
© Springer International Publishing Switzerland 2015 
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 316–319, 2015. 
DOI: 10.1007/978-3-319-23461-8_38 

Real Time Detection and Tracking of Spatial  
Event Clusters 

Natalia Andrienko1,2(), Gennady Andrienko1,2, Georg Fuchs1, Salvatore Rinzivillo3, 
and Hans-Dieter Betz4 

1 Fraunhofer Institute IAIS, Sankt Augustin, Germany 
{natalia.andrienko,gennady.andrienko, 

georg.fuchs}@iais.fraunhofer.de 
2 City University London, London, UK 

{natalia.andrienko,gennady.andrienko}@iais.fraunhofer.de 
3 CNR ISTI, Pisa, Italy 

rinzivillo@isti.cnr.it 
4 nowcast GmbH, Munich, Germany 

hdbetz@nowcast.de 

Abstract. We demonstrate a system of tools for real-time detection of signifi-
cant clusters of spatial events and observing their evolution. The tools include 
an incremental stream clustering algorithm, interactive techniques for control-
ling its operation, a dynamic map display showing the current situation, and 
displays for investigating the cluster evolution (time line and space-time cube). 

1 Problem Setting 

Spatial events are physical or abstract entities with limited existence times and partic-
ular locations in space, for example, lightning strikes or mobile phone calls. A spatial 
event is characterized by its start and end times (which may coincide), spatial coordi-
nates, and, possibly, some thematic attributes. We assume that occurrences of spatial 
events are registered, e.g., by sensors, and corresponding data records are immediate-
ly sent to a server. The resulting data stream needs to be monitored. 

We consider monitoring scenarios in which each individual event is not significant 
whereas spatio-temporal event clusters (i.e., occurrence of multiple events closely in 
space and time) may require observer’s attention. For example, moving vehicles may 
emit low speed events when their speed drops below a certain threshold. It is neither 
feasible nor meaningful to attend to every such event, but a spatio-temporal cluster of 
low speed events sent by several cars may deserve observer’s attention as a possible 
indication of a traffic jam. After detecting a cluster, the observer may need to trace its 
further evolution, i.e., changes in the number of events, number of vehicles involved, 
spatial location, shape, and extent. The task is to support the observer in detecting the 
emergence and tracking the evolution of spatial event clusters in real time. 
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2 Approach 

We apply clustering techniques to separate spatio-temporal event concentrations 
(clusters) from scattered events (noise). In fact, the problem setting requires an analog 
of a density-based clustering method capable to process a data stream in real time. 
However, the existing stream clustering methods are oriented to somewhat different 
problem settings. The main problem they address is the memory limitation. Assuming 
that all data cannot fit in the memory, the methods summarize incoming data on the 
fly and keep only the summaries (micro-clusters) but not the original data items. 
Many streaming algorithms assume a two-phase approach: micro-clusters are created 
and maintained during an online phase and post-processed (e.g., merged into larger 
clusters) during an offline phase. This general framework is instantiated with different 
approaches to creating micro-clusters. The main representatives are CluStream [1] 
and DenStream [2] doing partition-based and density-based clustering, respectively. 

CluStream partitions an initial portion of a stream into k micro-clusters. When a 
new data point d appears, it tries to fit d into one of the current micro-clusters, while 
satisfying the constraints on the maximum number of clusters k and maximum boun-
dary R. DenStream identifies micro-clusters with a maximal radius Eps based on the 
concepts of core object and density adopted in density-based clustering. Unlike in 
CluStream, the number of micro-clusters is not bounded. Both approaches rely on a 
following offline phase, in which micro-clusters are merged into macro-clusters. 

Our problem setting and requirements differ from those of the existing methods in 
several respects. First, emerging significant clusters need to be detected in real time 
and immediately shown to the observer, permitting no reliance on off-line post-
processing. Second, clusters may emerge, evolve (grow, shrink, move, change shape, 
split, merge), and disappear, excluding the approaches assuming a constant number of 
clusters, like [1]. Third, the main memory limitations is not our primary focus. We 
assume that the available memory is sufficient for keeping all micro-clusters that may 
co-exist within a certain time interval ΔT. Fourth, old micro-clusters (where the latest 
event is older than ΔT) are not of interest anymore and may be discarded. 

We propose a hybrid approach in which micro-clusters are built and updated simi-
larly to [1], but without limiting the maximal number. They are merged online into 
larger clusters of arbitrary sizes and shapes by exploiting k-connectivity, as in [2].  

In our approach, a micro-cluster consists of events fitting in a circle with a user-
specified maximal radius R. Another user-specified constraint is the maximal tempor-
al gap ΔT that may exist between the events within a micro-cluster. When a new 
event comes, the algorithm checks whether it fits in one of existing micro-clusters, 
i.e., whether the event’s distance to the micro-cluster center does not exceed R. If so, 
the event is added to this micro-cluster, and the position of the center is updated. If 
not, a new micro-cluster consisting of only this event is created. For effective search 
of candidate micro-clusters for including new events, we use a spatial index [3].  

The algorithm keeps in the memory only events that occurred within the time in-
terval [tc-ΔT, tc], where tc is the current moment. Older events are erased from the 
micro-clusters, and micro-clusters that become empty are removed from the memory. 
A connecting event of two or more micro-clusters is an event located sufficiently 
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close to their centers. By default, it means that the distance does not exceed R, but the 
user may specify a different connection distance threshold Rc. When micro-clusters 
have at least k connecting events, where k is a user-specified parameter, these micro-
clusters are merged into a macro-cluster. A similar idea is employed in algorithm 
AING [4], where analogs of micro-clusters are treated as graph nodes. When a con-
necting data point appears, an edge is created between the respective nodes.  

A macro-cluster may include an arbitrary number of micro-clusters provided that 
each of them is k-connected to some other member micro-cluster. Hence, macro-
clusters may have arbitrary shapes and spatial extents. As soon as the size (i.e., the 
number of the member events) of some micro- or macro-cluster reaches a user-chosen 
minimum Nmin, this cluster is visually presented to the observer on a map display. 

The algorithm can additionally account for thematic attributes of the events. Thus, 
low speed events from moving vehicles may have an attribute ‘movement direction’. 
The algorithm can ensure that only events with similar directions are put together (the 
user needs to specify the maximal allowed difference in the directions). Another ex-
tension is accounting for the event sources (e.g., the vehicles sending low speed 
events). For each micro- and macro-cluster, the algorithm can maintain a list of dis-
tinct event sources. Clusters where all events come from a single source or from too 
few distinct sources may be disregarded as insignificant. 

The map display used for the event stream monitoring shows the spatial positions, 
extents, and shapes of the significant event clusters that have been existing during the 
time interval [tc-TH, tc], where tc is the current time moment and TH is a chosen time 
horizon of the observation. The evolution of the clusters, i.e., changes in the number 
of events, spatial extent, density, and/or other characteristics of the clusters, can be 
explored using additional time line and space-time cube displays. The parameter set-
tings of the clustering algorithm can be interactively modified while the algorithm 
works. For presenting the tools, an event stream is simulated using real data. 

3 Example 

Figure 1 illustrates an application of the tools to a stream of lightning strike events 
simulated based on real data collected by nowcast GmbH (www.nowcast.de). The 
following parameter settings have been used: R = Rc = 3 km; ΔT = 20 minutes; k = 1 
event; Nmin = 50 events. In the upper part of Fig. 1, two screenshots of the map dis-
play show situations at two different time moments of the stream monitoring process 
with the time horizon TH = 20 minutes.  

The clusters of lightning strike events are visually represented using several com-
plementary techniques. The semi-transparent polygons represent the spatial convex 
hulls of the clusters. The violet-colored polygons show the cluster shapes and extents 
at the current time moment t. The light gray polygons enclose the cluster states that 
took place during the interval [t-TH, t]. The cluster sizes (i.e., the total event counts) 
are represented by proportional sizes of the red circles. The purple lines show the 
trajectories of the cluster centers. By hovering the mouse cursor over the trajectories, 
as shown on the top left of Fig. 3, the user can obtain information about the cluster 
states at different times. 
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The map screenshots clearly show that the event clusters move over time in the 
northeastern direction.  The big cluster on the top right is a result of several neighbor-
ing clusters having merged. 

In the lower part of Fig. 3, the cluster histories from a 2-hour time interval are pre-
sented on a map (left) and in a space-time cube (right). The clusters are differently 
colored, to enable easier distinguishability. On the map, the colored polygons show 
the latest states of the clusters and the light grey polygons enclose all their member 
events. In the space-time cube, the colored three-dimensional shapes show the spatio-
temporal extents and evolutions of the clusters. 

  

  

Fig. 1. Top: two screenshots of the map display showing the situations in different time intervals. 
Bottom: the final clusters are represented on a map and in a space-time cube. 
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