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Abstract. We introduce an adaptive output-sensitive Metropolis-Hast-
ings algorithm for probabilistic models expressed as programs, Adap-
tive Lightweight Metropolis-Hastings (AdLMH). This algorithm extends
Lightweight Metropolis-Hastings (LMH) by adjusting the probabilities
of proposing random variables for modification to improve convergence
of the program output. We show that AdLMH converges to the correct
equilibrium distribution and compare convergence of AdLMH to that of
LMH on several test problems to highlight different aspects of the adap-
tation scheme. We observe consistent improvement in convergence on the
test problems.
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1 Introduction

One strategy for improving convergence of Markov Chain Monte Carlo (MCMC)
samplers is through online adaptation of the proposal distribution [1,2,15]. An
adaptation scheme must ensure that the sample sequence converges to the cor-
rect equilibrium distribution. In a componentwise updating Metropolis-Hastings
MCMC sampler, i.e. Metropolis-within-Gibbs [5,8,10], the proposal distribution
can be decomposed into two components:

1. A stochastic schedule (probability distribution) for selecting the next random
variable for modification.

2. The kernels from which new values for each of the variables are proposed.

In this paper we concentrate on the first component—adapting the schedule for
selecting a variable for modification. Our primary interest in this work is to
improve MCMC methods for probabilistic programming [6,7,11,13,17]. Prob-
abilistic programming languages facilitate development of probabilistic models
using the expressive power of general programming languages. The goal of infer-
ence in such programs is to reason about the posterior distribution over random
variates that are sampled during execution, conditioned on observed values that
constrain a subset of program expressions.

Lightweight Metropolis-Hastings (LMH) samplers [16] propose a change to
a single random variable at each iteration. The program is then rerun, reusing
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previous values and computation where possible, after which the new set of sam-
ple values is accepted or rejected. While re-running the program each time may
waste some computation, the simplicity of LMH makes developing probabilistic
variants of arbitrary languages relatively straightforward.

Designing robust adaptive MCMC methods for probabilistic programming is
complicated because of diversity of models that can be expressed as probabilistic
programs. Ideally, a single adaptation scheme should perform well in different
programs without requiring manual tuning of parameters. Here we present an
adaptive variant of LMH that dynamically adjusts the schedule for selecting
variables for modification. First, we review the general structure of a probabilistic
program. We discuss convergence criteria with respect to the program output
and propose a scheme for tracking the “influence” of each random variable on
the output. We then adapt the selection probability for each variable, borrowing
techniques from the upper confidence bound (UCB) family of algorithms for
multi-armed bandits [3]. We show that the proposed adaptation scheme preserves
convergence to the target distribution under reasonable assumptions. Finally,
we compare original and Adaptive LMH on several test problems to show how
convergence is improved by adaptation.

2 Preliminaries

2.1 Probabilistic Program

A probabilistic program is a stateful deterministic computation P with the fol-
lowing properties:

– Initially, P expects no arguments.
– On every call, P returns either a distribution and an address (F, α), a distri-

bution and a value (G, y), a value z, or ⊥.
– Upon returning F , P expects a value x drawn from F as the argument to the

next call.
– Upon returning (G, y) or z, P is invoked again without arguments.
– Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.
A program need not generate the same sequence of random variables in every

execution. For this reason we assume that each random variable x is assigned
a unique label α, which we call an address, that induces a correspondence
between variables in different executions. Every execution implicitly produces
a sequence of triples of distributions, values of latent random variables, and
addresses, (Fi, xi, αi). We call this sequence a trace and denote it by xxx. A trace
induces a sequence of pairs (Gj , yj) of distributions and values of observed ran-
dom variables. We call this sequence an image and denote it by yyy. For notational
simplicity we assume that the program always generates the same ordered set zzz
of output values zk.
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The target density π(x) := γ(x)/Z of a program is defined in terms of the
product of the probabilities of all random choices xxx and the likelihood of all
observations yyy

γ(xxx) :=
|xxx|∏

i=1

pFi
(xi)

|yyy|∏

j=1

pGj
(yj). (1)

The objective of inference in probabilistic program P is to discover the distribu-
tion of zzz.

2.2 Adaptive Markov Chain Monte Carlo

MCMC methods generate a sequence of samples {xxxt}∞
t=1 by simulating a Markov

chain using a transition operator that leaves a target density π(xxx) invariant. In
MH the transition operator is implemented by drawing a new sample xxx′ from a
parameterized proposal distribution qθ(xxx′|xxxt) that is conditioned on the current
sample xxxt. The proposed sample is then accepted with probability

ρ = min
(

π(xxx′)qθ(xxxt|xxx′)
π(xxxt)qθ(xxx′|xxxt)

, 1
)

. (2)

If xxx′ is rejected, xxxt is re-used as the next sample.
The convergence rate of MH depends on parameters θ of the proposal distri-

bution qθ. The parameters can be set either offline or online. Variants of MCMC
in which the parameters are continuously adjusted based on the features of
the sample sequence are called adaptive. Challenges in design and analysis of
Adaptive MCMC methods include optimization criteria and algorithms for the
parameter adaptation, as well as conditions of convergence of adaptive MCMC
to the correct equilibrium distribution [14]. Continuous adaptation of parameters
of the proposal distribution is a well-known research subject [1,2,15].

In a componentwise MH algorithm [10] that targets a density π(xxx) defined
on an N -dimensional space X , the components of a sample xxx = {x1, . . . , xN}
are updated individually, in either random or systematic order. Assuming the
component i is selected at the step t for modification, the proposal xxx′ sampled
from qi

θ(xxx|xxxt) may differ from xxxt only in that component, and x′
j = xt

j for all
j �= i. Adaptive componentwise Metropolis-Hastings (Algorithm 1) chooses dif-
ferent probabilities for selecting a component for modification at each iteration.
Parameters of this scheduling distribution may be viewed as a subset of param-
eters θ of the proposal distribution qθ, and adjusted according to optimization
criteria of the sampling algorithm.

Varying selection probabilities based on past samples violates the Markov
property of {xxxt}∞

1 . However, provided the change in selection probabilities
decreases to zero as t approaches ∞, then under suitable regularity conditions
for the target density (see Section 4) an adaptive componentwise MH algorithm
will be ergodic [8], and the distribution on xxx induced by Algorithm 1 converges
to π.
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Algorithm 1. Adaptive componentwise MH
1: Select initial point xxx0.
2: Set initial selection probabilities www0.
3: for t = 1 . . . ∞ do
4: wwwt ← f t(wwwt−1,xxx0,xxx1, . . . ,xxxt).
5: Choose k ∈ {1, . . . , N} with probability wt

k.
6: Generate xxx′ ∼ qk

θ (xxx|xxxt).

7: ρ ← min
(

π(xxx′)qk
θ (xxxt|xxx′)

π(xxxt)qk
θ (xxx′|xxxt)

, 1
)

8: xxxt+1 ← xxx′ with probability ρ, xxxt otherwise.
9: end for

2.3 Lightweight Metropolis-Hastings

LMH [16] is a sampling scheme for probabilistic programs where a single random
variable drawn in the course of a particular execution of a probabilistic program
is modified via a standard MH proposal. LMH differs from componentwise MH
algorithms in that other random variables may also have to be modified, depend-
ing on the structural dependencies in the probabilistic program.

LMH initializes a proposal by selecting a single variable xk at address αk

from an execution trace xxx and resampling its value x′
k either using a reversible

kernel κ(x′
k|xk) or from the conditional prior Fk. The remainder of the program is

then rerun to generate a new trace xxx′. When generating a variable x′
j at address

α′
j in the new trace, the value xi from the previous trace such that α′

j = αi

is reused, provided it exists and still lies in the support of F ′
j . When no value

can be rescored, a new value x′
j is sampled from F ′

j . The acceptance probability
ρLMH is obtained by substituting (1) into (2):

ρLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)q(xxx|xxx′)
p(yyy|xxx)p(xxx)q(xxx′|xxx)

)
. (3)

We here further simplify LMH by assuming x′
i is sampled from the conditional

prior Fi and that all variables are selected for modification with equal probability.
Under these assumptions, ρLMH takes the form [17]

ρLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)|xxx|p(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)|xxx′|p(xxx′\xxx|xxx′ ∩ xxx)

)
, (4)

where xxx′ \xxx denotes the resampled variables, and xxx′ ∩ xxx denotes the variables
which have the same values in both traces.

3 Adaptive Lightweight Metropolis-Hastings

We develop an adaptive variant of LMH that dynamically adjusts the probabil-
ities of selecting variables for modification (Algorithm 2). Let xxxt be the trace at
iteration t of Adaptive LMH. We define the probability distribution of select-
ing variables for modification in terms of an indexed set of weights WWW t that we
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Algorithm 2. Adaptive LMH
1: Initialize W 0

α to a constant for all addresses α.
2: Run the program.
3: for t = 1 . . . ∞ do
4: Randomly select a variable xt

k according to WWW t.
5: Propose a value for xt

k.
6: Run the program, accept or reject the trace.
7: if accepted then
8: Compute WWW t+1 based on the program output.
9: else

10: WWW t+1 ← WWW t

11: end if
12: end for

adapt, such that the probability wt
k of selecting the variable at address αk for

modification is

wt
k := W t

αk

/ |xt|∑

i=1

W t
αi

. (5)

Just like LMH, Adaptive LMH runs the probabilistic program once and then
selects variables for modification randomly. However, the acceptance ratio
ρAdLMH must now include selection probabilities wk and w′

k of the resampled
variable in the current and the proposed sample

ρAdLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)w′

kp(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)wkp(xxx′\xxx|xxx′ ∩ xxx)

)
. (6)

This high-level description does not detail how WWW t is computed for each iteration.
Indeed, this is the most essential part of the algorithm. There are two different
aspects here — on one hand, the influence of a given choice on the output
sequence must be quantified in terms of convergence of the sequence to the target
distribution. On the other hand, the influence of the choice must be translated
into re-computation of weights of random variables in the trace. Both parts of
re-computation of WWW t are explained below.

3.1 Quantifying Influence

Extensive research has been devoted to criteria for tuning parameters of adaptive
MCMC [1,2,15]. The case of inference in probabilistic programs is different: the
user of a probabilistic program is often interested in fast convergence of the
program output {zzzt} rather than the trace {xxxt}.

In adaptive MCMC variants the acceptance rate can be efficiently used as
the optimization objective [15]. However, for convergence of the output sequence
an accepted trace that produces the same output is indistinguishable from a
rejected trace. Additionally, while optimal values of the acceptance rate [1,15]
can be used to tune parameters in adaptive MCMC, in Adaptive LMH we do
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not change the parameters of proposal distributions of individual variables, and
assume that they are fixed. However, proposing a new value for a random variable
may or may not change the output even if the new trace is accepted. By changing
variable selection probabilities we attempt to maximize the change in the output
sequence so that it converges faster. In the pedagogical example

x1 ∼ Bernoulli(0.5), x2 ∼ N (x1, 1),
z1 ← (x1, x2),

selecting the Bernoulli random choice for modification changes the output only
when a different value is sampled, while selecting the normal random choice will
change the output almost always.

Based on these considerations, we quantify the influence of sampling on the
output sequence by measuring the change in the output zzz of the probabilistic
program. Since programs may produce output of any type, we chose to discern
between identical and different outputs only, rather than to quantify the distance
by introducing a type-dependent norm. In addition, when |zzz| > 1, we quantify
the difference by the fraction of components of zzz with changed values.

Formally, let {zzzt}∞
1 = {zzz1, . . . , zzzt−1, zzzt, . . .} be the output sequence of a

probabilistic program. Then the influence of a choice that produced zzzt is defined
by the total reward Rt, computed as normalized Hamming distance

Rt =
1

|zt|
|zt|∑

l=1

11(zt
l �= zt−1

l ). (7)

The reward is used to adjust the variable selection probabilities for the subse-
quent steps of Adaptive LMH by computing WWW t+1 (line 8 of Algorithm 2). It
may seem sufficient to assign the reward to the last choice and use average choice
rewards as their weights, but this approach will not work for Adaptive LMH.
Consider the generative model

x1 ∼ N (1, 10), x2 ∼ N (x1, 1),
y1 ∼ N (x2, 1),
z1 ← x1,

where we observe the value y1 = 2. Modifying x2 may result in an accepted
trace, but the value of z1 = x1, predicted by the program, will remain the same
as in the previous trace. Only when x1 is also modified, and a new trace with
the updated values for both x1 and x2 is accepted, the earlier change in x2 is
indirectly reflected in the output of the program. In the next section, we discuss
propagation of rewards to variable selection probabilities in detail.

3.2 Propagating Rewards to Variables

Both LMH and Adaptive LMH modify a single variable per trace, and
either re-use or recompute the probabilities of values of all other variables
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Algorithm 3. Propagating Rewards to Variables
1: for l in 1, . . . , |zt| do
2: Append α to history hl

3: if zt+1
l �= zt

l then
4: δ ← 1/|hl|
5: for α′ in hl do
6: rα′ ← rα′ + δ, cα′ ← cα′ + δ
7: end for
8: Flush hl.
9: else

10: cα ← cα + 1
11: end if
12: end for

(except those absent from the previous trace or having an incompatible dis-
tribution, for which new values are also sampled). Due to this updating scheme,
the influence of modifying a variable on the output can be delayed by several
iterations. We propose the following propagation scheme: for each unique ran-
dom variable x at address α, the reward rα and count cα are kept in a data
structure used to compute WWW . A list of addresses selected for modification since
the last change in output, which we call the history hl, is maintained for each
component zl of the output zzz. When the value of zl changes, the reward is dis-
tributed between all of the addresses in the history hl, which is then emptied.
When zl does not change, the selected variable is penalized by zero reward. This
scheme is shown in Algorithm 3 which expands line 8 of Algorithm 2.

Rewarding all of the variables in the history ensures that while variables
which cause changes in the output more often get a greater reward, variables
with lower influence are still selected for modification sufficiently often. This, in
turn, ensures ergodicity of sampling sequence, and helps establish conditions for
convergence to the target distribution, as we discuss in Section 4.

Let us show that under certain assumptions the proposed reward propaga-
tion scheme has a non-degenerate equilibrium for variable selection probabilities.
Indeed, assume that for a program with two variables, x1, and x2, probability
matching, or selecting a choice with the probability proportional to the unit
reward ρi = ri

ci
, is used to compute the weights, that is, Wi = ρi. Then, the

following lemma holds:

Lemma 1. Assume that for variables xi, where i ∈ {1, 2}:
– wi is the selection probability;
– βi is the probability that the new trace is accepted given that the variable was

selected for modification;
– γi is the probability that the output changed given that the trace was accepted.

Assume further that wi, βi, and γi are constant. Then γ1 = 1, γ2 = 0 implies:

0 <
w2

w1
≤ 1

3
(8)
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Proof. We shall prove the lemma in three steps. First, we will analyze a sequence
of samples between two subsequent arrivals of x1. Then, we derive a formula for
the expected unit reward of x2. Finally, we shall bound the ratio w2

w1
.

Consider a sequence of k samples, for some k, between two subsequent arrivals
of x1, including the sample corresponding to the second arrival of x1. Since a
new value of x1 always (γ1 = 1) and x2 never (γ2 = 0) causes a change in the
output, at the end of the sequence the history will contain k occurrences of x2.
Let us denote by Δri, Δci the increase of reward ri and count ci between the
beginning and the end of the sequence. Noting that x2 is penalized each time
it is added to the history (line 10 of Algorithm 3), and k occurrences of x2 are
rewarded when x1 is added to the history (line 6 of Algorithm 3), we obtain

Δr1 =
1

k + 1
, Δc1 =

1
k + 1

Δr2 =
k

k + 1
, Δc2 = k +

k

k + 1
(9)

Consider now a sequence of M such sequences. When M → ∞, riM

ciM
approaches

the expected unit reward ρi, where riM and ciM are the reward and the count
of xi at the end of the sequence.

ρi = lim
M→∞

riM

ciM
= lim

M→∞

riM

M
ciM

M

= lim
M→∞

∑M
m=1 Δrim

M∑M
m=1 Δcim

M

=
Δri

Δci

(10)

Each variable xi is selected randomly and independently and produces an
accepted trace with probability

pi =
wiβi

w1β1 + w2β2
. (11)

Acceptances of x1 form a Poisson process with rate 1
p1

= w1β1+w2β2
w1β1

, so k is
geometrically distributed Pr[k] = (1 − p1)kp1. Since Δr1 = Δc1 for any k, the
expected unit reward ρ1 of x1 is 1. We substitute Δri and Δci into (10) to obtain
the expected unit reward ρ2 of x2:

Δr2 =
∞∑

k=0

k

k + 1
(1 − p1)kp1

Δc2 =
∞∑

k=0

(
k +

k

k + 1

)
(1 − p1)kp1 =

1 − p1
p1︸ ︷︷ ︸
k

+
∞∑

k=0

k

k + 1
(1 − p1)kp1 (12)

ρ2 =
Δr2

Δc2
=

∞∑
k=0

k
k+1 (1 − p1)kp1

1−p1
p1

+
∞∑

k=0

k
k+1 (1 − p1)kp1

=

1 −

A︷ ︸︸ ︷
∞∑

k=0

1
k + 1

(1 − p1)kp1

1
p1

−
∞∑

k=0

1
k + 1

(1 − p1)kp1

︸ ︷︷ ︸
A

(13)
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For probability matching, selection probabilities are proportional to expected
unit rewards:

w2

w1
=

ρ2
ρ1

(14)

To prove the inequality, we shall derive a closed-form representation for ρ2, and
analyse solutions of (14) for w2

w1
. We shall eliminate the summation A in (13):

A =
∞∑

k=0

1
k + 1

(1 − p1)kp1 =
p1

1 − p1

∞∑

k=0

1
k + 1

(1 − p1)k+1

=
p1

1 − p1

∞∑

k=0

∫ 1

p1

(1 − ξ)kdξ =
p1

1 − p1

∫ 1

p1

∞∑

k=0

(1 − ξ)kdξ = − p1
1 − p1

log p1

(15)

By substituting A into (13), and then ρ1 and ρ2 into (14), we obtain

w2

w1
=

ρ2
ρ1

= ρ2 =
1 + p1 log p1

1−p1

1
p1

+ p1 log p1
1−p1

}
B(p1) (16)

The right-hand side B(p1) of (16) is a monotonic function for p1 ∈ [0, 1], and
B(0) = 0, B(1) = 1

3 . According to (11), w2
w1

= 0 implies p1 = 1, hence w2
w1

�= 0,
and 0 < w2

w1
≤ 1

3 . ��
By noting that any subset of variables in a probabilistic program can be

considered a single random variable drawn from a multi-dimensional distribution,
Lemma 1 is generalized to any number of variables by Corollary 1:

Corollary 1. For any partitioning of the set xxx of random variables of a prob-
abilistic program, AdLMH with weights proportional to expected unit rewards
selects variables from each of the partitions with non-zero probability.

To ensure convergence of WWW t to expected unit rewards in the stationary
distribution, we use upper confidence bounds on unit rewards to compute the
selection probabilities, an idea that we borrow from the UCB family of algo-
rithms for multi-armed bandits [3]. Following UCB1 [3], we compute the upper
confidence bound ρ̂i as the sum of the unit reward and the exploration term

ρ̂α = ρα + C

√
log

∑
α cα

cα
, (17)

where C is an exploration factor. The default value for C is
√

2 in UCB1; in
practice, a lower value of C is preferable. Note that variable selection in Adaptive
LMH is different from arm selection in multi-armed bandits: unlike in bandits,
where we want to sample the best arm at an increasing rate, in Adaptive LMH
we expect WWW t to converge to an equilibrium in which selection probabilities are
proportional to expected unit rewards.
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4 Convergence of Adaptive LMH

As adaptive MCMC algorithms may depend arbitrarily on the history at each
step, showing that a given sampler correctly draws from the target distribution
can be non-trivial. General conditions under which adaptive MCMC schemes
are still ergodic, in the sense that the distribution of samples converges to the
target π in total variation, are established in [14]. The fundamental criteria for
validity of an adaptive algorithm are diminishing adaptation, which (informally)
requires that the amount which the transition operator changes each iteration
must asymptotically decrease to zero; and containment, a technical condition
which requires that the time until convergence to the target distribution must
be bounded in probability [4].

The class of models representable by probabilistic programs is very broad,
allowing specification of completely arbitrary target densities; however, for many
models the adaptive LMH algorithm reduces to an adaptive random scan Metro-
polis-within-Gibbs in Algorithm 1. To discuss when this is the case, we invoke the
concept of structural versus structure-preserving random choices [18]. Crucially,
a structure-preserving random choice xk does not affect the existence of other
xm in the trace.

Suppose we were to restrict the expressiveness of our language to admit only
programs with no structural random choices: in such a language, the LMH algo-
rithm in Algorithm 2 reduces to the adaptive componentwise MH algorithm.
Conditions under which such an adaptive algorithm is ergodic have been estab-
lished explicitly in [8, Theorems4.10and5.5]. Given suitable assumptions on the
target density defined by the program, it is necessary for the probability vector
||wt − wt−1|| → 0, and that for any particular component k we have probability
wt

k > ε > 0. Both of these are satisfied by our approach: from Corollary 1, we
ensure that the unit reward across each xi converges to a positive fixed point.

While any theoretical result will require language restrictions such that pro-
grams only induce distributions satisfying regularity conditions, we conjecture
that this scheme is broadly applicable across most non-pathological programs.
We leave a precise theoretical analysis of the space of probabilistic programs
in which adaptive MCMC schemes (with infinite adaptation) may be ergodic
to future work. Empirical evaluation presented in the next section demonstrates
practical convergence of Adaptive LMH on a range of inference examples, includ-
ing programs containing structural random choices.

5 Empirical Evaluation

We evaluated Adaptive LMH on many probabilistic programs and observed con-
sistent improvement of convergence rate compared to LMH. We also verified
on a number of tests that the algorithm converges to the correct distribution
obtained by independent exact methods. In this section, we compare Adaptive
LMH to LMH on several representative examples of probabilistic programs. The
rates in the comparisons are presented with respect to the number of samples, or
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1000 samples

10000 samples

100000 samples

Fig. 1. HMM, predicting the 0th and 17th state

simulations, of the probabilistic programs. The additional computation required
for adaptation takes negligible time, and the computational effort per sample is
approximately the same for all algorithms. Our implementation of the inference
engine is available at https://bitbucket.org/dtolpin/anglican.

In the following case studies differences between program outputs and target
distributions are presented using Kullback-Leibler (KL) divergence, Kolmogorov-
Smirnov (KS) distance, or L2 distance, as appropriate. In cases where target
distributions cannot be updated exactly, they were approximated by running a
non-adaptive inference algorithm for a long enough time and with a sufficient
number of restarts. In each of the evaluations, all of the algorithms were run
with 25 random restarts and 500 000 simulations of the probabilistic program
per restart. The difference plots use the logarithmic scale for both axes. In the
plots, the solid lines correspond to the median, and the dashed lines to 25% and
75% percentiles, taken over all runs of the corresponding inference algorithm.
The exploration factor for computing upper confidence bounds on unit rewards
(Equation 17) was fixed at C = 0.5 for all tests and evaluations.

The first example is a latent state inference problem in an HMM with three
states, one-dimensional normal observations (0.9, 0.8, 0.7, 0, -0.025, 5, 2, 0.1,
0, 0.13, 0.45, 6, 0.2, 0.3, -1, -1) with variance 1.0, a known transition matrix,
and known initial state distribution. There are 18 distinct random choices in all
traces of the program, and the 0th and the 17th state are predicted. The results
of evaluation are shown in Figure 1 as KL divergences between the inference
output and the ground truth obtained using the forward-backward algorithm. In
addition, bar plots of unit reward and sample count distributions among random
choices in Adaptive LMH are shown for 1000, 10 000, and 100 000 samples.

As can be seen in the plots, Adaptive LMH (black) exhibits faster convergence
over the whole range of evaluation, requiring half as many samples as LMH
(cyan) to achieve the same approximation, with the median of LMH above the
75% quantile of Adaptive LMH.

In addition, the bar plots show unit rewards and sample counts for differ-
ent random choices, providing an insight on the adaptive behavior of AdLMH.

https://bitbucket.org/dtolpin/anglican
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1000 samples

10000 samples

100000 samples

Fig. 2. Gaussian process hyperparameter estimation

On the left-hand bar plots, red bars are normalized unit rewards, and blue bars
are normalized sample counts. On the right-hand bar plots, the total height of a
bar is the total sample count, with green section corresponding to the accepted,
and yellow to the rejected samples. At 1 000 samples, the unit rewards have not
yet converged, and exploration supersedes exploitation: random choices with
lower acceptance rate are selected more often (choices 7, 8 and 13 corresponding
to states 6, 7 and 12). At 10 000 samples, the unit rewards become close to their
final values, and choices 1 and 18, immediately affecting the predicted states,
are selected more often. At 100 000 samples, the unit rewards converge, and the
sample counts correspond closely to the equilibrium state outlined in Lemma 1.

The second case study is estimation of hyperparameters of a Gaussian Pro-
cess. We define a Gaussian Process of the form

f ∼GP(m, k),

where m(x) =ax2 + bx + c, k(x, x′) = de− (x−x′)2
2g .

The process has five hyperparameters, a, b, c, d, g. The program infers the poste-
rior values of the hyperparameters by maximizing marginal likelihood of 6 obser-
vations (0.0, 0.5), (1.0, 0.4), (2.0, 0.2), (3.0,−0.05), (4.0,−0.2), and (5.0, 0.1).
Parameters a, b, c of the mean function are predicted. Maximum of KS distances
between inferred distributions of each of the predicted parameters and an approx-
imation of the target distributions is shown in Figure 2. The approximation was
obtained by running LMH with 2 000 000 samples per restart and 50 restarts,
and then taking each 100th sample from the last 10 000 samples of each restart,
5000 samples total. Just as for the previous case study, bar plots of unit rewards
and sample counts are shown for 1000, 10 000, and 100 000 samples.

Here as well, Adaptive LMH (black) converges faster over the whole range
of evaluation, outperforming LMH by a factor 2 over the first 50 000 samples.
Bar plots of unit rewards and sample counts for different number of choices,
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Fig. 3. Logistic regression on Iris dataset.

again, show the dynamics of sample allocation among random choices. Choices
a, b, and c are predicted, while choices d and g are required for inference but
not predicted. Choice a has the lowest acceptance rate (ratio between the total
height of the bar and the green part on the right-hand bar plot), but the unit
reward is close the unit reward of choices b and c. At 1 000 samples, choice a is
selected with the highest probability. However, close to the converged state, at
100 000 samples, choices a, b, and c are selected with similar probabilities. At
the same time, choices 4 and 5 are selected with a lower probability. Both the
exploration-exploitation dynamics for choices a–c and probability matching of
selection probabilities among all choices secure improved convergence.

The third case study involves a larger amount of data observed during each
simulation of a probabilistic program. We use the well-known Iris dataset [9] to
fit a model of classifying a given flower as of the species Iris setosa, as opposite
to either Iris virginica or Iris versicolor. Each record in the dataset corresponds
to an observation. For each observation, we define a feature vector x and an
indicator variable zi, which is 1 if and only if the observation is of an Iris setosa.
We fit the model with five regression coefficients β1, . . . , β5, defined as

σ2 ∼ InvGamma(1, 1),
βj ∼ Normal(0, σ),

p(zi = 1) =
1

1 + e−βT x
.

To assess the convergence, we perform shuffle split leave-2-out cross validation,
selecting one instance belonging to the species Iris setosa and one belonging to a
different species for each run of the inference algorithm. The classification error
is shown in Figure 3 over 100 runs of LMH and Adaptive LMH. The results are
consistent with other case studies: Adaptive LMH exhibits a faster convergence
rate, requiring half as many samples to achieve the same classification accuracy
as LMH.
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Fig. 4. Kalman filter, 500 samples after 10 000 samples of burn-in.

As a final case study we consider a linear dynamical system (i.e. a Kalman
smoothing problem) that was previously described in [12]

xt ∼ Norm(A · xt−1,Q), yt ∼ Norm(C · xt,R).

In this problem we assume that 16-dimensional observations yt are conditioned
on 2-dimensional latent states xt. We impose additional structure by assuming
that the transition matrix A is a simple rotation with angular velocity ω, whereas
the transition covariance Q is a diagonal matrix with coefficient q,

A =
[

cos ω − sinω
sin ω cos ω

]
, Q =

[
q 0
0 q

]
.

We predict posterior values for ω, and q in a setting where C and R are
assumed known, under mildly informative priors ω ∼ Gamma(10, 2.5) and
q ∼ Gamma(10, 100). Posterior inference is performed conditioned on a simu-
lated sequence y1:T of T = 100 observations, with ω∗ = 4π/T , and q∗ = 0.1. The
observation matrix C and covariance R are sampled row-wise from symmetric
Dirichlet distributions with parameters c = 0.1, and r = 0.01 respectively.

Figure 4 shows a qualitative evaluation of the mixing rate in the form of 500
consecutive samples (ω, q) from an LMH and AdLMH chain after 10 000 samples
of burn-in. The LMH sequence exhibits good mixing over ω but is strongly
correlated in q, whereas the AdLMH sequence obtains a much better coverage
of the space.

To summarize, Adaptive LMH consistently attained faster convergence than
LMH, measured by differences between the ongoing output distribution of the
random program and the target independently obtained distribution, assessed
using various metrics. Variable selection probabilities computed by Adaptive
LMH are dynamically adapted during the inference, combining exploration of
the model represented by the probabilistic program and exploitation of influence
of random variables on program output.
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6 Contribution and Future Work

In this paper we introduced a new algorithm, Adaptive LMH, for approximate
inference in probabilistic programs. This algorithm adjusts sampling parame-
ters based on the output of the probabilistic program in which the inference is
performed. Contributions of the paper include

– A scheme of rewarding random choice based on program output.
– An approach to propagation of choice rewards to MH proposal scheduling

parameters.
– An application of this approach to LMH, where the probabilities of selecting

each variable for modification are adjusted.

Adaptive LMH was compared to LMH, its non-adaptive counterpart, and was
found to consistently outperform LMH on several probabilistic programs, while
still being almost as easy to implement. The time cost of additional computation
due to adaptation was negligible.

Although presented in the context of a particular sampling algorithm, the
adaptation approach can be extended to other sampling methods. We believe
that various sampling algorithms for probabilistic programming can benefit from
output-sensitive adaptation. Additional potential for improvement lies in acqui-
sition of dependencies between predicted expressions and random variables.
Exploring alternative approaches for guiding exploration-exploitation compro-
mise, in particular, based on Bayesian inference, is another promising research
direction.

Overall, output-sensitive approximate inference appears to bring clear advan-
tages and should be further explored in the context of probabilistic programming
models and algorithms.
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