
Logic-Based Incremental Process Mining

Stefano Ferilli1,2(B), Domenico Redavid3, and Floriana Esposito1,2

1 Dipartimento di Informatica, Università di Bari, Bari, Italy
{stefano.ferilli,floriana.esposito}@uniba.it

2 Centro Interdipartimentale per la Logica e Applicazioni,
Università di Bari, Bari, Italy

3 Artificial Brain S.r.l., Bari, Italy
redavid@abrain.it

Abstract. Manually building process models is complex, costly and
error-prone. Hence, the interest in process mining. Incremental adapta-
tion of the models, and the ability to express/learn complex conditions
on the involved tasks, are also desirable. First-order logic provides a
single comprehensive and powerful framework for supporting all of the
above. This paper presents a First-Order Logic incremental method for
inferring process models. Its efficiency and effectiveness were proved with
both controlled experiments and a real-world dataset.

1 Introduction

A process is a sequence of events associated to actions performed by agents.
A workflow is a formal specification of how a set of tasks can be composed to
result in valid processes, including sequential, parallel, conditional, or iterative
execution. Each task may have preconditions and postconditions. An activity
is the actual execution of a task. A case is a particular execution of actions
compliant to a given workflow. Traces of cases may take the form of lists of
events described by 6-tuples (T,E,W,P,A,O) where T is a timestamp, E is
the type of the event (begin of process, end of process, begin of activity, end of
activity), W is the name of the workflow the process refers to, P is a unique
identifier for each process execution, A is the name of the activity, and O is the
progressive number of occurrence of that activity in that process. A simple trace
for an evening daily routine process case might be:

(201310151930,begin of process,evening,1,start,1).
(201310151930,begin of activity,evening,1,prepare dinner,1).
(201310152005,end of activity,evening,1,prepare dinner,1).
(201310152010,begin of activity,evening,1,watch tv,1).
(201310152022,begin of activity,evening,1,have dinner,1).
(201310152113,end of activity,evening,1,have dinner,1).
(201310152240,end of activity,evening,1,watch tv,1).
(201310152245,begin of activity,evening,1,use bathroom,1).
(201310152358,end of activity,evening,1,use bathroom,1).
(201310152358,end of process,evening,1,stop,1).

c© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 218–221, 2015.
DOI: 10.1007/978-3-s319-23461-8 17



Logic-Based Incremental Process Mining 219

Process mining aims at inferring workflow models from examples of cases.
As reported in [4], previous works have encountered problems in dealing with
concurrency or in considering different occurrences of the same activity. Using
statistics about task frequency and mutual ordering yields less and less accurate
models as long as the number of parallel tasks and/or nested loops increases.
Genetic algorithms require very long times. Previous approaches in Declarative
Process Mining, concerned with logic-based representations, including an incre-
mental one, need both positive and negative examples, which is not standard in
the process mining setting. Some works also tried to handle noise and probabil-
ities and investigated the possibility of mining/inducing simple boolean condi-
tions for the activities in a propositional setting [1,5]. Here we describe WoMan,
an incremental process mining system based on First-Order Logic (FOL). FOL
provides a great expressiveness potential to describe in a unified framework cases,
models and contextual information.

2 A FOL-Based Proposal

WoMan [4] works in the declarative multi-relational learning setting. We trans-
late case traces into FOL conjunctions based on two predicates:

activity(S,T) : at step S task T is executed;
next(S′,S′′) : step S′′ follows step S′.

where the S’s represent timestamps denoted by unique identifiers. The previous
trace would translate to:

activity(s0,start), next(s0,s1), activity(s1,prepare dinner), next(s1,s2),
activity(s2,watch tv), next(s1,s3), activity(s3,have dinner), next(s2,s4), next(s3,s4),

activity(s4,use bathroom), next(s4,s5), activity(s5,stop)

The process model is described as a FOL conjunction based on two predicates:

task(t,C) : task t occurs in the multiset of cases C;
transition(I,O,p,C) : transition p, that occurs in the multiset of cases C,

consists in ending all tasks in I and starting all tasks in O.

C can be exploited for computing statistics on the use of tasks and transitions,
and thus to handle noise. A fragment of model accounting for the previous case
would be:

task(prepare dinner,[1,. . . ]). transition([start]-[prepare dinner],1,[1,. . . ]).
task(watch tv,[1,. . . ]). transition([prepare dinner]-[watch tv,have dinner],2,[1,. . . ]).
task(have dinner,[1,. . . ]). transition([watch tv,have dinner]-[use bathroom],3,[1,. . . ]).
task(use bathroom,[1,. . . ]). transition([use bathroom]-[stop],4,[1,. . . ]).

This formalism is more expressive than Petri nets, in particular as regards the
possibility of specifying invisible or duplicate tasks. It also permits to easily
handle complex or tricky cases that require dummy or artificially duplicated



220 S. Ferilli et al.

task nodes, that cannot be handled by current approaches in the literature.
This representation can be naturally extended by adding relevant contextual
information expressed using user-defined, domain-specific predicates.

While learning the workflow structure, the FOL case descriptions, possibly
extended with contextual information, can be also exploited as examples for
learning task pre-conditions, using a FOL incremental learning system (e.g.,
InTheLEx [3]). In the previous case, a learned rule might be:

prepare dinner(X) :- day(X,D), saturday(D), bad weather(X).

(meaning that if at timestamp X it is bad weather, and it is saturday, then task
prepare dinner is enabled).

Differently from all previous approaches, WoMan is fully incremental : it can
start with an empty model and learn from one case (while others need a large set
of cases to draw significant statistics), and can refine an existing model accord-
ing to new cases. This is a significant advance to the state-of-the-art, because
continuous adaptation of the learned model to the actual practice can be carried
out efficiently, effectively and transparently to the users. The learned model can
be submitted to experts for analysis purposes, for improving their understand-
ing of the process or for manually tailoring it. It can also be used to generate
possible cases, or to supervise future behavior of the users and check whether
it is compliant with the learned model, raising suitable warnings otherwise. The
user’s response to such warnings might be exploited to fix or refine the model.

3 Evaluation

A first evaluation of the proposed methodology used 11 artificial workflow mod-
els purposely devised to stress the learning methods, each involving different
combinations of complexities and potentially tricky features. The experimental
setting was as in [6]: 1000 training cases were randomly generated for each model
and used to learn the model. This was repeated several times to ensure that the
random generation did not affect the outcome. WoMan was able to learn the
correct model in all cases within a few seconds and using less than 50 training
cases. Even using 1000 examples, the technique in [6] was unable to learn 7 out
of 11 test models. [2] learned the correct model only in 2 cases; nearly half of the
times the wrong models did not even fulfill the syntactic requirements for Petri
Nets; once it could not converge within a 6-hour limit.

WoMan was also tested on a real-world task concerning daily routines of
people. Specifically, we used the Aruba dataset from the CASAS repository
(http://ailab.wsu.edu/casas/datasets.html). It includes 220 cases involv-
ing 11 tasks, for a total of 13788 trace events. Learning showed a substantial
convergence within the first 10 examples. A YAP Prolog 6.2.2 implementation
of WoMan processed the whole dataset in 0.1 sec (including translation of traces
into FOL). The learned model’s average accuracy, evaluated by 10-fold cross-
validation, was 92% (consider that each missed case costs nearly 5% accuracy).
[6] and [2] returned formally wrong models according to Petri Net specifications.



Logic-Based Incremental Process Mining 221

Using as contextual information the status of the sensors installed in the
Aruba home, task preconditions were learned as well. The Aruba dataset yielded
5976 training examples (27.16 per case on average) for learning task precondi-
tions, but InTheLEx converged to the target theory using very few refinements
(12 new clauses + 78 generalizations = 90 overall), taking only 10.97 sec per
case on average. It was able to avoid overgeneralization, returning meaningful
preconditions for 8 out of 11 tasks.

4 Conclusions

This paper presented WoMan, a process mining system based on First-Order Logic
representations. It exploits a more expressive representation than previous propos-
als. Its incremental approach allows to learn from scratch and converge towards
correct models using very few examples. It can also handle the context in which
the activities take place, thus allowing to learn complex (and human-readable) pre-
conditions for the tasks, using an First-Order Logic incremental learner. It can
also handle noise in a straightforward way. Both controlled hard experiments and
domain-specific ones, concerning people’s daily routines, revealed that the method
ensures quick convergence towards the correct model, using much less training
examples than would be required by statistical techniques.

Acknowledgments. This work was partially funded by the Italian PON 2007-2013
project PON02 00563 3489339 ‘Puglia@Service’.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

2. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic pro-
cess mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007)

3. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning Journal 38(1/2), 133–156
(2000)

4. Ferilli, S.: Woman: Logic-based workflow learning and management. IEEE Trans-
actions on Systems, Man and Cybernetics: Systems 44(6), 744–756 (2013)

5. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management
to support acquisition and adaptation of workflow models. In: Proceedings of the
9th International Workshop on Database and Expert Systems Applications, pp.
745–752. IEEE (1998)

6. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data. In: Hoste, V., De Pauw, G., (eds.) Proceedings of the 11th Dutch-
Belgian Conference of Machine Learning (Benelearn 2001), pp. 93–100 (2001)


	Logic-Based Incremental Process Mining
	1 Introduction
	2 A FOL-Based Proposal
	3 Evaluation
	4 Conclusions
	References


