theoretical interpretation and desired performance.
NMF aims to find two nonnegative matrices (a basis matrix and an encoding
matrix) whose product provides a good approximation to the original matrix.
NMF tries to formulate a feasible model for learning object parts, which is closely
relevant to human perception mechanism. Recently, variants of NMF have been
proposed for multi-view learning [11], [18], [10].

Labeled data has been incorporated to improve NMF’s performance in both
the single view case [16], [21] and the multi-view case [10]. However, there is still
lack of effective methods for learning a common nonnegative latent subspace
which captures the semantic structure of multi-view data through label informa-
tion. Previously, there are mainly two ways to incorporate label information into
the NMF framework. The first one is to reconstruct the label indicator matrix
through multiplying the encoding matrix by a weight matrix [10], [17],[16]. These
methods intrinsically impose indirect affinity constraints on encodings of labeled
items. Nevertheless, such indirect constraints could be insufficient for capturing
the semantic relationships between labeled items. The second one is to regular-
ize the encodings of labeled items by fisher-style discriminative constraints [21],
[25]. Although methods of this kind directly penalize distances among labeled
items in the latent subspace, they assume the data of each class follows a Gaus-
sian distribution. However, in reality this assumption is too restricted since data
often exhibit complex non-Gaussian distribution [2], [24].

In this paper, we propose a novel semi-supervised multi-view representation
(i.e. latent subspace) learning algorithm, namely, Multi-view Semantic Learn-
ing (MvSL), to better capture the semantic structure of multi-view data. MvSL
jointly factorizes data matrices of different views, and each view is factorized
into a basis matrix and an encoding matrix where the encoding matrix is the low
dimensional optimal consensus representation shared by multiple views. We reg-
ularize the encoding matrix by developing a novel graph embedding framework:
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we construct (1) an affinity graph which characterizes the intra-class compact-
ness and connects each data point with its neighboring points of the same class;
(2) a discrimination graph which connects the marginal points and characterizes
the inter-class separability in the learned subspace. This nonparametric scheme
can better capture the complex non-Gaussian distribution of real-world data
[24]. A sub-challenge is how to identify nearest neighbors in the multi-view con-
text. To this end, we develop a new multiple kernel learning algorithm to find
the optimal kernel combination for multi-view features. The algorithm tries to
optimally preserves the semantic relations among labeled items, so that we can
assess within-class variance and between-class similarity effectively. Moreover,
we impose a L1,2 norm regularizer on the basis matrix to encourage some basis
vectors to be zero-valued [9]. In this way, each latent dimension has the flexibility
to be associated with a subset of views, thus enhancing the expressive power of
the model. To solve MvSL, we develop a block coordinate descent [15] optimiza-
tion algorithm. For empirical evaluation, two real-world multi-view datasets are
employed. The encouraging results of MvSL are achieved in comparison with the
state-of-the-art algorithms.

2 Related Work

In this section, we present a brief review of related work about NMF-based
subspace learning. Firstly, we describe the notations used throughout the paper.

2.1 Common Notations

In this paper, vectors and matrices are denoted by lowercase boldface letters
and uppercase boldface letters respectively. For matrix M, we denote its (i, j)-
th element by Mij . The i-th element of a vector b is denoted by bi. Given a set
of N items, we use matrix X ∈ R

M×N
+ to denote the nonnegative data matrix

where the i-th column vector is the feature vector for the i-th item. In the multi-
view setting, we have H views and the data matrix of the v-th view is denoted
by X(v) ∈ R

Mv×N
+ , where Mv is the dimensionality of the v-th view. Throughout

this paper, ‖M‖F denotes the Frobenius norm of matrix M.

2.2 NMF-Based Latent Subspace Learning

NMF is an effective subspace learning method to capture the underlying struc-
ture of the data in the parts-based low dimensional representation space, which
accords with the cognitive process of human brain from the psychological and
physiological studies [13].

Given an input nonnegative data matrix X ∈ R
M×N
+ where each column

represents a data point and each row represents a feature. NMF aims to find
two nonnegative matrices U ∈ R

M×K
+ and V ∈ R

K×N
+ whose product can well

approximate the original data matrix:

X ≈ UV.
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K < min(M,N) denotes the desired reduced dimensionality, and to facilitate
discussion, we call U the basis matrix and V the coefficient matrix.

It is known that the objective function above is not convex in U and V
together, so it is unrealistic to expect an algorithm to find the global minimum.
Lee and Seung [13] presented multiplicative update rules to find the locally
optimal solution as follows:

U t+1
ik =U t

ik

(X(Vt)T )ik

(UtVt(Vt)T )ik

V t+1
kj =V t

kj

((Ut+1)TX)kj

((Ut+1)TUt+1Vt)kj
.

In recent years, many variants of the basic NMF model have been proposed.
We just list a few which are related to our work. One direction related to our
work is coupling label information to NMF [21], [25]. These works added dis-
criminative constraints into NMF via regularizing the encoding matrix V by
fisher-style discriminative constraints. Nevertheless, fisher discriminative analy-
sis assumes data of each class is approximately Gaussian distributed, a property
that cannot always be satisfied in real-world applications. Our method adopts a
nonparametric regularization scheme (i.e. regularization in neighborhoods) and
consequently can better model real-life data. Another related direction of NMF
is sparse NMF [8]. Sparseness constraints not only encourage local and compact
representations, but also improve the stability of the decomposition. Most pre-
vious works on sparse NMF employed L1 norm or ratio between L1 norm and
L2 norm to achieve sparsity on U and V. However, the story for our problem
is different since we have multiple views and the goal is to allow each latent
dimension to be associated with a subset of views. Therefore, L1,2 norm [9] is
used to achieve this goal.

There are also some extensions of NMF for multi-view data, e.g. clustering
[18], image annotation [11], graph regularized multi-view NMF [6] and semi-
supervised learning [10],[17]. Although [10] and [17] also exploited label infor-
mation, they incorporated label information as a factorization constraint on V,
i.e. reconstructing the label indicator matrix through multiplying V by a weight
matrix. Hence, those methods intrinsically imposed indirect affinity constraints
on encodings of labeled items in the latent subspace. On the contrary, our method
directly captures the semantic relationships between items in the latent subspace
through the proposed graph embedding framework. We will compare MvSL with
[10] in experiments.

3 Multi-view Semantic Learning

In this section, we present the proposed Multi-view Semantic Learning (MvSL)
algorithm for latent representation learning from multi-view data.
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3.1 Matrix Factorization with Multi-view Data

The consensus principle is the fundamental principle in multi-view learning
[23]. At first, MvSL jointly factorizes {X(v)}H

v=1 with different basis matrices
{U(v)}H

v=1 and the consensus encoding matrix V [9], [18], [11]:

min
{U(v)}H

v=1,V

1
2

H∑

v=1

‖X(v) − U(v)V‖2F

s.t. U
(v)
ik ≥ 0, Vkj ≥ 0, ∀i, j, k, v.

(1)

However, the standard unsupervised NMF fails to discover the semantic structure
in the data. In the next, we introduce our graph embedding framework for multi-
view semantic learning.

3.2 Graph Embedding for Multi-view Semantic Learning

Let Vl ∈ R
K×N l

, the first N l columns of V, be the latent representation of
the first N l labeled items and Vu ∈ R

K×Nu

be the latent representation of the
remaining Nu unlabeled items (i.e.V = [Vl Vu]). Inspired by [24], we propose a
graph embedding framework for capturing the semantic structure of multi-view
data. We define an affinity graph Ga and a discrimination graph Gp. The affinity
graph Ga = {Vl,Wa} is an undirected weighted graph with labeled item set Vl

as its vertex set, and similarity matrix Wa ∈ R
N l×N l

which characterizes the
intra-class local similarity structure. The discrimination graph Gp = {Vl,Wp}
characterizes inter-class separability and penalizes the similarity between the
most similar inter-class item pairs in the learned subspace. Let vl

i be the i-th
column of Vl. The graph-preserving criteria are given as follows:

min
Vl

1
2

N l∑

i=1

N l∑

j=1

W a
ij‖vl

i − vl
j‖22 = min

Vl

1
2
tr

[
VlLa

(
Vl

)T
]
, (2)

max
Vl

1
2

N l∑

i=1

N l∑

j=1

W p
ij‖vl

i − vl
j‖22 = max

Vl

1
2
tr

[
VlLp

(
Vl

)T
]
, (3)

where tr(·) denotes the trace of a matrix, and La = Da−Wa is the graph Lapla-
cian matrix for Ga with the (i, i)-th elements of the diagonal matrix Da equals
∑N l

j=1 W a
ij (Lp is for Gp). Generally speaking, Eq. (2) means items belonging to

the same class should be near each other in the learned latent subspace, while
Eq. (3) tries to keep items from different classes as distant as possible. However,
only with the nonnegative constraints Eq. (3) would diverge. Note that there is
an arbitrary scaling factor in solutions to problem (1): for any invertible K × K
matrix Q, we have U(v)V = (U(v)Q)(Q−1V). Hence, without loss of generality,
we add the constraints {Vkj ≤ 1,∀k, j} to put an upper bound on (3).
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The similarity matrices Wa and Wp are defined as follows

W a
ij =

{
1, if i ∈ Nka

(j) or j ∈ Nka
(i)

0, otherwise , (4)

where Nka
(i) indicates the index set of the ka nearest neighbors of item i in the

same class,

W p
ij =

{
1, if i ∈ Nkp

(j) or j ∈ Nkp
(i)

0, otherwise , (5)

where Nkp
(i) indicates the index set of the kp nearest neighbors of item i in the

distinct classes. We can see from the definitions of Wa and Wp that Ga and
Gp intrinsically preserve item semantic relations in local neighborhoods. This
nonparametric scheme can better handle real-life datasets which often exhibit
non-Gaussian distribution.

The remaining question is how to estimate nearest neighbors, which is a
routine function for constructing Ga and Gp. However, since real-life datasets
could be diverse and noisy, a single feature may not be sufficient to characterize
the affinity relations among items. Hence, we propose to use multiple features
for assessing the similarity between data items. In particular, we develop a novel
Multiple Kernel Learning (MKL) [20],[5] method for this task.

3.2.1 Multiple Kernel Learning
A kernel function measures the similarity between items in terms of one view.
We use Kv(i, j) to denote the kernel value between items i and j in terms of view
v. To make all kernel functions comparable, we normalize each kernel function
into [0, 1] as follows:

Kv(i, j) ← Kv(i, j)√
Kv(i, i)Kv(j, j)

. (6)

To obtain a comprehensive kernel function, we linearly combine multiple kernels
as follow:

K(i, j,ηηη) =
H∑

v=1

ηvKv(i, j),
H∑

v=1

ηv = 1, ηv ≥ 0, (7)

where ηηη = [η1, ..., ηH ]T is the weight vector to be learned. This combined kernel
function can lead to better estimation of similarity among items than any single
kernel. For example, only relying on color information could not handel images of
concept “zebra” well since the background may change arbitrarily, while adding
texture information can better characterize zebra images.

Then we need to design the criterion for learning ηηη. Since our goal is to
model the semantic relations among items, the learned kernel function should
be accommodated to the semantic structure among classes. We define an ideal
kernel to encode the semantic structure:

Kideal(i, j) =
{

1, if yi = yj

0, otherwise , (8)
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where yi denotes the label of item i. For each pair of items, we require its
combined kernel function value to conform to the corresponding ideal kernel
value. This leads to the following least square loss

l(i, j,ηηη) = (K(i, j,ηηη) − Kideal(i, j))2 (9)

Summing l(i, j,ηηη) over all pairs of labeled items, we could get the optimization
objective. However, in reality we would get imbalanced classes: the numbers of
labeled items for different classes can be quite different. The item pairs con-
tributed by classes with much larger number of items will dominate the overall
loss. In order to tackle this issue, we normalize the contribution of each pair of
classes (including same-class pairs) by its number of item pairs. This is equivalent
to multiplying each l(i, j,ηηη) by a weight tij which is defined as follows

tij =

{
1

n2
i
, if yi = yj

1
2ninj

, otherwise
, (10)

where ni denotes the number of items belonging to the class with label yi.
Therefore, the overall loss becomes

∑
i,j tij l(i, j,ηηη). To prevent overfitting, a L2

regularization term is added for ηηη. The final optimization problem is formulated
as

min
ηηη

N l∑

i,j=1

tij l(i, j,ηηη) + λ‖ηηη‖22

s.t.

H∑

v=1

ηv = 1, ηv ≥ 0

(11)

where λ is a regularization tradeoff parameter. The optimization problem of (11)
is a classical quadratic programming problem which can be solved efficiently
using any convex programming software. When ηηη is obtained, we could assess
the similarity relationship between labeled items in terms of multi-view features
according to (7). Then, according to Eqs. (4) and (5) we can construct the affinity
matrix Wa and discriminative matrix Wp, respectively.

3.3 Sparseness Constraint

Since similarities among data items belonging to the same class share the same
sparsity pattern, a structured sparseness regularizer is added to objective func-
tion to encourage some basis column vectors in U(v) to become to 0. This makes
view v independent of the latent dimensions which correspond to these zeros-
valued basis vectors. By employing L1,q norm regularization, the latent factors
obtained by NMF can be improved with an additional property of shared spar-
sity. In this work, we choose q = 2. L1,2 norm of matrix U is defined as:

‖U‖1,2 =
K∑

k=1

‖uk‖2, (12)
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3.4 Objective Function of MvSL

By synthesizing the above objectives, the optimization problem of MvSL is for-
mulated as:

min
{U(v)}H

v=1,V

1
2

H∑

v=1

‖X(v) − U(v)V‖2F + α
H∑

v=1

‖U(v)‖1,2

+
β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]}

s.t. U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

(13)

4 Optimization

The joint optimization function in (13) is not convex over all variables
U(1), ...,U(H) and V simultaneously. Thus, we propose a block coordinate
descent method [15] which optimizes one block of variables while keeping the
other block fixed. The procedure is depicted in Algorithm 1. For the ease of
representation, we define

O{(U(1), ...,U(H),V)} =
1
2

H∑

v=1

‖X(v) − U(v)V‖2F + α

H∑

v=1

‖U(v)‖1,2

+
β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]}
(14)

4.1 Optimizing {U(v)}H
v=1

When V is fixed, U(1), ...,U(H) are independent with one another. Since the
optimization method is the same, here we just focus on an arbitrary view and
use X and U to denote respectively the data matrix and the basis matrix for
the view. The optimization problem involving U can be written as

min
U

φ(U) :=
1
2
‖X − UV‖2F + α‖U‖1,2

s.t. Uik ≥ 0, ∀i, k.
(15)

Two terms of φ(U) are convex functions. The first term of φ(U) is differentiable,
and its gradient is Lipschitz continuous. Hence, an efficient convex optimization
method can be adopted. [12] presented a variant of Nesterov’s first order method,
suitable for solving (15). In this paper, we take the optimization method of [12]
to update U. Due to the limitation of space, details can be found in [12].
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4.2 Optimizing V

When {U(v)}H
v=1 are fixed, the subproblem for V can be written as

min
V

ψ(V) :=
(

1
2

H∑

v=1

‖X(v) − U(v)V‖2F

+
β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]})

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

(16)

This is a bounded nonnegative quadratic programming problem for V. Sha et al.
[19] proposed a general multiplicative optimization scheme for this kind of prob-
lems. Inspired by their method, we develop a multiplicative update algorithm
for optimizing V.

Firstly, recall that X(v) = [X(v),l X(v),u] and V = [Vl Vu]. We can transform
the first term of ψ(V):

1
2

H∑

v=1

‖X(v) − U(v)V‖2F

=
1
2

H∑

v=1

(
tr[(Vl)T (U(v))TU(v)Vl] − 2tr[(Vl)T (U(v))TX(v),l]

+ tr[(Vu)T (U(v))TU(v)Vu] − 2tr[(Vu)T (U(v))TX(v),u]
)

+ const.

For convenience, let P =
∑H

v=1(U
(v))TU(v) and Ql =

∑H
v=1(U

(v))TX(v),l.
Qu is defined similarly for the unlabeled part. Eq. (16) can be transformed into

min
V

1
2
tr[(Vl)TPVl] − tr[(Vl)TQl] +

1
2
tr[(Vu)TPVu] − tr[(Vu)TQu]

+
β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]}

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

(17)

Since Vl and Vu are independent, we analyze them separately. The objective
terms involving Vl can be summarized as

Ol(Vl) =
1
2
tr[(Vl)TPVl] − tr[(Vl)TQl]

+
β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]} (18)

The second term is linear term for Vl. We only need to focus on the quadratic
terms which can be rewritten as follows
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1
2
tr[(Vl)TPVl] =

1
2

N l∑

j=1

(vl
j)

TPvl
j , (19)

β

2
{
tr

[
VlLa(Vl)T

] − tr
[
VlLp(Vl)T

]}

=
β

2

K∑

k=1

{
(v̄l

k)T (Da + Wp)v̄l
k − (v̄l

k)T (Dp + Wa)v̄l
k

}
, (20)

where vl
j and v̄l

k represent the j-th column vector and k-th row vector of Vl,
respectively. Each summand in Eq. (19) and (20) is a quadratic function of a
vector variable. Therefore, we can provide upper bounds for these summands:

(vl
j)

TPvl
j ≤

K∑

k=1

(Pvl,t
j )k

V l,t
kj

(V l
kj)

2,

(v̄l
k)T (Da + Wp)v̄l

k ≤
N l∑

j=1

((Da + Wp)v̄l,t
k )j

V l,t
kj

(V l
kj)

2,

−(v̄l
k)T (Dp + Wa)v̄l

k ≤ −
∑

i,j

(Dp + Wa)ijV
l,t
ki V l,t

kj

(
1 + log

V l
kiV

l
kj

V l,t
ki V l,t

kj

)
,

where we use Vl,t to denote the value of Vl in the t-th iteration of the update
algorithm and vl,t

j , v̄l,t
k are its j-th column vector and k-th row vector, respec-

tively. Note that V l
kj can be viewed both as the k-th element of vl

j and as the
j-th element of v̄l

k. The proofs of these bounds follow directly from Lemmas
1 and 2 in [19]. Aggregating the bounds for all the summands, we obtain the
auxiliary function for Ol(Vl)

Gl(Vl,t;Vl)

=
1
2

N l∑

j=1

K∑

k=1

(Pvl,t
j )k + β((Da + Wp)v̄l,t

k )j

V l,t
kj

(V l
kj)

2

− β

2

K∑

k=1

∑

i,j

(Dp + Wa)ijV
l,t
ki V l,t

kj

(
1 + log

V l
kiV

l
kj

V l,t
ki V l,t

kj

)

−
N l∑

j=1

K∑

k=1

Ql
kjV

l
kj .

(21)

The estimate of Vl in the (t + 1)-th iteration is then computed as

Vl,t+1 = arg min
Vl

Gl(Vl,t;Vl). (22)



Multi-view Semantic Learning for Data Representation 377

Differentiating Gl(Vl,t;Vl) with respect to each V l
kj , we have

∂Gl(Vl,t;Vl)
∂V l

kj

=
(Pvl,t

j )k + β((Da + Wp)v̄l,t
k )j

V l,t
kj

V l
kj − β((Dp + Wa)v̄l,t

k )j

V l
kj

V l,t
kj − Ql

kj

Setting ∂Gl(Vl,t;Vl)/∂V l
kj = 0, we get the update rule for Vl

V l,t+1
kj = min

⎧
⎨

⎩1, V l,t
kj

−Bkj +
√

B2
kj + 4AkjCkj

2Akj

⎫
⎬

⎭ , (23)

Akj =(Pvl,t
j )k + β((Da + Wp)v̄l,t

k )j ,

Bkj = − Ql
kj , Ckj = β((Dp + Wa)v̄l,t

k )j .

Here vl
j and v̄l

k denote the j-th column vector and the k-th row vector
of Vl, respectively. It is easy to verify that Ol(Vl,t+1) ≤ Gl(Vl,t;Vl,t+1) ≤
Gl(Vl,t;Vl,t) = Ol(Vl,t). Therefore, the update rule for Vl monotonically
decreases Eq. 13. The case for Vu is simpler since we do not have the graph
embedding terms:

Ou(Vu) =
1
2
tr[(Vu)TPVu] − tr[(Vu)TQu] (24)

Similarly, the auxiliary function for Ou(Vu) can be derived

Gu(Vu,t;Vu) =
1
2

Nu∑

j=1

K∑

k=1

(Pvu,t
j )k

V u,t
kj

(V u
kj)

2 −
Nu∑

j=1

K∑

k=1

Qu
kjV

u
kj (25)

and the update rule can be obtained by setting the partial derivatives to 0:

V u,t+1
kj = min

{
1, V u,t

kj

Qu
kj − |Qu

kj |
2(Pvu,t

j )k

}
(26)

5 Experiment

In this section, we conduct the experiments on two real-world data sets to vali-
date the effectiveness of the proposed algorithm MvSL.
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Algorithm 1. Optimization of MvSL
Data: {X(v)}H

v=1, α, β
Result: {U(v)}H

v=1,V
1 begin

2 Randomly initialize U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v

3 repeat

4 Fix V, update U(1), ...,U(H) as in [12]

5 Fix U(1), ...,U(H), update Vl as in (23) and update Vu as in (26) ;

6 until convergence or max no. iterations reached

7 end

Table 1. Statistics of the datasets.

Dataset Size # of categories Dimensionality of views

Reuters 1800 6 21, 531/15, 506/11, 547

MM2.0 5000 25 64/144/75/128

5.1 Data Set

We use two real-world datasets to evaluate the proposed factorization method.
The first dataset was constructed from the Reuters Multilingual collection [1].
This test collection contains totally 111,740 Reuters news documents written
in five different languages. Documents for each language can be divided into a
common set of six categories. Each document was translated into the other four
languages and represented as TF-IDF vectors. We took documents written in
English as the first view and their Italian and Spanish translations as the second
and third views. We randomly sampled 1800 English documents, with 300 for
each category. The second dataset came from Microsoft Research Asia Internet
Multimedia Dataset 2.0 (MSRA-MM 2.0) [14]. MSRA-MM 2.0 consists of about
1 million images which were respective search results for 1165 popular query
concepts in Microsoft Live Search. Each concept has approximately 500-1000
images. For each image, its relevance to the corresponding concept was manually
labeled with three levels: very relevant, relevant and irrelevant. 7 different low
level features were extracted for each image. To form the experimental dataset,
we selected 25 query concepts from the Animal, Object and Scene branches, and
then randomly sampled 200 images from each concept while discarding irrelevant
ones. We took 4 features in MSRA-MM 2.0 as 4 different views: 64D HSV color
histogram, 144D color correlogram, 75D edge distribution histogram and 128D
wavelet texture. Hereafter, we refer to the two datasets as Reuters and MM2.0,
respectively. The statistics of these datasets are summarized in Table 1.

5.2 Baselines

To validate the performance of our method, we compare the proposed MvSL
with the following baselines:
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• NMF [13].
• Feature concatenation (ConcatNMF): This method concatenates feature

vectors of different views to form a united representation and then applies
NMF.

• Multi-view NMF (MultiNMF): MultiNMF [18] is an unsupervised multi-
view NMF algorithm.

• Semi-supervised Unified Latent Factor method (SULF): SULF [10] is a semi-
supervised multi-view nonnegative factorization method which models par-
tial label information as a factorization constraint on Vl.

• Graph regularized NMF (GNMF): GNMF [2] is a manifold regularized ver-
sion of NMF. We extended it to the multi-view case and replaced the affinity
graph for approximating data manifolds with the within-class affinity graph
defined in Eq. (4) to make it a semi-supervised method on multi-view data.

5.3 Evaluation Metric

Accuracy (ACC) is a typical evaluation metric of classification. Let Nu denote
the total number of test images to be labeled, the Nr is the number of images
that are assigned the right categories or tags by the proposed algorithms accord-
ing to the ground truth, the ACC is defined as ACC=Nr/Nu.

Table 2. Classification performance of different factorization methods on the Reuters
dataset (accuracy±std dev,%).

Labeled
Percentage

NMF-b ConcatNMF MultiNMF SULF GNMF MvSL

10 61.55±1.08 63.04±1.67 63.69±1.52 67.93±1.92 68.93±1.77 70.56±1.21

20 65.71±1.37 66.09±1.08 67.42±1.97 68.40±1.64 70.59±1.65 72.67±1.02

30 67.30±0.27 68.40±1.91 69.16±1.52 70.05±1.48 71.80±1.24 74.78±1.34

40 68.41±1.96 69.81±1.96 70.28±1.83 71.86±1.38 72.23±1.54 75.87±1.26

50 70.44±1.72 70.75±2.03 71.81±1.47 72.78±1.44 73.78±1.75 77.33±0.79

Table 3. Classification performance of different factorization methods on the MM2.0
dataset (accuracy±std dev, %).

Labeled
Percentage

NMF-b ConcatNMF MultiNMF SULF GNMF MvSL

10 24.56±0.98 27.41±0.83 26.26±0.95 27.47±1.03 28.03±1.17 30.92±0.44

20 25.37±0.85 31.24±0.93 30.39±1.12 30.94±1.25 31.55±1.14 33.83±1.52

30 26.09±0.71 32.47±0.80 31.85±0.87 33.13±0.87 34.15±0.51 35.80±0.68

40 28.03±0.46 34.25±0.71 33.48±0.65 34.94±0.65 35.26±0.97 37.12±0.73

50 28.06±0.28 35.08±0.48 34.33±0.56 36.32±0.56 36.61±0.57 38.16±0.65

5.4 Experiment Results

Table 2 and Table 3 show the classification performance of different factoriza-
tion methods on MM2.0 and Reuters, respectively. We varied the percentage
of training items from 10% to 50%. The observations are revealed as follows.
Firstly, Semi-supervised algorithms are superior to unsupervised algorithms in
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general, which indicated that exploiting label information could lead to latent
spaces with better discriminative structures. Secondly, from comparison between
multi-view algorithms and single-view algorithm (NMF), it is easy to see that
multi-view algorithms are more preferable for multi-view data. This is in accord
with the results of previous multi-view learning work. Thirdly, MvSL and GNMF
show superior performance over SULF. SULF models partial label information
as a factorization constraint on Vl, which can be viewed as indirect affinity con-
straints on encoding of within-class items. On the contrary, the graph embedding
terms in MvSL and GNMF impose direct affinity constraints on item encodings
and therefore could lead to more explicit semantic structures in the learned
latent spaces. Finally, MvSL outperformed the baseline methods under all cases.
The reason should be that MvSL not only directly exploits label information
via a graph embedding framework, but also adds regularization by L1,2-norm on
U(v) successfully promotes that sparsity pattern is shared among data items or
features within classes. These properties could help to learn a clearer semantic
latent space.

5.5 Parameter Sensitive Analysis

There are two essential parameters in new methods. β measures the importance
of the semi-supervised part of MvSL (i.e. the graph embedding regularization
terms), while α controls the degree of sparsity of the basis matrices. We inves-
tigate their influence on MvSL’s performance by varying one while fixing the
other one.

The classification results are shown in Figure 1 for MM2.0 and Reuters. We
found the general behavior of the two parameters was the same: when increas-
ing the parameter from 0, the performance curves first went up and then went
down. This indicates that when assigned moderate weights, the sparseness and
semi-supervised constraints indeed helped learn a better latent subspace. Based
observations , we set α = 10, β = 0.02 for experiments.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

α

A
cc

ur
ac

y

 

 

MM2.0
Reuters

0 0.02 0.04 0.06

0.2

0.4

0.6

0.8

β

A
cc

ur
ac

y

 

 

MM2.0
Reuters

Fig. 1. Influence of different parameter settings on the performance of MvSL: (a) vary-
ing α while setting β = 0.02 , (b) varying β while setting α = 10
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6 Conclusion

We have proposed Multi-view semantic learning (MvSL), a novel nonnegative
latent representation learning algorithm for representation learning multi-view
data. MvSL tries to learn a semantic latent subspace of items by exploiting both
multiple views of items and partial label information. The partial label infor-
mation was used to construct a graph embedding framework, which encouraged
items of the same category to be near with each other and kept items belonging
to different categories as distant as possible in the latent subspace. What’s more,
kernel alignment effectively estimated the items pair similarity among multi-view
data, which further extended graph embedding framework. Another novel prop-
erty of MvSL was that it allowed each latent dimension to be associated with a
subset of views by imposing L1,2-norm on each basis U(v). Therefore, MvSL is
able to learn flexible latent factor sharing structures which could lead to more
meaningful semantic latent subspaces. An efficient multiplicative-based iterative
algorithm is developed to solve the proposed optimization problem. The classi-
fication experimental results on two real-world data sets have demonstrated the
effectiveness of our method.

Graph embedding is a general framework and different definitions of the
within class affinity graph Ga and the discriminative graph Gp can be employed.
How to propose more suitable similarity criteria with multi-view data is an
interesting direction for further study.
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