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Abstract. The optimization of hyperparameters is often done manu-
ally or exhaustively but recent work has shown that automatic methods
can optimize hyperparameters faster and even achieve better final per-
formance. Sequential model-based optimization (SMBO) is the current
state of the art framework for automatic hyperparameter optimization.
Currently, it consists of three components: a surrogate model, an acquisi-
tion function and an initialization technique. We propose to add a fourth
component, a way of pruning the hyperparameter search space which is
a common way of accelerating the search in many domains but yet has
not been applied to hyperparameter optimization. We propose to discard
regions of the search space that are unlikely to contain better hyperpa-
rameter configurations by transferring knowledge from past experiments
on other data sets as well as taking into account the evaluations already
done on the current data set.

Pruning as a new component for SMBO is an orthogonal contribution
but nevertheless we compare it to surrogate models that learn across
data sets and extensively investigate the impact of pruning with and
without initialization for various state of the art surrogate models. The
experiments are conducted on two newly created meta-data sets which
we make publicly available. One of these meta-data sets is created on 59
data sets using 19 different classifiers resulting in a total of about 1.3
million experiments. This is by more than four times larger than all the
results collaboratively collected by OpenML.

1 Introduction

Most machine learning algorithms depend on hyperparameters that need to be
tuned. In contrast to model parameters, hyperparameters are not estimated
during the learning process but have to be set before. Since the hyperparam-
eter tuning often decides whether the performance of an algorithm is state
of the art or just moderate, the task of hyperparameter optimization is as
important as developing new models [2,7,20,22,25]. Typical hyperparameters
are for example the trade-off parameter C of a support vector machine or the
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regularization constant of a Tikhonov-regularized model. Taking a step fur-
ther, the chosen model as well as preprocessing steps can be considered as
hyperparameters [25]. Then, hyperparameter optimization not only involves
model selection but also model class selection, choice of learning algorithms and
preprocessing.

The conventional way of hyperparameter optimization is a combination of
manual search with a grid search. This is an exhaustive search in the hyperpa-
rameter space which involves multiple training of the model. For high-complex
hyperparameter spaces or large data sets this becomes infeasible. Therefore,
methods to accelerate the process of hyperparameter optimization are currently
an interesting topic for researchers [3,22,25]. Sequential model-based optimiza-
tion (SMBO) [15] is a black-box optimization process and has proven to be effec-
tive in accelerating the hyperparameter optimization process. SMBO is based
on a surrogate model that approximates the response function of a data set for
given hyperparameters such that sequentially possibly interesting hyperparam-
eter configurations can be evaluated.

Recent work tries to transfer knowledge about the hyperparameter space
from past experiments to a new data set [1,24,29]. They motivate this idea by
assuming that regions of the hyperparameter space that perform well for few data
sets likely contain promising hyperparameter configurations for new data sets.

1.1 Our Contributions

The SMBO framework currently has at most three components. First, the sur-
rogate model that predicts the performance for each possible hyperparame-
ter configuration. Secondly, the acquisition function which uses the surrogate
model to propose the next hyperparameter configuration to evaluate. These
are the two mandatory components. The third optional component is some
initialization technique which usually starts which a hyperparameter config-
uration that has proven to be good on many data sets [9,11]. We propose
to add a fourth component which is orthogonal to all the others. Our idea
is to reduce the hyperparameter search space by using knowledge from past
experiments to discard regions that are very likely not interesting. This avoids
that the acquisition function chooses hyperparameter configurations in these
regions because of high uncertainty and therefore avoids unnecessary function
evaluations.

Additionally, we created two meta-data sets and make them publicly avail-
able. One is a meta-data set created by running a kernel support vector machine
on 50 different data sets with 288 different hyperparameter configurations result-
ing into 14,000 meta-instances. The second is a large scale meta-data set cre-
ated by using 19 different classifiers provided by Weka [13] on 59 data sets. In
total 1,290,389 meta-instances were created such that the number of runs is by
more than 4 times larger than the number of runs collaboratively collected by
OpenML [26].
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2 Related Work

Pruning is a well known technique to accelerate the search in several domains.
Thus, for example, various pruning techniques are applied to the minimax algo-
rithm such as the killer heuristic or null move pruning [8]. Branch-and-Bound
[18] is a pruning technique that is applied in the domain of operations research
for discrete and combinatorial optimization problems and is very common for
NP-hard optimization problems [17]. Nevertheless, we are not aware of any pub-
lished work that is trying to prune the search space in the SMBO framework for
hyperparameter optimization.

Since pruning as proposed by us is some way of transferring knowledge from
past experiments to a new experiment, other techniques that try exactly the same
are the closest related work but as we will see, orthogonal to our contribution.
One common and easy way to use experience in the hyperparameter optimization
domain is to define an initialization, a sequence of hyperparameter configurations
that are chosen first. These are usually those hyperparameter configurations that
performed best on average across data sets [9,11]. The second and last method
to do so is by using the surrogate model. Instead of learning the surrogate model
only on the new data set, the surrogate model is learned across all data sets
[1,24,29]. We want to highlight that all these three possibilities are not mutually
exclusive and can be combined and thus these ideas are orthogonal to each other.

Leite et al. [19] propose a similar distance function between data sets as we
use. But they propose a hyperparameter selection strategy that is limited to the
hyperparameter configurations that have been seen on the meta-training data.

Furthermore, there also exist strategies to optimize hyperparameters that are
based on optimization techniques from artificial intelligence such as tabu search
[4], particle swarm optimization [12] and evolutionary algorithms [10] as well as
gradient-based optimization techniques [6] designed for SVMs.

3 Background

3.1 The Formal Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter configuration with Λ = Λ1 × . . . × Λp being the p-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈ M that
minimizes a regularized loss function L (e.g. misclassification rate):

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L

(
Mλ,D(train)

)
+ R (Mλ) . (1)

Then, the task of hyperparameter optimization is finding the optimal hyperpa-
rameter configuration λ∗ using a validation set i.e.

λ∗ := arg min
λ∈Λ

L
(
Aλ

(
D(train)

)
,D(valid)

)
:= arg min

λ∈Λ
fD (λ) . (2)
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3.2 Sequential Model-Based Optimization

Exhaustive hyperparameter search methods such as grid search are becoming
more and more expensive. Data sets are growing, models are getting more com-
plex and have high-dimensional hyperparameter spaces. Sequential model-based
optimization (SMBO) [15] is a black-box optimization framework that replaces
the time-consuming function f to evaluate with a cheap-to-evaluate surrogate
function Ψ that approximates f . With the help of an acquisition function such
as expected improvement [15] it sequentially chooses new points such that a bal-
ance between exploitation and exploration is found and f is optimized. In our
scenario evaluating f is equivalent to learning a model on some training data
for a given hyperparameter configuration and estimating the performance of this
model on a hold-out data set.

Algorithm 1 outlines the SMBO framework. It starts with an observation
history H that equals the empty set in cases where no knowledge from past
experiments is used [2,14,22] or is non-empty in cases where past experiments
are used [1,24,29]. First, the optimization process can be initialized. Then, the
surrogate model Ψ is fitted to H where Ψ can be any regression model. Since the
acquisition function usually needs to assess prediction uncertainty of the surro-
gate, common choices are Gaussian processes [1,22,24,29] or ensembles such as
random forests [14]. The acquisition function chooses the next candidate to eval-
uate. A common choice for the acquisition function is expected improvement [15]
but further acquisition functions exist such as probability of improvement [15],
the conditional entropy of the minimizer [27] or a criterion based on multi-armed
bandits [23]. The evaluated candidate is finally added to the set of observations.
After T -many SMBO iterations, the best currently found hyperparameter con-
figuration is returned.

Line 6 is our proposed addition to the SMBO framework. Selecting the iden-
tity function as prune results in the typical SMBO framework. In the next section
we propose a more suitable pruning function.

Algorithm 1. Sequential Model-based Optimization
Input: Hyperparameter space Λ, observation history H, number of iterations T , acqui-

sition function a, surrogate model Ψ , initial hyperparameter configurations Λ(init).
Output: Best hyperparameter configuration found.
1: for λ ∈ Λ(init) do
2: Evaluate f (λ)
3: H ← H ∪ {(λ, f (λ))}
4: for t =

∣
∣
∣Λ(init)

∣
∣
∣+ 1 to T do

5: Fit Ψ to H
6: Λ(pruned) ← prune (Λ)
7: λ ← arg maxλ∈Λ(pruned) a (λ, Ψ)
8: Evaluate f (λ)
9: H ← H ∪ {(λ, f (λ))}

10: return arg max(λ,f(λ))∈H f (λ)
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4 Pruning the Search Space

The idea of pruning is to consider only a subset of the hyperparameter config-
uration space Λ to avoid unnecessary function evaluations in regions where we
do not expect any improvements. It is obvious that if it is possible to identify
regions that are for sure not of interest without evaluating any point in this
region highly accelerates the hyperparameter optimization. We propose to pre-
dict the potential of regions by transferring knowledge from past experiments.
The key idea is that similar data sets to the new data set have similar or even
the same regions that are not interesting and therefore not worth investigating.

4.1 Formal Description

We define a region R by its center λ ∈ Λ and diameter δ ∈ R
p, δ > 0. The

potential of this region after t trials on the new data set D(new) is defined by

potential (R = (λ, δ) , Λt) :=
∑

D′∈N(D(test))
f̃D′ (λ) − max

λ′∈Λt

f̃D′ (λ′) (3)

where Λt is the set of already evaluated hyperparameter configurations on D(new)

and N (
D(new)

)
is the set of data sets that are closest to the new data set.

f̃D is the normalized version of the response function fD of data set D. fD is
scaled to the interval [0, 1] such that each data set has the same influence on
the potential. Thus, the potential is the predicted improvement when choosing λ
over the hyperparameter configurations already evaluated. Since fD is not fully
observed for D ∈ D, where D is the meta-training set, we approximate f̃D with
a plug-in estimator ŷD. We use a Gaussian process [21] that is trained on all
normalized meta-instances of a data set such that we get for each training data
set a plug-in estimator

f̃D (λ) ∼ ŷD (λ) := GP (mD (λ) , kD (λ, λ′)) (4)

where we define mD as the mean function and kD as the covariance function of
f̃D. As a kernel function we are using the squared exponential kernel

k (λ, λ′) := exp

(
−‖λ − λ′‖22

2σ2

)
. (5)

This allows to estimate f̃D for arbitrary hyperparameter configurations. Then,
we replace the definition from Equation 3 with

potential (R = (λ, δ) , Λt) :=
∑

D′∈N(D(new))
ŷD′ − max

λ′∈Λt

ŷD′ (λ′) . (6)

To estimate the nearest neighbors of the new data set D(new) we have to
define a distance function between data sets. A common choice for this is the
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Euclidean distance with respect to the meta-features [1,29]. Since we experienced
better results with a distance function based on rank correlation metrics such as
the Kendall tau rank correlation coefficient [16], we are using following distance
function

KTRC (D1,D2, Λt) :=
∑

λ1,λ2∈Λt
I(ŷD1 (λ1)>ŷD1 (λ2)⊕ŷD2 (λ1)>ŷD2 (λ2))

(|Λt|−1)|Λt| (7)

where ⊕ is the symbol for an exclusive or.

Algorithm 2. Prune
Input: Hyperparameter space Λ, observation history H, region radius δ, fraction of

the pruned space ν.
Output: Pruned hyperparameter space Λpruned ⊆ Λ.
1: Estimate the most similar data sets of the new data set N (Dnew) using Equation

7.
2: Estimate the set Λ′ containing the ν |G| hyperparameter configurations λ′ ∈ G ⊂ Λ

with little potential using Equation 6.
3: Λ(pruned) := {λ ∈ Λ | dist (λ, λ′) > δ, λ′ ∈ Λ′}.
4: return Λ(pruned) ∪ {λ ∈ Λ | dist (λ, λ′) ≤ δ, λ′ ∈ Λt}

Algorithm 2 summarizes the pruning function. Line 1 estimates the k most
similar data sets which we know from past experiments using the KTRC dis-
tance function defined in Equation 7. In Line 2 the potential of hyperparameter
configurations are estimated using the plug-in estimators (Equation 6) on a fine
grid G ⊂ Λ. The ν |G| hyperparameter configurations with little potential define
regions where no improvement is predicted. Hence, the pruned hyperparameter
space is defined as the set of hyperparameter configurations that are not within
an δ-region of these low-potential hyperparameter configurations (Line 3). Addi-
tionally, the hyperparameter configurations that are within a δ-region of already
evaluated hyperparameter configurations are added (Line 4). The intuition here
is that since we have already observed an evaluation in this region, the acquisi-
tion function will not choose a hyperparameter combination close to these points
for exploration but only for exploitation. Hence, no evaluations will be done
by the standard SMBO framework without a very likely improvement. For the
distance function between hyperparameter configurations we need to consider
one that does not take discrete variables into account. Obviously, the loss does
not change smoothly when changing a categorical variable that e.g. indicates
which algorithm was chosen. Therefore, we define the distance function in
Algorithm 2 as

dist (λ, λ′) :=

{
∞ if λ and λ′ differ in a categorical variable
‖λ − λ′‖ otherwise

. (8)
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5 Experimental Evaluation

First, we will introduce the reader to the state of the art tuning strategies which
are used to evaluate pruning. Then, the evaluation metrics are defined and the
meta-data sets are introduced. Finally, the results are presented.

5.1 Tuning Strategies

We want to give a short introduction to all the tuning strategies we will con-
sider in our experiments. We are considering both strategies that are using no
knowledge from previous experiments and those that do.

Random Search. This is the only strategy that is not using any surrogate model.
Hyperparameter configurations are sampled uniformly at random. This is a com-
mon strategy in cases where a grid search is not possible. Bergstra and Bengio
[3] have shown that this is very effective for hyperparameters with low effective
dimensionality.

Independent Gaussian Process (I-GP). This tuning strategy uses a Gaussian
process [22] with squared-exponential kernel as a surrogate model. It only uses
knowledge from the current data set and is not using any knowledge from pre-
vious experiments.

Independent Random Forest (I-RF). Next to Gaussian processes, random forests
are the most widely used surrogate models [14] and hence we are using them in
our experiments. Like the independent Gaussian process, the I-RF does not use
any knowledge from previous experiments.

Sequential Model-based Algorithm Configuration++ (SMAC++). SMAC [14] is
a tuning strategy that is based on a random forest as a surrogate model without
background knowledge of previous experiments. SMAC++ is our extension to
SMAC. SMAC++ is using the typical SMBO framework but the random forest
is also trained on the meta-training data.

Surrogate Collaborative Tuning (SCoT). SCoT [1] uses a Gaussian process
with squared-exponential kernel with automatic relevance determination and
is trained on hyperparameter observations of previous experiments evaluated
on other data sets and the few knowledge achieved on the new data set. An
SVMRank is learned on the data set and its predictions are used instead of
the hyperparameter performances. Bardenet et al. [1] argue that this overcomes
the problem of having data sets with different scales of hyperparameter perfor-
mances. In the original work it was proposed to use an RBF kernel for SVMRank.
For reasons of computational complexity we follow the lead of Yogatama and
Mann [29] and use a linear kernel instead.
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Gaussian Process with MKL (MKL-GP). Similarly to Bardenet et al. [1],
Yogatama and Mann [29] propose to use a Gaussian process as a surrogate
model for the SMBO framework. Instead of using SVMRank to deal with the
different scales, they are adapting the mean of the Gaussian process, accord-
ingly. Additionally, they are using a specific kernel, a linear combination of an
SE-ARD kernel with a kernel modelling the distance between data sets.

Optimal. This is an artificial tuning strategy that always evaluates the best
hyperparameter configuration and is added to plots for orientation purposes.

Kernel parameters are learned by maximizing the marginal likelihood on the
meta-training set [21]. Hyperparameters of the tuning strategies are optimized
in a leave-one-out cross-validation on the meta-training set.

The results reported are the average of at least ten repetitions. For the strate-
gies with random initialization (Random, I-GP, I-RF), the mean of 1000 repeti-
tions is reported.

5.2 Evaluation Metrics

In our experiments we are using three different evaluation metrics which we will
explain here in detail.

Average Rank. The average rank among different hyperparameter tuning strate-
gies or for short simply average rank is a relative metric between different tuning
strategies. The tuning strategies are ranked by the best hyperparameter config-
uration that they have found so far, ties are solved by granting them the average
rank. If we have for example four different tuning strategies that have found
hyperparameter configurations that achieve an accuracy of 0.78, 0.77, 0.77 and
0.76, respectively, then the ranking is 1, 2.5, 2.5 and 4.

Normalized Average Loss. The disadvantage of the average rank is that it gives
no information about by which margin the found hyperparameters of one tuning
strategy are better than another and it will vary when strategies are added or are
removed. One metric that overcomes this disadvantage is the normalized average
loss. In our experiments we will consider only classification problems such that
fD (λ) is the accuracy on data set D using hyperparameter configuration λ.
Since the scale of fD varies for different D we normalize fD between 0 and 1
such that every data set has the same impact on the evaluation metric. Thus,
the normalized average loss at iteration t is defined as

NAL (D, Λt) :=
1

|D|
∑
D∈D

1 − maxλ∈Λt
fD (λ) − minλ∈Λ fD (λ)

maxλ∈Λ fD (λ) − minλ∈Λ fD(λ)
. (9)



112 M. Wistuba et al.

Average Hyperparameter Rank. The average hyperparameter rank is another way
to overcome the disadvantages of the average rank. Compared to the average
rank it is not ranking the tuning strategies but ranking the hyperparameter
configurations. Let rD (λ) be the rank of the hyperparameter configuration λ on
data set D, then the average hyperparameter rank is defined as

AHR (D, Λt) :=
1

|D|
∑
D∈D

min
λ∈Λt

rD (λ) − 1 . (10)

5.3 Meta-Data Sets

The SVM meta-data set was created by using 50 classification data sets chosen
at random. All instances were merged in cases where splits were already given,
shuffled and split into 80% train and 20% test. We then used a support vector
machine (SVM) [5] to create the meta-instances. We trained the SVM using three
different kernels (linear, polynomial and Gaussian) and estimated the labels
of the meta-instances by evaluating the trained model on the test split. The
hyperparameter space dimension is six, three dimensions for binary features that
indicate which kernel was chosen, one for the trade-off parameter C, one for the
degree of the polynomial kernel d and the width γ of the Gaussian kernel. If the
hyperparameter is not involved, e.g. the degree if we are using the linear kernel,
it was set to 0. The test accuracy was precomputed on a grid C ∈ {

2−5, . . . , 26
}
,

d ∈ {2, . . . , 10}, γ ∈ {
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103

}
resulting into 288 meta-instances per data set. Since meta-features are a vital
part for many surrogate models and mandatory for SCoT and MKL-GP, we
added the meta-features that were used by [1,29] to our meta-data. First , we
extracted the number of training instances n, the number of classes c and the
number of predictors m. The final meta-features are c, log (m) and log (n/m)
scaled to [0.1].

The Weka meta-data set was created using 59 classification data sets which
were preprocessed like the classification data sets used for the SVM meta-data
set. We used 19 different Weka classifiers [13] and produced 21,871 hyperparam-
eter configurations per data set. The dimension of the hyperparameter space is
102 including the indicator variables for the classifier. Thus, this meta-data set
focuses stronger on the model class selection. Overall, this meta-data set contains
1,290,389 instances. In comparison, OpenML [26] has collaboratively collected
344,472 runs.1

The meta-data sets are available on our supplementary website together with
a visualization of the meta-data as well as more details about how the meta-data
sets were created and a detailed list which data sets were used [28].

5.4 Hyperparameter Optimization for SVMs

To show that the proposed plug-in estimators work (Equation 4), we did not use
all 288 hyperparameter configurations for training but only 50 per data set. The
1 Status 2015/03/27 by http://openml.org

http://openml.org
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evaluation is nevertheless done on all 288 of the new data set. We choose G to
contain these 288 configurations and fixed |N (Dnew)| = 2, ν = 1 − |G|−1 and δ
such that the two closest neighbored hyperparameter configurations of the test
region are within δ-distance.

We want to conduct two different experiments. First, we want to compare a
surrogate model with pruning to current state of the art tuning strategies. We
once again want to stress that pruning in the SMBO framework is an orthogonal
contribution such that these results are actually of minor interest. Second, we
want to compare different surrogate models with and without pruning or ini-
tialization. Pruning is a useful contribution as long as it does not worsen the
optimization speed in general and accelerates it in some cases.

Figure 1 shows the results of the comparison of pruning to the current state
of the art method. As a surrogate model we decided to choose the Gaussian
process that is not learned across data sets since it is the most common and
simple surrogate model. Surprisingly, the pruning alone with the Gaussian pro-
cess is able to outperform all the competitor strategies with respect to all three
evaluation metrics.
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Fig. 1. Pruning is an orthogonal contribution to the SMBO framework. Nevertheless,
we compare a pruned independent Gaussian process to many current state of the art
tuning strategies without pruning.

Figures 2 to 6 show the results of different surrogate models. We distinguish
four different cases: i) only the surrogate model, ii) the surrogate model with
pruning, iii) the surrogate model with three steps of initialization and iv) the
surrogate model with three steps of initialization and pruning. Figures 2 and 3
show the results for the surrogate models that do not learn across data sets and
the remaining three Figures show the results for the surrogate models that learn
across data sets. Our expectation before the experiments were that the lift is
higher i) for the experiments without initialization and ii) for the experiments
with the surrogate models that do not learn across data sets. The reason for this
is simple. An initialization is a fixed policy that proposes hyperparameter config-
urations that has been good on average while pruning discards regions that were
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not useful. Thus, pruning will also have an effect of initialization. The differ-
ence between initialization and pruning is that initialization proposes a specific
hyperparameter while pruning reduces the full hyperparameter space to a set
of good hyperparameter configurations and pruning is applied at each iteration
and not just for the initial iterations. Additionally, pruning is a way to trans-
fer knowledge between data sets such that those strategies that do not use this
knowledge at all benefit more and are prevented from conducting unnecessary
exploration queries.

This is exactly what the results of the experiments show. The SMBO exper-
iments with pruning have comparable good starting points like those with ini-
tialization. If we compare the results of the independent Gaussian process and
random forest for the setting with only initialization with the one with only
pruning, we clearly see the unnecessary exploration queries after a good start.
The setting with both initialization and pruning does not suffer from this prob-
lem and thus is clearly the best strategy. This effect is weaker for the surrogate
models that are learned across data sets in Figures 4 and 6. Only for SCoT
(Figure 5) pruning does not accelerate the hyperparameter optimization on this
meta-data set but it also does not worsen it. Table 1 shows the results for all
evaluation metrics and surrogate models.

The reader may notice two important things. First, the results in the plot
will always converge to the same value across different tuning strategies if you
allow only enough trials. Second, even a very small improvement of the per-
formance just by choosing a better hyperparameter configurations is already a
success especially since this optimization is usually limited in time. This little
improvement may result in significantly better results for a new model compared
to the competitors or decides whether a research challenge will be won or not.
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Fig. 2. Average rank, normalized average loss and average hyperparameter rank for
I-GP on the SVM meta-data set.
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Fig. 3. Average rank, normalized average loss and average hyperparameter rank for
I-RF on the SVM meta-data set.
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Fig. 4. Average rank, normalized average loss and average hyperparameter rank for
SMAC++ on the SVM meta-data set.
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Fig. 5. Average rank, normalized average loss and average hyperparameter rank for
SCoT on the SVM meta-data set.
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Fig. 6. Average rank, normalized average loss and average hyperparameter rank for
MKL-GP on the SVM meta-data set.

Table 1. Average rank, normalized average loss and average hyperparameter rank
after 30 trials on the SVM meta-data set. Best results are bold.

I-GP no pruning/init pruned init init + pruned

Average Rank@30 3.12 2.35 2.72 1.81
NAL@30 0.0224 0.0131 0.0291 0.0055
AHR@30 3.48 2.60 3.98 1.97

I-RF no pruning/init pruned init init + pruned

Average Rank@30 3.51 2.11 2.51 1.87
NAL@30 0.0281 0.0149 0.0116 0.0070
AHR@30 4.75 2.64 2.98 2.14

SMAC++ no pruning/init pruned init init + pruned

Average Rank@30 2.72 2.45 2.65 2.18
NAL@30 0.0251 0.0228 0.0256 0.0210
AHR@30 5.42 4.92 4.52 3.53

SCoT no pruning/init pruned init init + pruned

Average Rank@30 2.55 2.55 2.47 2.43
NAL@30 0.0244 0.0244 0.0237 0.0237
AHR@30 3.44 3.44 3.02 2.90

MKL-GP no pruning/init pruned init init + pruned

Average Rank@30 2.68 2.52 2.49 2.31
NAL@30 0.0349 0.0232 0.0120 0.0099
AHR@30 6.30 3.48 3.00 2.40
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5.5 Hyperparameter Optimization for Weka

In the last chapter, we have seen little improvement in cases where an initial-
ization is combined with surrogate models that are learning across data sets.
We expect pruning to be useful in two scenarios: if i) the dimensionality of the
hyperparameter space is very high and ii) the meta-data set is too large such
that surrogate models that are learning across data sets are no longer a cost-
efficient alternative to evaluating the true function. Since most surrogate models
are based on Gaussian processes, a further problem is storing the kernel matrix.
In our next meta-data set we are using more than a million meta-instances which
result into a kernel matrix of dimensions 106 ×106 which needs 8 TB of memory
for storing it.
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Fig. 7. Average rank, normalized average loss and average hyperparameter rank for
I-RF and I-GP on the Weka meta-data set.

For the Weka meta-data set we conducted a similar experiment as for the
SVM meta-data set. Due to the size we restricted ourselves to the tuning strate-
gies that do not learn across data sets. Previously, we have seen that a tuning
strategy without initialization and pruning is outperformed by a large margin
by the same strategy only using pruning. Hence, we show here only the compar-
ison between the strategy i) only using an initialization step and ii) using both
initialization and pruning. Figure 7 concludes our experiments. As we have seen
on the SVM meta-data set, pruning again indicates that it is a useful addition to
the SMBO framework by further accelerating the hyperparameter optimization.

6 Conclusion and Future Work

We propose pruning as an orthogonal contribution the the SMBO framework
and show in elaborated experiments on two different data set that it accelerates
the hyperparameter optimization in most cases and in the worst case does not
worsen it. It can be especially considered for tuning strategies that do not use
information from the past for the surrogate model. Additionally, we created a
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new meta-data set which is the largest to the best of our knowledge with about
four times more experiments than OpenML and make it publicly available.
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