
Solving a Hard Cutting Stock Problem
by Machine Learning and Optimisation

Steven D. Prestwich, Adejuyigbe O. Fajemisin(B), Laura Climent,
and Barry O’Sullivan

Department of Computer Science, Insight Centre for Data Analytics,
University College Cork, Cork, Ireland

{steven.prestwich,ade.fajemisin,laura.climent,
b.osullivan}@insight-centre.org

Abstract. We are working with a company on a hard industrial opti-
misation problem: a version of the well-known Cutting Stock Problem in
which a paper mill must cut rolls of paper following certain cutting pat-
terns to meet customer demands. In our problem each roll to be cut may
have a different size, the cutting patterns are semi-automated so that we
have only indirect control over them via a list of continuous parameters
called a request, and there are multiple mills each able to use only one
request. We solve the problem using a combination of machine learning
and optimisation techniques. First we approximate the distribution of
cutting patterns via Monte Carlo simulation. Secondly we cover the dis-
tribution by applying a k-medoids algorithm. Thirdly we use the results
to build an ILP model which is then solved.

1 Introduction

The Cutting Stock Problem (CSP) [1] is a well-known NP-complete optimization
problem in Operations Research. It arises from many applications in industry
and a standard application is a paper mill. The mill produces rolls of paper of
a fixed width, but its customers require rolls of a lesser width. The problem is
to decide how many original rolls to make, and how to cut them, in order to
meet customer demands. Typically, the objective is to minimise waste, which
is leftover rolls or pieces of rolls. The problem can be modelled and solved by
Integer Linear Programming (ILP), and for large instances column generation
can be used.

We are working with a company on an industrial project and have encoun-
tered a hard optimisation problem. The application is commercially sensitive so
we cannot divulge details, but the problem can be considered as a variant of the
CSP. (We shall refer to “rolls” and “paper mills” but in fact the problem origi-
nates from another industry.) In this CSP variant, the choice of cutting pattern
is semi-automated so the user has only partial control over it via a “request”. A
request is a vector of continuous variables so there are infinitely many possibil-
ities, and their effect on the choice is complex. There are multiple paper mills,
and each can use only one request. The rolls made by the mills are of different
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 335–347, 2015.
DOI: 10.1007/978-3-319-23528-8 21

336 S.D. Prestwich et al.

sizes even before they are cut. For each mill, either all or none of its rolls are cut.
There are also demands to be met and costs to be minimised. For this paper the
interest is in the application of machine learning techniques (multivariate dis-
tribution approximation and cluster analysis) to reduce this infinite nonlinear
problem to a finite linear problem that can be solved by standard optimisation
methods.

This paper is structured as follows. First, in Section 2 the cutting stock
problem is described. Second, in Section 3, we define the framework associated
with the extra difficult cutting stock problem treated in this paper. We also
propose an Integer Linear Program for this problem in Section 4, and give a
brief overview of an alternative metaheuristic approach. The machine learning
approach presented for the problem is described in Section 5. The approaches
are evaluated with a real-life application in Section 6. Finally, the conclusions
are commented in Section 7.

2 Cutting Stock Problems

The cutting stock problem is a well-known optimisation problem that is often
modelled as an ILP:

minimise
n∑

i=1

cixi

s.t.
n∑

i=1

aijxi ≥ dj ∀j ∈ M,∀xi ∈ N (1)

where M is the set of roll types and dj is the demand for type j. There are n
cutting patterns and x is a vector of decision variables which state how many
times each pattern is used. The number of rolls of type j generated by pattern i
is aij . The objective function is to minimize the total cost, where ci is the cost
associated with pattern i. The costs depend on the specifications of the problem.
For instance, for some problems, such as the model described above, the costs
are associated with the patterns used (e.g. some cutting machines incur certain
cost), while for other problems the costs are associated with the amount of left-
over material (typically called waste if it can not be sold in future orders), etc.
For a literature review of cutting stock problems we recommend [2].

Variants of the CSP have been studied. The above problem is one-dimensional
but two or three dimensions might be necessary [3]. The problem might be multi-
stage, involving further processing after cutting [4], or might be combined with
other problems, e.g. [5]. Additional constraints might be imposed because of user
requirements. Widths might be continuous though restricted to certain ranges
of values.

3 Problem Formalization

As mentioned above, our CSP problem has several extra difficulties from the
standard CSP which makes it hard to model and solve. Instead of rolls of a fixed

Solving a Hard Cutting Stock Problem 337

original size which we can generate at will, we have a fixed number r = 1 . . . R of
rolls (possibly several hundred) each with its own dimensions σr ∈ S; the details
of S are confidential and unimportant here, but it involves continuous values. The
cutting patterns are vectors p ∈ N

m of m integer variables, describing how many
rolls of each of the m widths is cut from the original roll. However, we cannot
directly choose the cutting pattern because the choice is semi-automated. We
have only limited control over it via a request v which is a vector of n continuous
variables (m and n might be different but are typically less than 20). Each vi is
restricted to the interval [0, 1] and each vector is of length 1:

n∑

i=1

v2
i = 1

A request v and a roll r are passed to an algorithm A which uses v and
σr to select a cutting pattern p. Considering the algorithm as a function
A : [0, 1]n × S → N

m, experiments reveal it to be quite a complex (nonlin-
ear and discrete) function. We make no assumptions about the form of A (which
is also confidential) and treat it as a black box. Unlike the standard CSP we have
several paper mills j = 1 . . . J (J might be as large as several hundred) each with
its own set of R rolls (R might be different for each mill but we ignore this to
simplify the description). For each mill, either all its rolls are cut into smaller
rolls using the same request, or none of them are. Thus the rolls are partitioned
into sets, each of which is treated as a unit and cut using the same request,
though not necessarily the same cutting pattern. Finally, each mill’s set of rolls
has an intrinsic value Vj and we would like to satisfy demands using low-value
rolls (in order to save the most valuable resources for future demands).

In summary, our problem is as follows. Given customer demand d ∈ N
m for

the m different roll sizes, we must select a subset of the mills with minimum total
value, and a request vj for each mill j, so that demand is met. This is an infinite
nonlinear optimisation problem which we call the Continuous Semi-Automated
Weighted Cutting Stock Problem (CSAWCSP):

minimize
∑

j

Vjbj

s.t.
J∑

j=1

R∑

r=1

bjA(vj , σr) ≥ d (2)

bj ∈ {0, 1} ∀j (3)
vj ∈ [0, 1]n ∀j (4)

where bj is a binary variable that is set to one iff mill j’s rolls are cut.
This problem is very hard to solve because there are infinite number of possi-

ble requests vj , and because A is not a simple function. A metaheuristic approach
is possible, searching in the space of bj and vj variable assignments with

∑
j Vjbj

338 S.D. Prestwich et al.

as the objective function and penalizing constraint violations, but in experiments
this gave poor results. Instead we would like to transform the problem to make
it solvable (at least approximately) by a standard method such as ILP.

Another possibility is to combine a metaheuristic approach with the ILP.
First, the metaheuristic algorithm searches in the space of vj for each j roll with
the objective function of maximizing the similarity of the percentages of products
of the pattern analyzed (A(vj , σr)) with respect to the percentages of demanded
products (d). When the stopping criterion of the metahuristic has been reached
(e.g. cut-off time), the best pattern found for each roll is provided to the ILP
model. For implementing such approach, we used the metaheuristic introduced in
[6], which is a Simulated Annealing Like Algorithm (SALA) called the Threshold
Accepting Algorithm (TA) [7]. This metaheuristic algorithm iteratively generates
new requests that are mapped by the non-linear function A into patterns. The
objective function is to maximize the similarity of the percentages of product
types obtained by a pattern with respect the percentages demanded. The results
obtained with such technique were very poor: the ILP models of most of the
instances evaluated in Section 6 did not have solutions (because the sum of
all the unique patterns associated to each roll j did not satisfy the demand of
at least one type of product); and for those few instances with solutions, their
quality was far below that of the solutions found with our technique.

4 ILP Model for the CSAWCSP

To make the problem amenable to an ILP approach we reduce the infinite set of
possible requests vj to a representative finite set of requests ujk (k = 1 . . . K)
for each mill j (we assume the same K for each mill to simplify the notation).
We then precompute the total number of each roll size obtained for request k
and mill j over all its rolls, storing the results in vectors of integer constants
cjk =

∑R
r=1 A(ujk, σr) (∀j, k). This eliminates the complexity of A and the

infinite choice of requests, and we can now model the CSAWCSP as an ILP:

minimize
∑

j

Vjbj

s.t.
K∑

k=1

xjk = bj ∀j (5)

J∑

j=1

K∑

k=1

cjkxjk ≥ d (6)

bj , xjk ∈ {0, 1} ∀j, k (7)

where bj = 1 indicates that all mill j’s rolls are cut, and xjk = 1 indicates that
they are cut using request k. If mill j is not selected then bj = 0 which forces
xjk = 0 for k = 1 . . . K.

Solving a Hard Cutting Stock Problem 339

This ILP can be solved by standard optimisation software. But to make this
approach practical we must first select a finite set of requests ujk that adequately
covers all possible requests. More precisely, the possible sets of cut rolls cjk must
be adequately covered. This requires the generation of a finite set of vectors that
approximately cover an unknown multivariate probability distribution.

5 Machine Learning Approach for the CSAWCSP

In this section we explain our approach to the problem of covering the unknown
multivariate distribution in the CSAWCSP. An illustration of our approach is
shown in Figure 1.

In scatter plot (a) the circle represents the hypersphere of possible requests
v, with a small random number of them selected shown as dots. Plot (b) shows
the result of applying algorithm A to a mill’s rolls using the different v, to obtain
a small set of c vectors. The space of c vectors might have a very different shape
to that of the v, as shown. As a consequence, a small random set of v might
correspond to a very non-random small set of c vectors, showing the inadequacy
of merely sampling a few requests.

Instead we sample a large number of v as shown in plot (c), with their corre-
sponding c shown in plot (d): this represents the use of Monte Carlo simulation
to approximate the distribution of the c. We then select a small number of c
via a k-medoids algorithm to approximately cover the estimated distribution,
highlighted in plot (f). Finally we use a record of which v corresponds to which
c to derive the non-random set of v highlighted in plot (e). Next we describe
these phases of our approach in more detail.

5.1 Distribution Learning

Given a number of samples drawn from a distribution, the goal of distribution
learning is to find the distribution from which the samples have been drawn
with a high degree of certainty. Let Dn be a particular distribution class, and let
D ∈ Dn be a distribution which has a support S, i.e. S is the range over which
D is defined. To represent the probability distribution D over S, let GD be a
generator for D [10]. GD is called a generator because, given a random input
y, GD simulates sampling from the distribution D and outputs an observation
GD[y] ∈ S.

Given independent random samples from D, as well as confidence and approx-
imation parameters δ and ε respectively, the goal of any learning algorithm is to
output an approximate distribution D′ with a probability δ in polynomial time.
The distance between this approximate distribution and the original distribution
is d(D,D′), and can be measured in several ways. These include the Kolmogorov
distance (from the Kolmogorov-Smirnoff test) [11], the Total Variation distance
[12], and the Kullback-Leibler divergence [13]. When d(D,D′) ≤ ε, GD is called
an ε-good generator.

340 S.D. Prestwich et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Illustration of our approach

Solving a Hard Cutting Stock Problem 341

For our problem it is necessary to understand the relationship between the
requests v and the corresponding vectors c which state how many of each roll is
produced. Once this is known, given a set of demands for each of the different
rolls, the requests required to produce the best cutting patterns for each roll
can be determined. As the algorithm A is complex it is necessary to learn its
distribution. A acts as the generator GD.

We approximated the distribution of A’s output using Monte Carlo sampling,
by generating a large number of random request vectors v and obtaining corre-
sponding vectors c. To avoid bias we generated v by uniform sampling from a
vector space, as opposed to simply randomising each component of v.

5.2 Generating Uniformly Distributed Random Vectors

To generate a random vector Y that is uniformly distributed over an irregular
n-dimensional region G, an acceptance-rejection method may be used [14].

For a regular region W , where W may be multidimensional in nature, we
first of all generate a random vector X, which is uniformly distributed in W . If
X ∈ G, we accept Y = X as the random vector uniformly distributed over G.
Otherwise, we reject X, and generate a new random vector. In the case when G
is an n-dimensional unit ball, i.e.

G =

{
x :

∑

i

x2
i ≤ 1

}
(8)

we generate a uniformly distributed random vector X = (X1,X2, . . . , Xn)T ,
and we accept X if it falls inside the n-ball. If it does not then X is rejected,
otherwise it is projected onto the hypersphere. The algorithm used for this is
taken from [9] and is described below.

Algorithm 1. Random Vector Generation
1. Generate n random variables U1, . . . , Un as iid variables from U(0, 1).
2. Set X1 = 1 − 2U1, . . . , Xn = 1 − 2Un and R =

∑n
i=1 X

2
i

3. If R ≤ 1, accept X = (X1, . . . , Xn)T as the desired vector; otherwise go to Step 1.

Using Algorithm 1, we generated a large number of request vectors v which
were then passed to A, together with σr (∀r ∈ R). A then returned the same
number of cutting pattern vectors c. For our problem this large number of pat-
terns must be reduced to a smaller number. To do this, we used another well-
known machine learning technique called k-medoids clustering.

5.3 k-Medoids Clustering

The k-medoids algorithm is a clustering algorithm used for partitioning a data
set X into K homogeneous groups or clusters, i.e. C = {C1, C2, ..., CK} [15].

342 S.D. Prestwich et al.

Unlike the k-means algorithm, partitioning is done around medoids (or exem-
plars) rather than centroids. This is vital for our problem because we require
a small set of c that are each generated from some known v. A medoid mk is
a data point in a cluster Ck which is most similar to all other points in that
cluster.

A k-medoids algorithm seeks to minimize the function

K∑

k=1

∑

i∈Ck

d (xi,mk) (9)

where d (xi,mk) is a distance metric measuring the dissimilarity between data
entity xi and the medoid mk of the cluster [15]. Commonly used distance metrics
are the Manhattan distance or Euclidean distance [16] and we use the latter.
The most common algorithm for k-medoid clustering is the Partitioning Around
Medoids (PAM) algorithm [15], presented at a high level in Algorithm 2.

Algorithm 2. Partitioning Around Medoids (PAM)
1. Select k out of n data entities as initial medoids m1,m2, ...mk.
2. Assign each data entity xi ∈ X to cluster Ck of the closest medoid mk as determined

by d (xi,mk).
3. For each medoid mk, select a non-medoid yi and swap yi for mk.
4. Calculate the distance d (xi,mk)
5. Select the configuration with the lowest value of d (xi,mk).
6. Repeat steps 2 to 5 until the lowest possible value of d (xi,mk) has been found

with final medoids m′
1,m

′
2, ...m

′
k.

For very large datasets the CLARA algorithm, which is a combination of
PAM and random sampling, is commonly used [17,18]. The speedup by CLARA
over PAM is achieved by analysing data subsets of fixed size, which has the
effect of making both computational and storage complexity linear, as opposed
to quadratic [17,19]. The steps for CLARA are outlined in Algorithm 3 below.

Once the large set of cutting patterns c has been reduced to a much smaller
representative set c′, we can now solve an approximation to the hard cutting
stock problem using ILP.

6 Emprirical Study

For empirically studying our approach, we have compared the solutions obtained
by our approach for a certain range of k medoids with respect the lower optimal-
ity bounds (explained below) of several instances. For such purpose we used real
data from our industrial partner. The total volume of the raw material analyzed
is 1191.3m3 for 8 mills (J = 8) with each mill’s rolls partitioned into a maximum
of 4 different types of products. We generated and solved 20 instances of ran-
dom demands in a 2.3 GHz Intel Core i7 processor. Monte Carlo simulation and

Solving a Hard Cutting Stock Problem 343

Algorithm 3. Clustering LARge Applications (CLARA)
1. Randomly choose a number p of sub-datasets of fixed size from the large dataset

X.
2. Partition each sub-dataset into k clusters using the PAM algorithm, getting a set

M = {m1,m2, ...,mk} of k medoids.
3. Associate each data entity xi of the original large dataset to its nearest medoid

mk.
4. Calculate the mean of the dissimilarities of the observations to their closest medoid

using:

MeanDistance(M,X) =

∑n
i=1 d (xi, rep (M,xi))

|X| (10)

where:
d(xi, xj) is the dissimilarity between two data points xi and xj ,
rep(M,xi) returns the closest medoid mk to xi from the set M , and
|X| is the number of items in X.

5. Repeat steps 1 to 4 q times, selecting the set of medoids M ′ = {m′
1,m

′
2, ...m

′
k}

with the minimum MeanDistance(M,X).

clustering were done in Java and R (using the CLARA algorithm) respectively
on a 3.0 GHz Intel Xeon Processor with 8 GB of RAM. For solving the integer
linear programming model, we used the CPLEX 12.6 solver with a time cut-off
of 1 hour.

To approximate the unknown multivariate distribution, we generated 10, 000
random request vectors for each mill. Then, we obtained the same number of
corresponding cutting patterns by applying the algorithm A (see Section 3). For
8 mills, this process resulted in total of 80, 000 cutting patterns. The total time
required for generating all the cutting patterns was 2 hours and 30 minutes. Note
that, in time-sensitive applications, a lower number of random cutting patterns
could be generated to reduce this overhead. Next we applied k-medoids clustering
to cover the distribution.

For evaluating the effect of the number of medoids used to cover the dis-
tribution, we varied k from 25 to 200 in steps of 25 units. The time taken to
generate the clusters can be found in Table 1. In addition, Figure 2 shows the
total clustering times (for all the mills). Note that the clustering times increase
exponentially from 40.54 seconds for k = 25, to 2, 651.08 seconds (∼ 44 min-
utes) for k = 200. Thus for real-life problems it is very important to make an
appropriate selection of the parameter k (especially in on-line applications).

Once all the medoids were obtained we used them as input parameters for the
ILP model (see Section 4). Then we solved the 20 instances of random demands.
Furthermore, we also applied a relaxed ILP model with the objective of calculat-
ing the lower bound of optimality of the instances analyzed. In this variation, we
consider feasible any linear combination of cutting patterns. However, it might
occur that the combination selected is not feasible for the real life problem. For
this reason, this measurement is a lower bound of optimality, since in the lat-

344 S.D. Prestwich et al.

Table 1. Clustering times.

Time (sec)

Mill k = 25 k = 50 k = 75 k = 100 k = 125 k = 150 k = 175 k = 200

0 5.13 14.47 31.40 56.80 107.00 158.85 229.90 310.47
1 4.94 15.68 35.66 59.88 95.85 156.30 234.19 313.49
2 4.99 14.62 27.59 56.59 94.38 154.96 235.22 313.99
3 5.06 17.59 36.63 62.06 102.29 167.75 266.71 356.86
4 5.17 16.04 33.82 60.64 99.78 164.89 240.40 331.72
5 5.43 16.83 33.04 63.48 95.85 171.37 255.47 351.97
6 4.99 15.77 33.21 61.18 98.10 163.63 241.04 327.87
7 4.83 16.27 34.37 67.03 95.04 168.46 251.94 344.71

Total Time 40.54 127.27 265.72 487.66 788.29 1306.23 1954.87 2651.08

Fig. 2. Total clustering times.

ter case, the optimal solution is greater than this bound. The lower optimality
bound is very useful since it allows us to stop the search for a better solution
once we have reached such bound (since it can be ensured that this is the optimal
solution). For this reason, we incorporated such lower optimality bound in the
model solved by CPLEX.

Figure 3 shows the percentage difference between the solutions obtained with
our approach and the lower optimality bound. It can be observed that as k
increases, the percentage difference decreases, following an exponential inverse
function. This suggest that increasing the medoids is more effective when the
original medoids are fewer. Furthermore, it can be observed that there is a “sat-
uration” point in which it is not possible to further improve the quality of the
solutions. For this instance, the saturation point is located approximately at
k = 125 since higher values of k provide almost the same results. For this rea-
son, for these instances, the best option is to select k = 125, since it is not
worth it to spend more time computing higher k values. Note that for this case,
the difference in percentage with the lower optimality bound is ∼ 0.4%, which
indicates that we succeeded in finding optimal and close-optimal solutions.

Solving a Hard Cutting Stock Problem 345

We also would like to comment how these percentages differences are trans-
lated into economical earnings. On average, for these instance, the raw material
that was required to satisfy the demands when using k = 25 was almost AC 800
more expensive than when using k = 125. Needless to mention, the benefits in
the real life application that will involve to use the approach presented in this
paper with a great enough value of k.

Fig. 3. Percentage Optimality Difference

In Table 2 and Figure 4 we show the mean times for solving the 20 instances
for the interval of values of k selected. Note that these times also increase in a
non-linear fashion, from a solution time of 1.506 seconds for k = 25 to 407.475
seconds (∼ 7 minutes) for k = 200. We would like to point out that there is a
correlation with the saturation point in the optimality with respect the satura-
tion point in the computation times for solving the ILP model. Note that for
higher values of k = 125, the increment of computation time is little appreciable.

Table 2. Mean ILP solution times.

k Average Time (sec)

25 1.506
50 188.454
75 369.16
100 240.120
125 410.091
150 398.914
175 411.180
200 407.475

346 S.D. Prestwich et al.

Fig. 4. Mean ILP solution times (logarithmic scale of base 10).

7 Conclusions and Future Work

In this paper, we combined two well-known machine learning techniques to solve
a hard optimisation problem. This problem, which we called the CSAWCSP,
arose from a real-world application and is a more complicated variant of the tra-
ditional CSP. We used Monte Carlo simulation to approximate an unknown mul-
tivariate distribution. We generated a large number of random request vectors,
which were then provided to an algorithm in order to generate a corresponding
number of cutting patterns. Subsequently, we applied k-medoids clustering to
cover the distribution.

To study the effect of the number of medoids on the solution, we increased
k steadily, and observed that there is a particular value of k (saturation point)
above which, no improvements to the solution could be made. In this way, we
succeeded in finding optimal and close-optimal solutions for the type of cut-
ting stock problem analyzed in this paper. Regarding the computation time,
we observed that linear increases in the value of k led to exponential increases
in clustering time, and that for values above the k saturation point, the ILP
solution times were relatively constant.

In the future, we aim to improve the sampling approach in order to reduce the
number of request vectors needed to be generated. Furthermore, we intend to use
an adaptive clustering, which might be more effective in reducing the clustering
time. By applying these two new improvements, we expect to reduce computation
times. This will be especially beneficial for on-line real-life applications.

Acknowledgments. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289.

Solving a Hard Cutting Stock Problem 347

References

1. Kantorovich, L.V.: Mathematical methods of organizing and planning production.
Management Science 6(4), 366–422 (1960)

2. Cheng, C.H., Feiring, B.R., Cheng, T.C.E.: The cutting stock problem - a survey.
International Journal of Production Economics 36(3), 291–305 (1994)

3. Gilmore, P.C., Gomory, R.E.: Multistage Cutting Stock Problems of Two and More
Dimensions. Operations Research 13, 94–120 (1965)

4. Furini, F., Malaguti, E.: Models for the two-dimensional two-stage cutting stock
problem with multiple stock size. Computers & Operations Research 40(8),
1953–1962 (2013)

5. Hendry, L.C., Fok, K.K., Shek, K.W.: A cutting stock scheduling problem in the
copper industry. Journal of the Operational Research Society 47, 38–47 (1996)

6. Murphy, G., Marshall, H., Bolding, M.C.: Adaptive control of bucking on harvesters
to meet order book constraints. Forest Products Journal and Index 54(12), 114–121
(2004)

7. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algo-
rithm appearing superior to simulated annealing. Journal of computational physics
90(1), 161–175 (1990)

8. Sawilowsky, S.S.: You think you’ve got trivials? Journal of Modern Applied Sta-
tistical Methods 2(1), 218–225 (2003)

9. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods, Wiley
Series in Probability and Statistics. John Wiley and Sons, New York (2011)

10. Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R., Sellie, L.: On the
Learnability of Discrete Distributions. ACM Symposium on Theory of Computing
(1994)

11. Chakravarti, I.M., Laha, R.G., Roy, J.: Handbook of Methods of Applied Statistics,
vol. I. John Wiley and Sons, pp. 392–394 (1967)

12. Adams, C.R., Clarkson, J.A.: On definitions of bounded variation for functions
of two variables. Transactions of the American Mathematical Society 35, 824–854
(1933)

13. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical
Statistics 22(1), 79–86 (1951). doi:10.1214/aoms/1177729694. MR 39968

14. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.
John Wiley & Sons (2008)

15. de Amorim, R.C., Fenner, T.: Weighting features for partition around medoids
using the Minkowski metric. In: Proceedings of the 11th International Symposium
in Intelligent Data Analysis, pp. 35–44, October 2012

16. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Studer, M.,
Roudier: cluster: Cluster Analysis Extended Rousseeuw et al. R package version
2.0.1, January 2015. http://cran.r-project.org/web/packages/cluster/cluster.pdf

17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons Inc, New York (1990)

18. Wei, C., Lee, Y., Hsu, C.: Empirical comparison of fast clustering algorithms for
large data sets. In: Proceedings of the 33rd Hawaii International Conference on
System Sciences (2000)

19. Nagpaul, P.S.: 7.1.2 Clustering Large Applications (CLARA). In: Guide
to Advanced Data Analysis using IDAMS Software. http://www.unesco.org/
webworld/idams/advguide/Chapt7 1 2.htm (access date: October 02, 2015)

http://dx.doi.org/10.1214/aoms/1177729694
http://cran.r-project.org/web/packages/cluster/cluster.pdf
http://www.unesco.org/webworld/idams/advguide/Chapt7_1_2.htm
http://www.unesco.org/webworld/idams/advguide/Chapt7_1_2.htm

	Solving a Hard Cutting Stock Problem by Machine Learning and Optimisation
	1 Introduction
	2 Cutting Stock Problems
	3 Problem Formalization
	4 ILP Model for the CSAWCSP
	5 Machine Learning Approach for the CSAWCSP
	5.1 Distribution Learning
	5.2 Generating Uniformly Distributed Random Vectors
	5.3 k-Medoids Clustering

	6 Emprirical Study
	7 Conclusions and Future Work
	References

