
Hyperparameter Optimization
with Factorized Multilayer Perceptrons

Nicolas Schilling(B), Martin Wistuba, Lucas Drumond,
and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab,
University of Hildesheim, 31141 Hildesheim, Germany

{schilling,wistuba,ldrumond,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. In machine learning, hyperparameter optimization is a chal-
lenging task that is usually approached by experienced practitioners or
in a computationally expensive brute-force manner such as grid-search.
Therefore, recent research proposes to use observed hyperparameter per-
formance on already solved problems (i.e. data sets) in order to speed up
the search for promising hyperparameter configurations in the sequential
model based optimization framework.

In this paper, we propose multilayer perceptrons as surrogate mod-
els as they are able to model highly nonlinear hyperparameter response
surfaces. However, since interactions of hyperparameters, data sets and
metafeatures are only implicitly learned in the subsequent layers, we
improve the performance of multilayer perceptrons by means of an
explicit factorization of the interaction weights and call the resulting
model a factorized multilayer perceptron. Additionally, we evaluate dif-
ferent ways of obtaining predictive uncertainty, which is a key ingredient
for a decent tradeoff between exploration and exploitation. Our experi-
mental results on two public meta data sets demonstrate the efficiency of
our approach compared to a variety of published baselines. For reproduc-
tion purposes, we make our data sets and all the program code publicly
available on our supplementary webpage.

Keywords: Hyperparameter optimization · Sequential model-based
optimization

1 Introduction

Unfortunately, machine learning models are very rarely parameter-free, as they
usually contain a set of hyperparameters which have to be chosen appropriately on
validation data. As a simple example, the number of latent variables in a matrix
factorization cannot be determined using gradient descent as firstly, it is not explic-
itly given in the objective function and secondly is not a continuous but a dis-
crete parameter. Additionally, the choice of kernel function for an SVM can also
be understood as hyperparameter, where gradient descent approaches fail. Besides
being a parameter of learned model, hyperparameters can also be part of the objec-
tive function, such as regularization constants. Moreover, they can also be part of
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the learning algorithm that is used to optimize themodel for the objective function,
for example the steplength of a gradient based technique or the threshold of a stop-
ping criterion. Finally, even the choice of preprocessing can be viewed as a hyper-
parameter. Some of these hyperparameters are continuous, some are categorical,
but what they all have in common is that there is no efficient learning algorithm
for them. Therefore many researchers rely on searching them on a grid, which is
computationally very expensive, as with growing data and growing complexity of
models the optimization part usually requires a lot of time.

The performance of a model on test data trained with specific hyperparame-
ters depends on the data set where the machine learning model should be learned,
and therefore hyperparameter optimization is usually started from the scratch
for each new data set. Thus, possibly valuable information of past hyperparam-
eter performance on other data sets is ignored. Recent work proposes to use
this information to be able to perform a more efficient and faster hyperparame-
ter optimization than before [2]. To accomplish this, the sequential model-based
optimization framework is applied, where a surrogate model is learned to pre-
dict hyperparameter performances in a first step. Then an acquisition function
is queried to choose the next hyperparameter to test while maintaining a rea-
sonable tradeoff between exploration and exploitation. As the prediction of the
surrogate model can be done in constant time, hyperparameters can be opti-
mized in a controlled way, resulting in less runs of the actual learning algorithm
until a promising configuration is found.

This paper targets the problem of hyperparameter learning and more gener-
ally model selection across different data sets. We propose to use a multilayer
perceptron as surrogate model and show how it can be learned to also include
hyperparameter performances of data sets observed in the past. Additionally, we
propose a factorized multilayer perceptron that contains a factorization part in
the first layer of the network to directly model interactions of hyperparameters
and datasets. For both of these surrogates, we propose different ways of assessing
their uncertainty which is a key ingredient for hyperparameter optimization in
the SMBO framework. Finally, we conduct three different experiments, where the
first shows the capability of a surrogate model to predict the response surface.
The second experiment compares different ways of estimating prediction uncer-
tainty, and the last demonstrates surrogate performance in a standard SMBO
setting against a variety of published baselines.

2 Related Work

In the recent years, the field of hyperparameter optimization has attracted more
and more interest from the research community. The current state-of-the-art can
be roughly classified into four different method categories.

At first, there are exhaustive methods that search the hyperparameter space
exhaustively and therefore are usually conducted on a compute cluster as they
are computationally expensive. The most simple and most widely used method
is a grid search. Another exhaustive method was proposed by [3], where hyper-
parameters are not sampled on a grid but using probability distributions and
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work well in cases of low effective dimensionality, i.e. the case where one hyper-
parameter does not affect the final performance as much as others.

Secondly, there are the model-specific methods that optimize hyperparam-
eters for a specific model choice, such as [1] and [7], which is tailored to least
squares SVM. For a regression with small sample size, the work of [5] can be
applied. Furthermore, [10] deal with hyperparameter optimization in the case
of semi-supervised learning. There is a plethora of model-specific methods, but
their common downside is that they are tailored to a chosen model class and
therefore cannot be applied in general.

A third class of methods to optimize hyperparameter is based on evolutionary
algorithms, for instance [11] optimizes kernel hyperparameters of an SVM and
therefore can be seen as also a model-specific method.

Lastly, a more recent class of hyperparameter optimization methods is based
on the sequential model-based optimization (SMBO) [9] framework which stems
from black-box optimization. The choice of this framework is quite reasonable,
as the function that maps hyperparameters for a given model on a given data set
to the final validation performance is certainly a black-box. All SMBO methods
learn a surrogate model on given hyperparameter choices to infer the perfor-
mance of unknown hyperparameters, where the next hyperparameter to test is
chosen based on the prediction of the surrogate model and its uncertainty. Gaus-
sian processes are used as surrogate model in [19], but are not used to include
hyperparameter performances on other data sets. Moreover, SMAC [8] employs
random forests as surrogate model, but also does not learn across data sets.
The first paper that proposed to include past hyperparameter performances for
SMBO-based hyperparameter optimization is [2], their method SCoT employs
an SVM Rank as surrogate and uses a second stage Gaussian process that is
learned on the output of SVM Rank to allow for uncertainty in the prediction.
Another work uses past hyperparameter performances to come up with a good
initialization for Bayesian hyperparameter optimization [6]. The work in [12]
chooses hyperparameters and models by using active testing on the past obser-
vations, which can be seen as SMBO with a very specific choice of surrogate and
acquisition function.

Finally, [21] uses a Gaussian process with a more sophisticated choice of kernel
function, which is able to generalize over past performances on other data sets,
which is very close to the multi-task Gaussian process approach used by [20].

Compared to exhaustive methods, SMBO algorithms are more efficient in the
overall number of hyperparameters that have to be evaluated; compared to model-
specific methods, they may be applied for every model choice. Moreover, SMBO
algorithms learn a model for the hyperparameter space, which itself is very inter-
esting as it gives a deeper understanding of hyperparameter interactions.

3 Background

In this section, we will first introduce the problem setting, to then discuss impor-
tant properties of surrogate functions. Afterwards, we propose three new surro-
gates and finally show how to assess their prediction uncertainty.
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3.1 Problem Setting

Let us define by D the space of all data sets. Furthermore, for a fixed model
class M, let us denote by Aλ a machine learning algorithm as a mapping Aλ :
D −→ M that maps training data Dtrain ∈ D to a learned model Mλ ∈ M for a
given hyperparameter configuration λ ∈ Λ by searching through M and finding
a model that minimizes:

Aλ(Dtrain) := arg min
Mλ∈M

L(Mλ,Dtrain) . (1)

Usually, Λ = Λ1 × . . . × Λp, where Λi may be a continuous or discrete space.
Having learned a model for a given hyperparameter configuration λ, the hyper-
parameter optimization problem can be stated as choosing the λ�, for which the
associated model Mλ� has a minimal error on a validation set

λ� := arg min
λ∈Λ

L(Aλ(Dtrain),Dval) := arg min
λ∈Λ

f(λ) . (2)

Thus, the problem of hyperparameter optimization can be stated as minimizing
computationally expensive black-box function f over Λ. As discussed earlier,
these hyperparameters cannot be optimized using standard means, as there is
no knowledge of f , and therefore exhaustive search methods such as grid search
partition Λ into a discrete subset G ⊂ Λ and optimize f over G, which takes a
lot of time as many hyperparameter configurations have to be tested.

A more recent class of hyperparameter optimization methods follows the
SMBO framework, where on known hyperparameter responses of f on a dis-
crete subset G, a surrogate model Ψ(λ) is learned to most accurately predict f .
Once this is accomplished, Ψ is then used to predict promising hyperparameter
configurations to choose next, while maintaining a tradeoff between exploration
and exploitation. Exploration drives the choice of choosing distant hyperparam-
eter configurations, where the surrogate model Ψ is very uncertain. Exploitation
chooses hyperparameters in well-known regions of f , which might find local but
not necessarily global optima. Therefore, a decent tradeoff between exploration
and exploitation is desired.

As [2] proposed, this procedure is not limited to only one data set and can
therefore be expanded in a way that Ψ learns the response for given hyperpa-
rameters across many data sets D ∈ {D1, . . . , Dm} where the response surface
has already been observed, to then use the gained knowledge to optimize hyper-
parameters for a new data set Dnew. In order to learn such a surrogate, we now
denote the input of Ψ and f by x, which also contains dataset information.

x = (λ, d,m) , (3)

where d is a binary dataset indicator and for a given data set Dj defined as

d(Dj) = (d1, ..., dm) di = δ(i = j) , (4)

for δ being the indicator function. By m or more formally m(Dj), we denote
descriptive features for data set Dj . They are usually called meta features and
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can be simple statistics, such as number of attributes, number of instances [2]
[21] or more complex features such as the classification accuracy of a decision
tree or a linear SVM [15]. Finally, an observation history H is built to contain all
hyperparameter responses for λ ∈ G for all data sets D where hyperparameter
optimization has already been accomplished.

The resulting procedure can be seen in Algorithm 1. At the beginning of one
trial, we fit the surrogate model Ψ to the given observation history. Then we
query an acquisition and choose its maximum to be the next hyperparameter
configuration to test. The most widely used acquisition function is the expected
improvement (EI) [9], which given a currently best hyperparameter configuration
xbest is defined as

EI(x) :=
∫ ∞

0

I · p(I |Ψ, xbest) dI . (5)

Afterwards, f is evaluated for the proposed hyperparameter configuration and
the tuple (x, f(x)) is then added into the observation history H.

Algorithm 1. Sequential Model-based Optimization Across Data Sets
Input: Hyperparameter space Λ, observation history H, target data set Dnew, number

of iterations T , acquisition function a, surrogate model Ψ .
Output: Best hyperparameter configuration xbest for Dnew

1: for t = 1 to T do
2: Fit Ψ to H
3: xnew = arg max

x
a (x, Ψ(x))

4: Evaluate f (xnew)
5: if f(xnew) > f(xbest) then
6: xbest = xnew

7: H = H ∪ (xnew, f (xnew))
8: return xbest

3.2 Requirements for a Surrogate Model

We have identified three main ingredients for a surrogate model to be able to
accurately predict hyperparameter responses across data sets.

Nonlinearity. Usually, the hyperparameter response f is highly nonlinear and
therefore dictates a surrogate model to also adapt this property. We will see
later in our experiments, that even nonlinear models can fail to reproduce the
response surface, if the employed basis functions are not well chosen and thus
the model does not offer enough complexity.

Prediction Uncertainty. If we fully trust the surrogate model Ψ in its pre-
dictions, i.e. use the identity as acquisition function and therefore always query
the hyperparameter configuration with the best predicted performance, we are
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doomed to fail because only exploitation of the model is done, meaning that we
always stay in a region of the hyperparameter space Λ where we have started.
This is due to the fact that the surrogate model is learned on a few observations
of f and therefore will not accurately predict every hyperparameter performance.
To circumvene this issue, acquisition functions such as the EI are employed, that
try to balance exploration and exploitation. In order for EI to work, the surro-
gate model needs a predictive posterior, i.e. a probability distribution on Ψ(x)
that can be queried for how uncertain the prediction is, thus forming the second
key ingredient for a decent surrogate model.

Shared and Data Set Specific Parameters. To successfully learn surrogate
model across different problem aspects (i.e. data sets), it should be able to dis-
tinguish between these to learn specific data set characteristics. A natural way
is to add binary dataset indicators as it was done above. However, to be able
to learn more than only a data set bias with these features, we aim to learn
factorization models that can also model the interactions of hyperparameters
with datasets, hyperparameters with model choices and so on. In this way, we
automatically learn latent characteristics of a data set.

Another way to let the surrogate learn across problems is to add meta features
that describe the problems, where for data sets, many meta features have already
been proposed. If we think one step further and want to generalize over other
problem aspects such as preprocessing, choice of model, etc. we have to come
up with meta features describing these problem aspects, which does not seem
reasonable to us anymore.

3.3 Proposed Models

Factorization Machines. The first surrogate model we propose is a factor-
ization machine which was introduced in [16]. It works as a generalization of
factorization models and can mimic all different kind of models if the features
are preprocessed in a certain way. To every given feature, i.e. in our case hyperpa-
rameters and binary data set indicators, the model associates a vector of K ∈ N

latent features. The final prediction is then given through

Ψ(x) = w0 +
n∑

i=1

wixi +
1
2

n∑
i=1

n∑
j=i+1

〈vi, vj〉xixj . (6)

The model is also sometimes called a factorized polynomial regressor, as in its
essence it is a polynomial regression of degree two, if one sets wi,j := 〈vi, vj〉,
though by factorizing this weight the model can be fitted more effectively in
sparse settings as the parameters have more instances to learn from. Moreover,
by applying a factorization machine, we are also able to learn interactions of
data sets and hyperparameters. Ultimatively, we are even able to use continuous
features, such as meta features, which a standard matrix factorization model
would not allow us to do.
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Multilayer Perceptron. The next model we propose to use as a surrogate is
the multilayer perceptron, which may be more commonly named as feedforward
neural network. A multilayer perceptron consists of L many layers, where each
layer comprises N many nodes and is fully connected to the next layer, forming
the structure of a directed acyclic graph. At the beginning, x = x0 is used as
input for the first layer. The k-th output of a layer l is then defined as

xl
k = σl−1

(
wl−1

0,k +
n∑

i=1

wl−1
i,k xl−1

i

)
= σ(sl

k) , (7)

thus acts as input for the subsequent layer, where σl−1 is a sigmoid function, in
our case we used the hyperbolic tangent, and w are the weights, i.e. parameters
of the model. In this way, the information is propagated forward until predictions
are made in the final layer. As our task is regression, the final prediction will be
one-dimensional and σL−1 is defined as the identity function

Ψ(x) = wl−1
0 +

n∑
i=1

wl−1
i xl−1

i . (8)

Let us have a closer look at what the model does with binary data set indica-
tors. In the input layer, the multilayer perceptron learns exactly N many weights
per each data set, which act as a data set bias, and therefore can be used by
the model to generalize across data sets. From the second layer onwards, the
model acts independently from the data set as all features then are fitted glob-
ally. Nevertheless, interactions can still implicitly be modeled throughout the
learning process of the network. The question to answer is whether an explicit
modelling of these interactions such as in a factorization machine is better than
an implicit one.

Factorized Multilayer Perceptron. Finally, the third surrogate model pro-
posed by us is a mixture of both previous models and is therefore called a
factorized multilayer perceptron. Closely related to a multilayer perceptron, it
also consists of L many layers, where each layer comprises N many nodes, also
the final prediction is the same as given in Equation 8. The only difference is
that here we explicitly model feature interactions in the input layer, by using
the prediction of a factorization machine instead of a linear model. Thus, the
k-th output of the first layer is defined as

xk = σ(s1k) = σ
(
w0,k +

n∑
i=1

wi,kxi +
1
2

n∑
i=1

n∑
j=i+1

〈vi,k, vj,k〉xixj

)
, (9)

where vi,k ∈ R
K are the latent characteristics of feature i for the output k.

Note that we only do this in the first layer and therefore dropped the layer
dependencies to avoid unnecessary clutter.

In this way, we explicitly model the feature interactions of a factorization
machine into the first layer of a multilayer perceptron, as the binary data set
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indicators are naturally only given in the input layer. This model can be learned
straightforward using backpropagation [17], the only difference is that we have to
consider the update for the latent feature vectors as well. The resuling procedure
can be viewed in Algorithm 2, where the updates are denoted for a stochastic
gradient descent approach. We dropped the usual momentum term to avoid
clutter, the implementation of such a term is straightforward.

Algorithm 2. SGD-Backpropagation for Factorized Multilayer Perceptron
Input: Data Set D, Loss function L, step length η > 0.
1: repeat
2: Draw (x, y) ∈ D
3: Predict ŷ(x)

4: Compute δl
k = ∂L(ŷ(x),y)

∂sl
k

· dσ

dsl
k

for all layers l and nodes k

5: Update wl
i,k = wl

i,k − ηδl
kxi

6: Precompute μk
j =
∑n

i=1 vk
i,jxi

Update vk
i,j = vk

i,j − ηδl
k(xiμ

k
j − vk

i,jx
2
i )

7: until Convergence

3.4 Estimating Prediction Uncertainty

The proposed surrogate models are still lacking the ability to predict under
uncertainty, which is a key ingredient for running SMBO with a decent trade-
off between exploration and exploitation. SMAC uses a random forest, i.e. a
bagged ensemble of decision trees, and is thus able to compute a mean and a
standard deviation by assuming that the prediction of the ensemble is Gaussian
distributed. Alternatively, SCoT uses a ranking approach and learns a Gaussian
process on the ranked output, thus obtaining prediction uncertainty through the
Gaussian process.

By treating the abovely proposed surrogate models in a Bayesian setting as
it is described in [13], it is possible to deduce prediction uncertainty using a
Taylor approximation of the objective function. Let us denote by w a vector of
all parameters of Ψ , including biases, weights and possibly latent characteristics.
Assuming a Gaussian prior with covariance α−1 of the form

p(w) = N (w |0, α−1I) , (10)

the posterior distribution of the parameters w given the data D, α and data set
noise σ2 can be estimated by using a second-order Taylor decomposition on the
objective function. The resulting parameter posterior is approximated as

p(w |D,α, σ2) ≈ N (w |w�, A−1) , (11)

where A = βH + αI, and H is the Hessian matrix of the loss on the data set.
The densitiy of the predictive posterior can then be written as

p(y |x,D, α, σ2) =
∫

N (y |Ψ(x,w), σ2)N (w |w�, A−1)dw . (12)
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As [13] argues, this integral is not feasible to compute because of the nonlinearity
of Ψ , thus a first order approximation is done around w� yields

Ψ(x,w) ≈ Ψ(x,w�) + g�(w − w�) where g = ∇wΨ(x,w)|w=w� . (13)

Finally, the predictive posterior can be written as Gaussian

p(y |x,D, α, σ2) = N (y |Ψ(x,w�), σ2 + g�A−1g) . (14)

In conclusion, to predict the uncertainty of Ψ for an instance x, we need to
estimate the Hessian of the loss of Ψ on D, and a gradient g depending on x.
The latter is easy at it only involves a computation of the gradient, which is for
a multilayer perceptron a forward and a backward pass through the network.

To compute the inverse Hessian in an analytic fashion is usually not feasible
as computing one entry of the Hessian involves a pass over the whole data and
then inverting the resulting matrix has an effort that is cubical in the number of
parameters, i.e. the dimensionality of w. Out of this reason, we seek to approxi-
mate the inverse of the Hessian directly by using a sum of outer products as it is
exposed in [4]. As the target loss is least squares, the Hessian can be written as

H =
∑

(x,y)∈D

∇Ψ(x,w)∇Ψ(x,w)� +
∑

(x,y)∈D

(y − Ψ(x,w))∇∇Ψ(x,w) . (15)

As [4] outlines, for a carefully learned model the second sum can be neglected
as the quantity (y − Ψ(x,w)) is close to zero. Thus, H can be approximated
using only the first term which is a sum of outer products. The inverse of H

Fig. 1. Predictive Posterior of a multilayer perceptron learned on (x1, y1) = (0, 1) and
(x2, y2) = (π, −1). The red line shows the mean, the grey line shows one standard
deviation (Best viewed in color)
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can directly be computed in an iterative fashion over the data set using the
Sherman-Woodbury formula and starting with an initialization of H−1 = α−1I.
In this way, we we effectively compute the inverse of H +αI, which is exactly the
matrix we seeked to invert. A one dimensional example can be seen in Figure 1,
where a multilayer perceptron is learned on two data points.

As an alternative approach, we simply compute an ensemble of surrogates
and predict the uncertainty using the estimated mean and standard deviation of
all the predictions, as it is also done by SMAC. The resulting variance then stems
from differently learned models, which in the case of SMAC results from bagging.
As the most simple approach, we propose to learn an average ensemble, where
the resulting variance stems only from different initializations of the surrogate
model, which is reasonable if the whole optimization problem is not convex and
therefore yields different solutions.

4 Experiments

To assess the performance of our proposed surrogate models we will conduct three
different experiments on two meta data sets that we have created on our own.

4.1 Meta Data Set Creation

For 25 randomly chosen classification data sets of the UCI repository1, we merged
existing splits into one data set, then shuffled the data set and created one split
where 80% of the data was used for training, and the remaining 20% for testing.
To create the first data set, we learned AdaBoost2 by employing decision prod-
ucts as weak learners of the ensemble. This involves two hyperparameters, the
number of iterations I and the number of product terms M . For all 25 classifica-
tion datasets, the resulting test accuracy was recorded when learning AdaBoost
with hyperparameters I ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
and M ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30} which yields 108 meta instances per data
set.

The second meta data set was created by learning an SVM3 with four
involved hyperparameters, namely the choice of kernel between linear, poly-
nomial and Gaussian, the tradeoff parameter C, the degree of the polynomial
d and the width γ of the Gaussian kernel. If a hyperparameter is not involved,
for example the polynomial degree for the SVM with Gaussian Kernel, we set
it to zero in the meta instances. Again, the test accuracy was precomputed on
a grid consisting of hyperparameters C ∈ {2−5, . . . , 26}, d ∈ {2, . . . , 10} and
γ ∈ {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000}, which results
in a meta dataset of 288 instances per data set. By including also the choice of
kernel for the SVM, this meta data set can already be viewed as cross-model,
since we try to learn not only the hyperparameters but also a model choice.
1 http://archive.ics.uci.edu/ml/index.html
2 http://www.multiboost.org
3 http://svmlight.joachims.org

http://archive.ics.uci.edu/ml/index.html
http://www.multiboost.org
http://svmlight.joachims.org
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As they are an indispensable part of the competing methods, we also added
the meta features used by [2] and [21] to our meta data sets. These encompass the
number of classes c, the logarithm of the number of predictors log(p) and finally
the logarithm of the quotient of dataset instances and number of predictors
log(|D|/p). Finally, we scaled the meta features to have values in [0, 1].

Table 1. Confidence intervals of the resulting RMSE of experiment 1 for all models
when reconstructing the response surface

RF SVR FM MLP FMLP

SVM 0.0997±0.028 0.1110±0.020 0.1041±0.029 0.0596±0.013 0.0550 ±
0.016

AdaBoost 0.0462±0.012 0.0840±0.009 0.0579±0.015 0.0380±0.008 0.0377 ±
0.009

4.2 Experiment 1: Reconstruction of the Response Surface

As a first experiment, we seek to learn models to reconstruct the hyperparameter
response surface in order to determine their usefulness for hyperparameter opti-
mization in the sequential model-based optimization framework. The evaluation
protocol is designed in a leave-one-out fashion, where we learn a surrogate model
on 24 response surfaces plus a few observations of hyperparameter responses of
the new dataset to then predict the full response surface. For the test data, we
took 4% of the responses as training data, 10% as validation data for hyperpa-
rameter optimization of the surrogate model and used the remaining 86% as test
data.

As surrogate models, we used a random forest (RF), a support vector regres-
sion (SVR), a factorization machine (FM), a multilayer perceptron (MLP) and
a factorized multilayer perceptron (FMLP). For the RF, we used the implemen-
tation in MLTK4, for the support vector regression we used the implementation
by Joachims 5 . All remaining models were implemented in Java by ourselves
and optimized for minimal root mean squared error (RMSE). Hyperparameters
of all models have been optimized using grid search, for more detail on the grids,
we refer to our supplementary webpage [18]. The resulting 95% confidence inter-
vals of the leave-one-out cross validation are reported in Table 1. Clearly, both
neural network models outperform the other models by a considerable margin,
where the FMLP tends to achieve the best performance, although the lift to a
normal MLP is marginal and not statistically significant. It is observable that
results on AdaBoost are much better, therefore indicating that the hyperparam-
eter optimization problem for this specific model is easier than for an SVM.
We acknowledge that also the lift of our models compared to the RF is not
statistically significant.

4 http://www.cs.cornell.edu/∼yinlou/projects/mltk/
5 http://svmlight.joachims.org/

http://www.cs.cornell.edu/~yinlou/projects/mltk/
http://svmlight.joachims.org/
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Unexpectedly, a factorization machine fails to reconstruct the response sur-
face as its RMSE is clearly worse than of the MLP, for instance. This stems
from the fact that its expressivity in this setting is rather limited as a stan-
dalone model, which can be demonstrated by a small example. If we consider an
instance out of the SVM meta data set with RBF kernel, then, leaving out the
meta features, the prediction can be shown to have the form:

Ψ(x) = w0 + wCC + wγγ + wC,γ Cγ , (16)

which has the geometrical form of a hyperbolic paraboloid. This clearly fails
to reproduce any complex response surface and therefore a plain Factorization
Machine is not a good candidate for a surrogate model.

4.3 Experiment 2: Uncertainty Estimation in SMBO

In this experiment we compare the a multilayer perceptron in two different sce-
narios. Before we proceed, we first introduce the evaluation metrics that we
applied in the SMBO setting.

Evaluation Metrics for SMBO. We use two different evaluation metrics, at
first the average rank of the individual models, where the second metric is the
average hyperparameter rank.

Average Rank. The average rank among different tuning strategies ranks all
tuning strategies by the best hyperparameter configuration they have found so
far, where ties are solved by granting the average rank. If we for example have
four different tuning strategies where one obtains an accuracy of 0.9, two others
obtain 0.8 and the third obtains an accuracy of 0.7, we associate the ranks 1,
2.5, 2.5, 4.

Average Hyperparameter Rank. By average hyperparameter rank we do not com-
pare between methods but between hyperparameters found. For a fixed data set
D, the hyperparameter responses are ranked according to their performance,
then the average hyperparameter rank is simply the average over all folds.

Experiment Setup and Results. We evaluate at first the MLP when com-
puting predictive uncertainty by means of an inverse Hessian matrix (MLPH)
as proposed in section 3.4, opposed to the approach where the uncertainty is
assessed by using an average ensemble (MLPE). The development of the aver-
age hyperparameter rank for both the SVM and the AdaBoost data set is plotted
in Figure 2, where results are averaged over 10 runs for both methods. As the
figure indicates, the convergence of MLPE is much faster, which is due to sev-
eral reasons. At first, having an ensemble yields a better approximation of the
response surface itself. Secondly, the predicted uncertainty does not seem to help
in exploring the hyperparameter space, which then results in an overall small
convergence. This is due to the fact, that the inverse Hessian is only approx-
imated in many ways, if we consider Equation 15, which is already a Tailor
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Fig. 2. Development of the average hyperparameter rank with increasing numbers of
trials. Clearly, the convergence of the ensemble MLP is much faster than using the
inverse Hessian (Best viewed in color)

approximation, the second term was neglected for a carefully trained model. By
adding the new target data set to our overall loss, this assumption is likely not
valid anymore as the surrogate has almost no knowledge of the new data set and
therefore cannot be perfectly trained for it. Moreover, if we consider Figure 1,
it still shows quite a bit uncertainty around points which have already been
evaluated which might lead to exploitation. The uncertainty only decreases if
more points in this region are queried, a luxury that we are not permitted in the
SMBO scenario.

Consequently, as it also takes more time to compute the inverse Hessian than
learning an ensemble model, we propose to follow the latter strategy. This is also
done in the next experiment, where MLP and FMLP are used in an ensemble
fashion.

4.4 Experiment 3: Sequential Model Based Optimization

As a final experiment, we test our surrogate models, the MLP and FMLP in
the SMBO setting, where we again perform a leave-one-out cross validation over
data sets. Hyperparameters of baseline models have been specifically optimized
for the average hyperparameter rank, for the models proposed by us we used
the optimal hyperparameters of the first experiment. To consider initialization
variance, all results are averaged over 10 runs, except for the random search
where 1000 runs were executed. We will briefly describe the competing methods
in the following.

Tuning Strategies.

Random Search. This is a tuning strategy that neither uses a surrogate model
nor uses an acquisition function. It was first proposed in [3], and has proven to
work well in scenarios of low effective dimensionality.
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Independent Gaussian Process (I-GP). This tuning stategy uses a Gaussian
Process with a Gaussian kernel as surrogate model. It does not employ any
information of hyperparameter responses on other datasets, therefore does not
learn across data sets.

Sequential Model-based Algorithm Configuration++ (SMAC++). SMAC [8] uses
a random forest as surrogate model, we denote by SMAC++ a random forest
that also incorporates meta features and therefore is able to take hyperparameter
performance of other datasets into account.

Surrogate-based Collaborative Tuning (SCoT). This is the tuning strategy pro-
posed by [2]. Its surrogate model is based on a two stage approach, as it first
learns a ranking using SVMRANK with an RBF Kernel. Then, a Gaussian Pro-
cess is learned on the output of the ranking. As indicated by [21], learning an
RBF Kernel takes too much time, we followed their suggestion and learned a
linear kernel instead.

Gaussian Process with MKL (MKL-GP). As proposed by [21], this tuning strat-
egy is based on a Gaussian Process as surrogate model where the kernel is a
mixture of an SE-ARD Kernel combined with a kernel modelling the distances
between data sets, which is estimated based on the meta features.

Multilayer Perceptron (MLP). Our tuning strategy based on a multilayer percep-
tron that associates weights to binary data set indicators. We learn an average-
ensemble of 100 models to assess uncertainty in the prediction. The weights of
the network are initialized using the Nguyen-Widrow [14] initialization for faster
convergence of the model.

Factorized Multilayer Perceptron (FMLP). The final tuning strategy that we
propose. It is similar to the multilayer perceptron, but uses an additional factor-
ization part in the first layer to directly model all interactions of hyperparame-
ters, data sets and meta features. As for the MLP, we again learn an ensemble
of 100 models to predict uncertainties, the network weights are being initialized
as for the MLP, the latent factors are initialized using a Gaussian prior.

Optimal. This is an artificial surrogate model that always predicts the best
hyperparameter configurations and is plotted for orientation purposes.

Results. Figure 3 shows the development of the average rank with increasing
number of trials. For both meta data sets the first ten trials of SMBO encompass
some noise as basically all competing methods start out equally good (or bad).
Afterwards, we see that the FMLP performs best in the arguably most interesting
region, where there is a proper tradeoff between the optimal hyperparameter
found so far and the overall used percentage of the grid, as in the beginning,
there is a lot of noise involved and in the end the improvement in hyperparameter
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Fig. 3. Development of the average rank with increasing numbers of trials (Best viewed
in color or online [18])
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Fig. 4. Development of the average hyperparameter rank with increasing numbers of
trials (Best viewed in color or online [18])

performance degrades. Note that the MLP also is very competitive and therefore
empirically already a decent tuning strategy.

Figure 4 demonstrates the development of the average hyperparameter rank.
This chart gives an impression of how fast the actual performance of proposed
hyperparameter configurations converges to the optimal configuration on the
grid. Again, we observe that the FMLP works best for both the AdaBoost and
the SVM data set, which none of the baselines accomplish, as for example SCoT
only works well on the SVM data set. We acknowledge the good results of an
independent Gaussian Process on the AdaBoost data, which degrades on the
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SVM data set. This may be due to the higher complexity of the SVM data
as it not only contains different hyperparameters but also model choices. On
AdaBoost, the MKL-GP also performs really well, but does not show the same
performance when applied to the SVM data set.

5 Conclusions

We proposed to use multilayer perceptrons as surrogate model and improved
them by using a factorization approach in the first layer. Our experimental
results on two public meta data sets show that the FMLP outperforms cur-
rent state of the art surrogate models in hyperparameter optimization using the
SMBO framework. Moreover, we evaluated two different strategies of assessing
prediction uncertainty and showed empirically, that the simpler and faster strat-
egy works better. For future work, we want to extend our meta data sets to a
cross-model problem by using a plethora of base models and then try to learn a
common latent feature space for datasets and models. We argue that this is the
next step to be made in hyperparameter optimization.
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