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Abstract. Quantifying the difference between two distributions is a
common problem in many machine learning and data mining tasks. What
is also common in many tasks is that we only have empirical data. That
is, we do not know the true distributions nor their form, and hence, before
we can measure their divergence we first need to assume a distribution
or perform estimation. For exploratory purposes this is unsatisfactory,
as we want to explore the data, not our expectations. In this paper we
study how to non-parametrically measure the divergence between two
distributions. More in particular, we formalise the well-known Jensen-
Shannon divergence using cumulative distribution functions. This allows
us to calculate divergences directly and efficiently from data without
the need for estimation. Moreover, empirical evaluation shows that our
method performs very well in detecting differences between distributions,
outperforming the state of the art in both statistical power and efficiency
for a wide range of tasks.

1 Introduction

Measuring the difference between two distributions – their divergence – is a
key element of many data analysis tasks. Let us consider a few examples. In
time series analysis, for instance, to detect either changes or anomalies we need
to quantify how different the data in two windows is distributed [18,23]. In
discretisation, if we want to maintain interactions, we should only merge bins
when their multivariate distributions are similar [13]. In subgroup discovery,
the quality of a subgroup depends on how much the distribution of its targets
deviates from that of its complement data set [3,6].

To optimally quantify the divergence of two distributions we need the actual
distributions. Particularly for exploratory tasks, however, we typically only have
access to empirical data. That is, we do not know the actual distribution, nor
even its form. This is especially true for real-valued data. Although we can always
make assumptions (parametric) or estimating them by kernel density estimation
(KDE), these are not quite ideal in practice. For example, both parametric and
KDE methods are prone to the curse of dimensionality [22]. More importantly,
they restrict our analysis to the specific types of distributions or kernels used.
That is, if we are not careful we are exploring our expectations about the data,
not the data itself. To stay as close to the data as possible, we hence study a
non-parametric divergence measure.
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In particular, we propose cjs, an information-theoretic divergence measure
for numerical data. We build it upon the well-known Jensen-Shannon (js) diver-
gence. Yet, while the latter works with probability distribution functions (pdfs),
which need to be estimated, we consider cumulative distribution functions (cdfs)
which can be obtained directly from data. cjs has many appealing properties. In
a nutshell, it does not make assumptions on the distributions or their relation,
it permits non-parametric computation on empirical data, and is robust against
the curse of dimensionality.

Empirical evaluation on both synthetic and real-world data for a wide range
of exploratory data analysis tasks including change detection, anomaly detection,
discretisation, and subgroup discovery shows that cjs consistently outperforms
the state of the art in both quality and efficiency.

Overall, the main contributions of this paper are as follows:
(a) a new information-theoretic divergence measure cjs,
(b) a non-parametric method for computing cjs on empirical data, and
(c) a wide range of experiments on various tasks that validate the measure.

The road map of this paper is as follows. In Section 2, we introduce the
theory of cjs. In Section 3, we review related work. In Section 4 we evaluate
cjs empirically. We round up with discussion in Section 5 and finally conclude
in Section 6. For readability and succinctness, we postpone the proofs for the
theorems to the online Appendix.1

2 Theory

We consider numerical data. Let X be a univariate random variable with
dom(X) ⊆ R, and let X be a multivariate random variable X = {X1, . . . , Xm},
with X ⊆ R

m. Our goal is to measure the difference between two distributions
p(X) and q(X) over the same random variable, where we have np and nq data
samples, respectively. We will write p and q to denote the pdfs, and say P and
Q for the respective cdfs. All logarithms are to base 2, and by convention we use
0 log 0 = 0.

Ideally, a divergence measure gives a zero score iff p(x) = q(x) for every
x ∈ dom(X). That is, p(X) = q(X). Second, it is often convenient if the score is
symmetric. Third, it should be well-defined without any assumption on the values
of p(x) and q(x) for x ∈ dom(X). That is, no assumption the relation between
p and q needs to be made. Fourth, to explore the data instead of exploring
our expectations, the measure should permit non-parametric computation on
empirical data. Finally, as real-world data often has high dimensionality and
limited observations, the measure should be robust to the curse of dimensionality.

To address each of these desired properties, we propose cjs, a new
information-theoretic divergence measure. In short, cjs embraces the spirit of
Kullback-Leibler (kl) and Jensen-Shannon (js) divergences, two well-known
information-theoretic divergence measures. They both have been employed

1 http://eda.mmci.uni-saarland.de/cjs/

http://eda.mmci.uni-saarland.de/cjs/
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widely in data mining [8,12]. As we will show, however, in their traditional form
both suffer from some drawbacks w.r.t. exploratory analysis. We will alleviate
these issues with cjs.

2.1 Univariate Case

To ease presentation, let us discuss the univariate case; when X is a single
variable.

On univariate distributions, we consider a single univariate random variable
X. We start with Kullback-Leibler divergence – one of the first information-
theoretic divergences proposed in statistics [9]. Conventionally, it is defined as
follows.

kl(p(X) || q(X)) =
∫

p(x) log
p(x)
q(x)

dx .

Importantly, it holds that kl(p(X) || q(X)) = 0 iff p(X) = q(X). Although kl
is assymetic itself, we can easily achieve symmetry by using kl(p(X) || q(X)) +
kl(q(X) || p(X)). In addition, kl does suffer from two issues, however. First, it
is undefined if q(x) = 0 and p(x) �= 0, or vice versa, for some x ∈ dom(X). Thus,
p and q have to be absolutely continuous w.r.t. each other for their kl score to be
defined [11]. As a result, kl requires an assumption on the relationship between
p and q. Second, kl works with pdfs which need parametric or KDE estimation.

Another popular information-theoretic divergence measure is the Jensen-
Shannon divergence [11]. It is defined as

js(p(X) || q(X)) =
∫

p(x) log
p(x)

1
2p(x) + 1

2q(x)
dx .

As for kl, for js we also have that js(p(X) || q(X)) = 0 iff p(X) = q(X), and we
can again obtain symmetry by considering js(p(X) || q(X)) + js(q(X) || p(X)).
In contrast, js is well defined independent of the values of p(x) and q(x) with
x ∈ dom(X). However, it still requires us to know or estimate the pdfs.

To address this, that is, to address the computability of js on empirical
data, we propose to redefine it by replacing pdfs with cdfs. This gives us a new
divergence measure, cjs, for cumulative js divergence.

Definition 1 (Univariate CJS). The cumulative js divergence of p(X) and
q(X), denoted cjs(p(X ) || q(X )), is

∫
P (x) log

P (x)
1
2P (x) + 1

2Q(x)
dx +

1
2 ln 2

∫
(Q(x) − P (x)) dx .

As we will explain shortly below, the second integral is required to make the
score non-negative. Similar to kl and js, we address symmetry by considering
cjs(p(X) || q(X))+cjs(q(X) || p(X)). Similar to js, our measure does not make
any assumption on the relation of p and q. With the following theorem we proof
that cjs is indeed a divergence measure.



176 H.-V. Nguyen and J. Vreeken

Theorem 1. cjs(p(X ) || q(X )) ≥ 0 with equality iff p(X) = q(X).

Proof. Applying in sequence the log-sum inequality, and the fact that α log α
β ≥

1
ln 2 (α − β) for any α, β > 0, we obtain

∫
P (x) log

P (x)
1
2P (x) + 1

2Q(x)
dx ≥

∫
P (x)dx log

∫
P (x)dx∫

( 12P (x) + 1
2Q(x))dx

≥ 1
2 ln 2

∫
(P (x) − Q(x)) dx .

For the log-sum inequality, equality holds if and only if P (x)
1
2P (x)+ 1

2Q(x)
= δ for

every x ∈ dom(X) with δ being a constant. Further, equality of the second
inequality holds if and only if

∫
P (x)dx =

∫
(12P (x) + 1

2Q(x))dx. Combining the
two, we arrive at δ = 1, i.e. P (x) = Q(x) for every x ∈ dom(X). Taking the
derivatives of the two sides, we obtain the result. ��

In Sec. 2.3, we will show in more detail that by considering cdfs, cjs permits
non-parametric computation on empirical data. Let us now consider multivariate
variables.

2.2 Multivariate Case

We now consider multivariate X. In principle, the multivariate versions of kl
and js are obtained by replacing X with X. We could arrive at a multivariate
version of cjs in a similar way. However, if we were to do so, we would have
to work with the joint distribution over all dimensions in X, which would make
our score prone to the curse of dimensionality. To overcome this, we build upon
a factorised form of kl, as follows.

Theorem 2. kl (p(X) || q(X)) =

kl(p(X1 ) || q(X1 )) + kl(p(X2 | X1 ) || q(X2 | X1 ))
+ . . . +
kl(p(Xm | X \ {Xm}) || q(Xm | X \ {Xm}))

where

kl(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=
∫

kl(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1) × dx1 × . . . × dxi−1

is named an (i − 1)-order conditional kl divergence.

Proof. We extend the proof of Theorem 2.5.3 in [5] to the multivariate case. ��
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Theorem 2 states that kl(p(X) || q(X)) is the summation of the difference
between univariate (conditional) pdfs. This form of kl is less prone the curse of
dimensionality thanks to the low-order conditional divergence terms. We design
the multivariate version of cjs along the same lines. In particular, directly fol-
lowing Theorem 2 multivariate cjs is defined as.

Definition 2 (Fixed-Order CJS). cjs(p(X1, . . . , Xd) || q(X1, . . . , Xd)) is

cjs(p(X1) || q(X1)) + cjs(p(X2 | X1) || q(X2 | X1))
+ . . . +
cjs(p(Xd | X \ {Xd}) || q(Xd | X \ {Xd}))

where

cjs(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=
∫

cjs(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1) × dx1 × . . . × dxi−1

is named an (i − 1)-order conditional cjs divergence.

From Definition 2, one can see the analogy between multivariate cjs and the
factorised form of kl. However, unlike kl, when defined as in Definition 2 cjs
may be variant to how we factorise the distribution, that is, the permutation of
dimensions. To circumvent this we derive a permutation-free version of cjs as
follows. Let F be the set of bijective functions σ : {1, . . . ,m} → {1, . . . , m}.

Definition 3 (Order-Independent CJS). cjs(p(X) || q(X)) is

max
σ∈F

d∑
i=2

cjs
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)
.

Definition 3 eliminates the dependence on any specific permutation by taking
the maximum score over all permutations. Now we need to show that multivari-
ate cjs is indeed a divergence.

Theorem 3. cjs(p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

Proof. For readability, we postpone the proof to the online Appendix. ��
We now know that cjs is a suitable divergence measure for multivariate

distributions. To compute cjs, however, we would have to search for the optimal
permutation among m! permutations. When m is large, this is prohibitively
costly. We tackle this by proposing cjspr , a practical version of cjs.

Definition 4 (Practical CJS). cjspr (p(X) || q(X)) is

cjs
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)

where σ ∈ F is a permutation such that cjs(Xσ(1)) ≥ . . . ≥ cjs(Xσ(m)).
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In other words, cjspr chooses the permutation corresponding to the sorting of
dimensions in descending order of cjs values. The intuition behind this choice is
that the difference between p(Xi | . . .) and q(Xi | . . .) is likely reflected through
the difference between p(Xi) and q(Xi). Thus, by ordering dimensions in terms
of their cjs values, we can approximate the optimal permutation. Although
a greedy heuristic, our experiments reveal that cjspr works well in practice.
For exposition, from now on we simply assume that σ is the identity mapping
function, i.e. the permutation of dimensions is X1, . . . , Xm. Following the proof
of Theorem 3, we also have that cjspr is a divergence measure.

Theorem 4. cjspr (p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

In the remainder of the paper we will consider cjspr and for readability
simply refer to it as cjs.

2.3 Computing CJS

To compute cjs(p(X) || q(X)), we need to compute unconditional and condi-
tional cjs. For the former, suppose that we want to compute cjs(p(X ) || q(X ))
for X ∈ X. Let v ≤ X[1] ≤ . . . ≤ X[np] ≤ V be realisations of X drawn from
p(X). Further, let Pnp

(x) = 1
np

∑np

j=1 I(X[j] ≤ x). Following [15], we have

∫
P (x)dx =

np−1∑
j=1

(X[j + 1] − X[j])
j

np
+ (V − X[np]) .

The other terms required for calculating cjs(p(X ) || q(X )) (cf., Definition 1),
e.g.

∫
Q(x)dx, are similarly computed. More details can be found in [15].

Computing conditional cjs terms, however, requires pdfs – which are
unknown. We resolve this in a non-parametric way using optimal discreti-
sation. That is, we first compute cjs(p(X1) || q(X1)). Next, we calculate
cjs(p(X2 | X1) || q(X2 | X1)) by searching for the discretisation of X1 that max-
imises this term. At step k ≥ 3, we compute cjs(p(Xk | X1, . . . , Xk−1) || q(Xk |
X1, . . . , Xk−1)) by searching for the discretisation of Xk−1 that maximises this
term. Thus, we only discretise the dimension picked in the previous step and do
not re-discretise any earlier chosen dimensions. First and foremost, this increases
the efficiency of our algorithm. Second, and more importantly, it facilitates inter-
pretability as we only have to consider one discretisation per dimension.

Next, we show that the discretisation at a step can be done efficiently and
optimally by dynamic programming. For simplicity, let X′ ⊂ X be the set
of dimensions already picked and discretised. We denote X as the dimension
selected in the previous step but not yet discretised. Let Xc be the dimension
selected in this step. Our goal is to find the discretisation of X maximising
cjs(p(Xc | X′,X) || q(Xc | X′,X)).

To accomplish this, let X[1] ≤ . . . ≤ X[np] be realisations of X drawn from
the samples of p(X). We write X[j, u] for {X[j],X[j+1], . . . ,X[u]} where j ≤ u.
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Note that X[1, np] is in fact X. We use

cjs(p(Xc | X′, 〈X [j , u]〉) || q(Xc | X′, 〈X [j , u]〉))

to denote cjs(p(Xc | X′) || q(Xc | X′)) computed using the (u − j + 1) samples
of p(X) corresponding to X[j] to X[u], projected onto X. For 1 ≤ l ≤ u ≤ np,
we write

f(u, l) = max
dsc:|dsc|=l

cjs
(
p(Xc | X′,Xdsc[1, u]) || q(Xc | X′,Xdsc[1, u])

)

where dsc is a discretisation of X[1, u], |dsc| is its number of bins, and Xdsc[1, u]
is the discretised version of X[1, u] produced by dsc. For 1 < l ≤ u ≤ np, we
have

Theorem 5. f(u, l) = max
j∈[l−1,u)

Aj where

Aj =
j

u
f(j, l − 1)+

u − j

u
cjs (p(Xc | X′, 〈X[j+1, u]〉) || q(Xc | X′, 〈X[j + 1, u]〉))

Proof. For readability, we postpone the proof to the online Appendix. ��
Theorem 5 shows that the optimal discretisation of X[1, u] can be derived

from that of X[1, j] with j < u. This allows us to design a dynamic programming
algorithm to find the discretisation of X maximising cjs(p(Xc | X′,X) || q(Xc |
X′,X)).

2.4 Complexity Analysis

We now discuss the time complexity of computing cjs(p(X) || q(X)). When
discretising a dimension X ∈ X, if we use its original set of data samples as cut
points, the time complexity of solving dynamic programming is O(n2

p), rather
restrictive for large data. Most cut points, however, will not be used in the
optimal discretisation. To gain efficiency, we can hence impose a maximum grid
size max grid = nε

p and limit the number of cut points to c × max grid with
c > 1. To find these candidate cut points, we follow Reshef et al. [20] and apply
equal-frequency binning on X with the number of bins equal to (c×max grid+1).
Note that this pre-processing trades off accuracy for efficiency. Other types of
pre-processing are left for future work.

Regarding ε and c, the larger they are, the more candidate discretisations we
consider, and hence, at a higher the computational cost, the better the result.
Our empirical results show that ε = 0.5 and c = 2 offers a good balance between
quality and efficiency, and we will use these values in the experiments. The
cost of discretising each dimension X then is O(np). The overall complexity of
computing cjs(p(X) || q(X)) is therefore O(m × np). Similarly, the complexity
of computing cjs(q(X) || p(X)) is O(m × nq).
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2.5 Summing Up

We note that cjs is asymmetric. To have a symmetric distance, we use

cjssym(p(X) || q(X)) = cjs(p(X) || q(X)) + cjs(q(X) || p(X)) .

In addition, we present two important properties pertaining specifically to uni-
variate cjssym . Although in the interest of space we will not explore these prop-
erties empirically, but they may be important to know for other applications of
our measure.

Theorem 6. cjssym(p(X ) || q(X )) ≤ ∫
(P(x ) + Q(x )) dx .

Proof. For readability, we postpone the proof to the online Appendix. ��
Theorem 7. Univariate

√
cjssym is a metric.

Proof. We follow the proof of Theorem 1 in [7]. ��
Theorem 6 tells us that the value of univariate cjssym is bounded above,

which facilitates interpretation [11]. Theorem 7 on the other hand says that the
square root of univariate cjssym is a metric distance. This is beneficial for, e.g.
query optimisation in multimedia databases.

3 Related Work

Many divergence measures have been proposed in the literature. Besides
Kullback-Leibler and Jensen-Shannon, other well-known divergence measures
include the Kolmogorov-Smirnov test (ks), the Cramér-von Mises criterion
(cm), Earth Mover’s Distance (emd), and the quadratic measure of divergence
(qr) [13]. Each has its own strengths and weaknesses – most particularly w.r.t.
exploratory analysis. For example, multivariate ks, cm, emd, and qr all operate
on the joint distributions over all dimensions. Thus, they inherently suffer from
the curse of dimensionality, which reduces their statistical power when applied
on non-trivial numbers of dimensions. In addition, emd needs probability mass
functions (pmfs). While readily available for discrete data, real-valued data first
needs to be discretised. There currently exists no discretisation method that
directly optimises emd, however, by which the results may turn out ad hoc.
Recently, Perez-Cruz [17] studied how to estimate kl using cdfs. Park et al. [16]
proposed ckl, redefining KL by replacing pdfs with cdfs. While computable on
empirical data, as for regular kl it may be undefined when p(x) = 0 or q(x) = 0
for some x ∈ dom(X). Further, ckl was originally proposed as a univariate
measure. Wang et al. [24] are the first to formulate js using cdfs. However, their
cjs relies on joint cdfs and hence suffers from the curse of dimensionality.

Many data mining tasks require divergence measures. For instance, for change
detection on time-series, it is necessary to test whether two windows of data are
sampled from the same underlying distribution. Song et al. [23] proposed such
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a test, using Gaussian kernels to approximate the data distribution – includ-
ing the joint distribution over all dimensions. Generalisations of kl computed
using Gaussian kernels have shown to be powerful alternatives [8,12]. kl is also
used for anomaly detection in time series, where we can compute an anomaly
score for a window against the reference data set [18]. In interaction-preserving
discretisation we need to assess how different (multivariate) distributions are
between two consecutive bins. This can be done through contrast mining [3], or
by using qr [13]. In multi-target subgroup discovery, also known as exceptional
model mining [10], we need to compare the distributions of subgroup against
that of its complement data set. Leman et al. use a quadratic measure of diver-
gence [10], whereas Duivesteijn et al. consider the edit distance between Bayesian
networks [6]. In Section 4, we will consider the efficacy of cjs for each of these
areas.

Nguyen et al. [15] proposed a correlation measure inspired by factorised kl
using cumulative entropy [19]. Although it permits reliable non-parametric com-
putation on empirical data, it uses ad hoc clustering to compute conditional
entropies. Nguyen et al. [14] showed that these are inferior to optimal discreti-
sation, in their case for total correlation. In cjs we use the same general idea of
optimal discretisation, yet the specifics for measuring divergence are nontrivial
and had to be developed from scratch.

4 Experiments

Next, we empirically evaluate cjs. In particular, we will evaluate the statisti-
cal power at which it quantifies differences between data distributions, and its
scalability to data size and dimensionality. In addition, we evaluate its perfor-
mance in four exploratory data mining tasks. We implemented cjs in Java, and
make our code available for research purposes.2 All experiments were performed
single-threaded on an Intel(R) Core(TM) i7-4600U CPU with 16GB RAM. We
report wall-clock running times.

We compare cjs to mg [23] and rsif [12], two measures of distribution differ-
ence recently proposed for change detection on time series. In short, to compare
two samples Sp and Sq, mg randomly splits Sp into S1

p and S2
p . Next, it uses S1

p

to model the distribution of data. Then it fits S2
p and Sq into the model. The

difference in their fitness scores is regarded as the difference between Sp and Sq.
rsif on the other hand uses a non-factorised variant of kl divergence. To com-
pute this divergence, it estimates the ratio p(X)

q(X) . As third baseline, we consider
qr, a quadratic measure of distribution difference recently proposed by Nguyen
et al. [13]. It works on P (X) and Q(X), i.e. the cdfs of all dimensions. Note
that by their definition these three competitors are prone to the curse of dimen-
sionality. Finally, we include ckl, extended to the multivariate setting similarly
to cjs.

2 http://eda.mmci.uni-saarland.de/cjs/

http://eda.mmci.uni-saarland.de/cjs/
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(f) m = 80

Fig. 1. [Higher is better] Statistical power vs. dimensionality of cjs, ckl, qr, rsif,
and mg on synthetic data sets. Overall, cjs achieves the best statistical power across
different dimensionality and noise levels.

4.1 Statistical Power

Our aim here is to examine if our measure is really suitable for quantifying
the difference between two data distributions. For this purpose, we perform
statistical tests using synthetic data. To this end, the null hypothesis is that
the two distributions are similar. To determine the cutoff for testing the null
hypothesis, we first generate 100 pairs of data sets of the same size (n) and
dimensionality (m), and having the same distribution f1. Next, we compute
the divergence score for each pair. Subsequently, we set the cutoff according to
the significance level α = 0.05. We then generate 100 pairs of data sets, again
with the same n and m. However, two data sets in such a pair have different
distributions. One follows distribution f1 while the other follows distribution
f2. The power of the measure is the proportion of the 100 new pairs of data
sets whose divergence scores exceed the cutoff. We simulate a noisy setting by
adding Gaussian noise to the data. We show the results in Fig. 1 for n = 1000
and varying over m with f1 and f2 two Gaussian distributions with different
mean vectors and covariance matrices. For other data sizes and distributions we
observe the same trend.

Inspecting these results, we find that cjs obtains higher statistical power than
other measures. Moreover, it is very stable across dimensionality and noise. Other
measures, especially qr and rsif, deteriorate with high dimensionality. Overall,
we find that cjs reliably measures the divergence of distributions, regardless of
dimensionality or noise.
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Fig. 2. [Lower is better] Runtime scalability of cjs, ckl, qr, rsif, and mg on synthetic
data sets. Overall, cjs scales similarly to ckl, qr, and mg and much better than rsif.

4.2 Scalability

Next, we study the scalability of our measures with respect to the data size n and
dimensionality m. For scalability to n, we generate data sets with m = 10 and
n varied from 1 000 to 20 000. For scalability to m, we generate data sets with
n = 1000 and m varied from 1 to 80. We present the results in Fig. 2. We observe
that our measure is efficient. It scales similarly as ckl, qr, and mg, and much
better than rsif. Combining this with our results regarding statistical power,
we conclude that cjs yields the best balance between quality and efficiency.

The results show that cjs outperforms ckl while the two have similar run-
time. We therefore exclude ckl in the remainder.

4.3 Change Detection on Time Series

Divergence measures are widely used for change detection on time series
[4,12,21]. The main idea is that given a window size W , at each time instant
t, we measure the difference between the distribution of data over the interval
[t − W, t) to that over the interval [t, t + W ). A large difference is an indicator
that a change may have occurred. The quality of change detection is thus depen-
dent on the quality of the measure. In this experiment, we apply cjs in change
detection. In particular, we use it in the retrospective change detection model
proposed by Liu et al. [12].

As data, we use the PAMAP data set,3 which contains human activity mon-
itoring data. Essentially, it consists of data recorded from sensors attached to 9
human subjects. Each subject performs different types of activities, e.g. stand-
ing, walking, running, and each activity is represented by 51 sensor readings
recorded per second. Since each subject has different physical characteristics, we
consider his/her data to be a separate data set. One data set is very small, so
we discard it. We hence consider 8 time series over 51 dimensions with in the
order of 100 000 time points. In each time series, the time instants when the

3 http://www.pamap.org/demo.html

http://www.pamap.org/demo.html
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Table 1. [Higher is better] AUC scores of cjs, qr, rsif, and mg in time-series change
detection on PAMAP data sets. Highest values are in bold. Overall, cjs yields the best
accuracy across all subjects.

Data CJS qr rsif mg

Subject 1 0.972 0.658 0.662 0.775
Subject 2 0.977 0.669 0.694 0.782
Subject 3 0.971 0.663 0.857 0.954
Subject 4 0.973 0.641 0.662 0.642
Subject 5 0.988 0.678 0.756 0.850
Subject 6 0.977 0.662 0.497 0.550
Subject 7 0.978 0.646 0.782 0.705
Subject 8 0.973 0.741 0.552 0.424

Average 0.976 0.670 0.683 0.710

respective subject changes his/her activities are regarded as change points. As
the change points are known, we evaluate how well each measure tested retrieves
these cut points. It is expected that each measure should assign higher differ-
ence scores at the change points in comparison to other normal time instants.
As performance metric we construct Receiver Operating Characteristic (ROC)
curves and consider the Area Under the ROC curve (AUC) [8,12,23].

Table 1 gives the results. We see that cjs consistently achieves the best AUC
over all subjects. Moreover, it outperforms its competitors with relatively large
margins.

4.4 Anomaly Detection on Time Series

Closely related to change detection is anomaly detection [2,18]. The core idea
is that a reference data set is available as training data. For example, obtained
for instance from historical records. It is used for building a statistical model
capturing the generation process of normal data. Then, a window is slid along
the test time series to compute the anomaly score for each time instant, using
the model constructed. With cjs, we can perform the same task by simply
comparing the distribution over a window against that of the reference set. That
is, no model construction is required. In contrast to ggm [18] – a state of the
art method for anomaly detection in time series – cjs can be considered as a
‘lazy’ detector. We will assess how cjs performs against ggm. For this, we use
the TEP data set, as it was used by Qiu et al. [18]. It contains information on
an industrial production process. The data has 52 dimensions. Following their
setup, we set the window size to 10. We vary the size of the training set to assess
stability.

Fig. 3 presents the results. We see that cjs outperfoms ggm at its own game.
In particular, we see that cjs is less sensitive to the size of the training set than
ggm, which could be attributed to its ‘lazy’ approach. Overall, the conclusion
is that cjs reliably measures the difference of multivariate distributions.
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(a) training size = 200
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(b) training size = 300
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Fig. 3. [Higher is better] ROC curves of cjs and ggm regarding time-series anomaly
detection on the TEP data set. AUC scores of cjs are respectively 0.780, 0.783, and
0.689. AUC scores of ggm are respectively 0.753, 0.691, and 0.552. Overall, cjs out-
performs ggm.

4.5 Multivariate Discretisation

When discretising multivariate data the key goal is to discretise the data such
that the output data preserves the most important multivariate interactions
in the input data [3,13]. Only when we do so it will be possible to use tech-
niques that require discrete data – such as pattern mining – to pick up on truly
interesting correlations. One of the major components of interaction-preserving
discretisation is to measure the difference of data distributions in different bins.
The difference scores are then used to decide if bin merge takes place or not.

In principle, the better such measure, the better correlations can be main-
tained. For example, the better pattern-based compressors such as CompreX [1]
can compress it. In this experiment, we apply cjs in ipd [13] – a state of the art
technique for interaction-preserving discretisation. To evaluate, we apply Com-
preX to the discretised data and compare the total encoded size. We compare
against original ipd, which uses qr. For testing purposes, we use 6 public data
sets available in the UCI Repository.

We display the results in Fig. 4. The plot shows the relative compression rates
with ipd as the bases, per data set. Please note that lower compression costs are
better. Going over the results, we can see that cjs improves the performance
ipd in 4 out of 6 data sets. This implies that cjs reliably assesses the difference
of multivariate distributions in different bins [13].

4.6 Multi-Target Subgroup Discovery

In subgroup discovery we are after finding queries – patterns – that identify
subgroups of data points for which the distribution of some target attribute
varies strongly compare to either the complement, or the whole data. As the
name implies, in multi-target subgroup discovery we do not consider a univariate
targets, but multivariate ones.

Formally, let us consider a data set D with attributes A1, . . . , Ak and tar-
gets T1, . . . , Tl. A subgroup S on D is characterized by condition(s) imposed on
some attribute(s). A condition on an attribute A has the form of an interval.
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Fig. 4. [Lower is better] Relative compression costs of cjs and ipd in interaction-
preserving discretisation. CompreX [1] is the compressor. The compression costs of
ipd are the bases. Overall, cjs outperforms ipd.

The subset of D corresponding to S is denoted as DS . The set of remaining data
points, the complement set, is DS = D\DS . Within subgroup discovery, excep-
tional model mining is concerned with detecting S such that p(T1, . . . , Tl | DS)
is different from p(T1, . . . , Tl | DS) [6,10]. The higher the difference, the better.

In this experiment, we use cjs for quantifying the distribution divergence
non-parametrically. Apart from that, we apply as-is the search algorithm pro-
posed in [6] for discovering high quality subgroups. As data sets, we use 3 public
ones. Two from the UCI Repository, namely, the Bike dataset of 731 data points
over 6 attributes with 2 targets, and the Energy dataset of 768 rows over 8
attributes also with 2 targets. Third, we consider the Chemnitz dataset of 1440
rows over 3 attributes and with 7 targets.4 Our objective here is to see if cjs can
assist in discovering interesting subgroups on these data sets. The representative
subgroups on three data sets are in Table 2 (all subgroups are significant at
significance level α = 0.05).

Going over the results, we see cjs to detect subgroups having different dis-
tribution in targets compared to that of their respective complement set. For
instance, on Bike we discover the subgroup temperature ≥ 6.5 ∧ temperature <
10.7. In this subgroup, we find that its numbers of registered and non-registered
bikers are significantly lower than those of its complement set. This is intu-
itively understandable, as at these low temperatures one expects to see only
a few bikers, and especially few casual ones. In contrast, for the subgroup
temperature ≥ 27.1 ∧ temperature < 31.2, the numbers of bikers in both tar-
gets are very high. This again is intuitively understandable.

From the Energy data, we find that the two subgroups surface area ≥ 624.8∧
surface area < 661.5 and roof area < 124.0 have much higher heating and cooling
loads compared to their complement sets.

The previous two data sets contain 2 targets only. In contrast, Chemnitz
data set has 7 targets, which poses a more challenging task. Nevertheless, with
cjs we can detect informative subgroups as it can capture divergences between
distributions that are involved in different numbers of targets – not all tar-
get attributes have to be ‘divergent’ at the same time, after all. In particular,

4 http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html

http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html
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Table 2. Representative subgroups discovered by cjs on Bike, Energy, and Chemnitz
data sets. On Chemnitz, only targets where the divergence is large are shown. Overall,
cjs helps detect high quality and informative subgroups on all three data sets.

Mean

Data Target subgroup (DS) complement (DS)

Bike

6.5 ≤ temperature < 10.7 (support = 63)

registered bikers 166 913
non-registered bikers 1 889 3 840

27.1 ≤ temperature < 31.2 (support = 127)

registered bikers 1 347 743
non-registered bikers 4 406 3 499

Energy

624.8 ≤ surface area < 661.5 (support = 128)

heating 38.6 20.8
cooling 40.2 23.1

roof area < 124.0 (support = 192)

heating 31.6 19.1
cooling 33.1 21.7

Chemnitz

4.25 ≤ temperature < 7.5 (support = 370)

dust 53.5 109.7
SO2 80.6 184.4
NO2 20.4 41.4
NOx 50.2 94.3

wind < −0.75 (support = 395)

NO 69.0 39.0
NOx 106.4 74.1

the subgroup temperature ≥ 4.25 ∧ temperature < 7.5 has its divergence traced
back to five targets. On the other hand, there are only two targets responsible
for the divergence of the subgroup wind < −0.75.

Overall, we find that cjs can be successfully applied to non-parametrically
discover subgroups in real-world data with multiple targets.

5 Discussion

The experiments show that cjs is efficient and obtains high statistical power
in detecting divergence for varying dimensionality and noise levels. Further,
we demonstrated that cjs is well-suited for a wide range of exploratory
tasks, namely time-series change detection and anomaly detection, interaction-
preserving discretisation, and multi-target subgroup discovery. The improvement
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in performance of cjs over existing measures can be traced back to its three main
properties: (a) it does not make any assumption on the relation between two dis-
tributions, (b) it allows non-parametric computation on empirical data, and (c)
it is less sensitive to the curse of dimensionality.

Yet, there is room for alternative methods as well as further improvements.
For instance, in this paper, we pursue the non-parametric setting. As long as the
knowledge on data distributions is known, one can resort to parametric methods
to compute other divergence measures, e.g. kl and js. A promising direction
is to extend cjs to heterogeneous data types. That is, in addition to numerical
data, we can consider categorical data as well. A possible solution to this end
is to combine js and cjs. More in particular, js is used to handle categorical
data; cjs is used for numerical data; and discretisation can be used to bridge
both worlds. The details, however, are beyond the scope of this work. As future
work, we also plan to develop new subgroup discovery methods that integrate
cjs more deeply into the mining process. This will help us to better exploit the
capability of cjs in this interesting branch of exploratory analysis.

6 Conclusion

In this paper, we proposed cjs, an information-theoretic divergence measure
to quantify the difference of two distributions. In short, cjs requires neither
assumptions on the forms of distributions nor their relation. Further, it permits
efficient non-parametric computation on empirical data. Extensive experiments
on both synthetic and real-world data showed that our measure outperforms
the state of the art in both statistical power and efficiency in a wide range of
exploratory tasks.
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