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Abstract. In this paper, we propose a new method for features learning from 
unlabeled data. Basically, we simulate k-means algorithm in deep network  
architecture to achieve hierarchical Bag-of-Words (BoW) representations. We 
first learn visual words in each layer which are used to produce BoW feature 
vectors in the current input space. We transform the raw input data into new 
feature spaces in a convolutional manner such that more abstract visual words 
are extracted at each layer by implementing Expectation-Maximization (EM) 
algorithm. The network parameters are optimized as we keep the visual words 
fixed in the Expectation step while the visual words are updated with the  
current parameters of the network in the Maximization step. Besides, we  
embed spatial information into BoW representation by learning different  
networks and visual words for each quadrant regions. We compare the proposed 
algorithm with the similar approaches in the literature using a challenging  
10-class-dataset, CIFAR-10. 
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1 Introduction 

The main goal of a learning algorithm is generalization which refers to the ability of 
having satisfactory performance on the test samples, based on what it has learned in 
the training phase. At this point of view, our hypothesis function should be robust to 
bias-variance dilemma [1] which means to construct a learning structure neither too 
complex for overfitting, nor too simple for underfitting. To do so, we must give our 
attention mainly to representation learning. This can be described as learning trans-
formations, or posterior distributions in the case of probabilistic models, for the un-
derlying factors of the raw data that extract useful information [2]. Furthermore, we 
can make the learning algorithm less dependent on the features that are extracted in an 
unsupervised manner by using huge amount of unlabeled data. Additionally,  
the source domain may not be the same as or similar to the target domain. This is 
where Deep Learning Architectures (DLA) proves to be the most successful learning 
algorithm on the shelf. Unlike hand-engineered feature extraction methods like Scale 
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Invariant Feature Transform (SIFT) [3], Speeded Up Robust Features (SURF) [4], 
Pyramid Histogram of Oriented Gradients (PHOG) [5] or GIST [6]; DLA can extract 
useful features without explicitly using input data statistics. 

DLA can be summarized as the multi-layer neural network structures that are 
formed by the composition of multiple nonlinear transformations of the input data. 
They aim to have more abstract intermediate features implicitly in deeper layers. By 
using a deep network, in the case of visual data, one can learn part-to-whole and low 
level-to-semantic decompositions. What makes DLA effective in representation learn-
ing is that they can extract hierarchical features from huge amount of unlabeled data 
that would prevent overfitting while they are sufficiently complex which might help 
to recover from underfitting. 

In this work, we propose an unsupervised feature learning algorithm for image 
classification that is based on a deep architecture. Basically, we try to model the fea-
ture extraction hierarchically by using unlabeled data through the deep network. The 
studies based on this basic principle such as [7, 8, 9, 10] use hidden layer activations 
(i.e. the last layer’s activations or the activations of all hidden layers in a concatenated 
vector) as the new feature vector to be classified. However, we claim that each hidden 
layer of a deep network corresponds to a different perspective of the same input in 
another feature space. Therefore, the concatenation alone does not improve the per-
formance adequately. In addition, we do not use the complementary efforts of the 
previous layers if we consider only the last layer’s activations at the supervised classi-
fication step. We, on the other hand, implement soft weighted Bag-of-Words (BoW) 
representations [8], [11], and [12] in the classification by simulating k-means algo-
rithm iteratively for finding visual words at each layer of the deep network. Addition-
ally, we associate spatial layout information by dividing each image into quadrant 
regions and implementing the model for each region individually. Finally, the image 
is represented by a pyramid of BoWs. 

2 Related Work 

The era of the deep networks starts in the 1940’s as ‘neural networks’. We can de-
scribe deep networks as the multi-layer neural structures for data modeling that im-
itate the most powerful learning bio-machine, brain. One of the key findings has been 
that the neo-cortex, associated with many cognitive abilities, is layered and hierar-
chical. It allows sensory signals (i.e. visual, acoustic) to propagate through a complex 
hierarchy [13] of computational elements (i.e. neurons) that learn to represent obser-
vations based on the regularities they expose. The hierarchical nature is that generally 
the upper layers represent increasingly discriminative representations and are more 
invariant to transformations such as illumination, scale, rotation and translation.  
Although it promises to approximate any complex function theoretically, it has not 
been used widely because of two main restrictions until 2006 when Hinton et al.  
propose a new approach [10], called ‘greedy layer-wise unsupervised pre-training’. 
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First, traditional gradient based feed forward – back propagation multi-layer net-
works have a supervised learning objective which refers to the need of labeled data. 
However, labeled data are often scarce, and the quality of supervision is directly pro-
portional to the experience of human subjects. In short, it is a labor-intensive and 
application specific job. Given the high expressive power of deep networks, training 
on insufficient labeled data would also result in overfitting. Another thing is that 
training a neural network at once involves solving a highly complex and non-convex 
optimization problem which leads to bad local optima. Because we use nonlinear 
computational elements (e.g. hyperbolic tangent, sigmoid) in sequential layers and 
initialize the parameters of the system randomly while trying to minimize them for 
regularization. As a result, the weights of the earlier layers change slowly, and fail to 
learn much. 

To overcome the problems of supervision and bad local optima, greedy layer-wise 
unsupervised pre-training is proposed initially in [10] and [14]. The main idea is to 
learn a hierarchy of intermediate features layer by layer from unlabeled data. We first 
train a network with only one hidden layer, and only after that is achieved, we start 
training a network with two hidden layers while keeping the first layer’s weights 
fixed, and so on. Finally, the set of learned layers could be combined to initialize the 
whole deep network. By using unlabeled data to learn a good initial value for the 
weights in all the layers, algorithm is now able to learn and discover patterns from 
massive amount of data while avoiding bad local optima. One can refer to Auto-
Encoders (AEs) and Restricted Boltzmann Machines (RBMs) [15] as the primitives or 
building blocks of the deep learning architectures. 

As mentioned above, the deep architectures consist of multiple hidden layers that 
are assumed to extract more abstract features at their activations when we go deeper. 
That would be a smart way to ‘stack’ AEs and RBMs to get discriminative features in 
the deep architectures. If we stack these two building blocks together, we produce 
popular deep networks, Stacked Auto Encoders (SAEs) and Deep Belief Networks 
(DBNs), respectively. To use these structures as classifiers combined with feature 
learning, we add another layer at the output (i.e. softmax classifier) and may update 
the parameters of the system at once. These deep networks are implemented in many 
computer vision problems like object recognition [7], face detection [17] and event 
detection [18], achieving state-of-art performances. 

There is a serious problem with AEs, in that if the hidden layer is similar or greater 
in size than the input (i.e. over-complete) then the algorithm could simply learn the 
identity function. It means that we may not get discriminative features. On the other 
side, we can get higher accuracy in over-complete structures since we make the sys-
tem more complex. One option is to input corrupted signal and train the system in a 
way to reconstruct the clean input, which is called De-noising Auto-Encoder (DAE). 
DAE is successfully implemented in [9] for digit recognition and object classification 
in a stacked and convolutional manner. Another rational way to get robustness into 
the system is masking the hidden layer’s activations, instead of masking the input for 
corruption. This is called ‘dropout’ [19] in the literature where we make a variable 
amount v of the activations 0. The parameter v represents the percentage of masking 
to deactivate the outputs of the hidden layer. Finally, we introduce sparsity into the 
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architecture. In particular, if we impose a sparsity constraint on the hidden units, then 
the AE will still discover interesting structure in the data, even if the number of hid-
den units is large [20]. 

Finally for comparison to our work, Gong et. al. [25] discusses the benefits of deep 
Convolutional Neural Networks (CNN) especially for retrieval and classification 
tasks. They argue that Bag-of-Words approach introduces an orderless spectrum 
which loses the spatial information while CNN depends on too much globally ordered 
spatial information which lacks especially geometric invariance. To overcome the 
insufficiencies of the both sides, they combine two approaches at a common platform 
which is called Multi-scale Orderless Pooling (MOP-CNN). They handle an image at 
3 levels for multi-scale representation each of which divides its upper level into qua-
drants, and the level 1 is the whole image. In this configuration, level 1 is the tradi-
tional CNN activations that already preserves the global spatial layout while they 
implement k-means+VLAD (Vectors of Locally Aggregated Descriptors) [26] algo-
rithm at level 2 and 3 for orderless representations of the patches in order to achieve 
geometric invariance in a concatenated features vector. For comparison, their start 
point is a pre-trained seven-layer CNN at each layer, and there is no transitional con-
nection between CNN levels for data representation. Additionally, they use k-means 
to find centroids for VLAD score aggregation and PCA for dimension reduction. On 
the other hand, we propose connections between scale levels where the next level uses 
the hidden layer activations of the previous level for BoW representations; and the 
last layer represents again the whole image with the composite activations of the  
quadrants of the previous level. 

So far, we have given important details of deep network architectures and their im-
plementations. It is a common practice to use the resulting unsupervised feature repre-
sentations either as input to a classifier directly, or as initialization for a supervised 
deep neural network. Alternatively, the outputs of the previous layer may be treated as 
extra inputs, with the original signal, for the next layer. Although it seems very rea-
sonable to use the hidden layers’ activations directly as a new representation, we hy-
pothesize that the system might get poor performance because the activation values 
are in tight range. Assuming that there is high variance within input data and a limited 
number of neurons in the hidden layers, the classifier would not approximate the data 
satisfactorily, leading to underfitting. On the other hand, we may just replicate the 
data, other than learning useful structures, when we increase the complexity of the 
system with more neurons, leading to overfitting. To avoid both situations, we need to 
add randomness or sparsity into the system while adjusting the number of neurons 
carefully. 

Instead of handling aforementioned issues, we introduce a new approach which 
learns visual words (i.e. code words) hierarchically while training the deep network. 
We use them to construct BoW representations as a new feature space, not the neuron 
activations itself. To do so, k-means algorithm is simulated in the deep network. We 
additionally use spatial information by implementing pyramid-like representations as 
in [12]. 



70 E. Ergul et al. 

3 Unsupervised Feature Extraction 

3.1 Deep Network Architecture 

We propose a 3-hidden layer neural network that is trained in a greedy layer wise 
learning scheme to extract BoW representations at each layer, sequentially. After 
learning some features at a lower layer, we go further with these learned features and 
start learning the next layer’s weights while keeping the previous ones fixed. Basical-
ly, we repeat the same procedure at each layer which is to update the system parame-
ters for finding the fundamentals of a BoW representation, i.e. code words. Fig. 1 
summarizes the proposed deep structure visually. 

Given a set of unlabeled training images X={x(1), x(2), x(3), ..., x(i)}, x(i) ϵ Rnxlxd, where 
n and l are image sizes and d is the color dimension, we first select a large number of 
patches randomly from the whole image set. We use them as the input signal for the 
first layer. Each patch has a dimension of w-by-w and has d color channels. So each 
patch can be represented as a vector of M (i.e. M equals to w*w*d) pixel intensity 
values. But we do not use the intensity values directly as they contain noise and corre-
lation. In our work, we apply contrast normalization that of zero mean-unit standard 
deviation, and whitening for uncorrelation with the same variance, operations to the 
intensity values in the preprocessing stage. Given a set of z patch examples, we then 
define the overall cost function of a typical single-layer network to be: 
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where hW,b(p)=f(WT*p + b), f : R  R, is the hypothesis function (i.e. the prediction 
of the system for a sample patch input pattern, p), W and b are the collection of para-
meters to be minimized, y is the target value and λ is the regularization term. Note that 
the hypothesis function is nonlinear and non-convex as the activation functions, f(·), 
are nonlinear; and the parameters are initialized randomly, near to zero. To summar-
ize, we try to find the optimum solution by minimizing the average sum-of-squares 
error while penalizing the high magnitude of the weights to prevent overfitting. Since 
this function is derivable, gradient based algorithms can be used to find the optimum 
parameters and back propagation method is run to calculate derivations. 

 

Fig. 1. Overview of the proposed image representation 
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As we have mentioned before, the AE neural networks optimize the parameters in 
an unsupervised way by setting the target values to be equal to the inputs, i.e. y(j)=p(j). 
Our algorithm differs from the auto-encoder method in that we set the target values to 
the visual words, c(i). So we try to learn code words rather than identity function by 
simulating k-means algorithm in the network which will be detailed in the next part of 
this section. 

3.2 Simulating K-Means in the Network 

We hypothesize that we may achieve representative code words while optimizing the 
neural network because k-means resembles of the neural network structure in encod-
ing-decoding and reconstruction aspects. So one can transform the input space into 
another space (i.e. more discriminative) by using the hidden layer activations and 
continue learning deeper structures while producing BoW representations from visual 
words for classification tasks. We first take randomly k patch instances as the initial 
centroids, c(i). Thereafter, we find the nearest centroid for each input and set the target 
values to the selected centroids, i.e. y(j)=c(i). Now we can run the feed forward – back 
propagation algorithm in mini batches to update the system parameters by using (1). 
Note that we keep the centroids, c(i), fixed until we complete all training examples in 
one epoch. At the end of each epoch, we then update the centroids with the current 
parameters in the latent space of the current layer: 
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The activation values of the hidden layer are recorded for both inputs and centroids  
after updating the network parameters, W and b, in an epoch. Finally, we assign the near-
est centroid to each patch in this new domain but we update the centroids in the original 
input space as in maximization step of (3). These two steps are followed alternately until 
the cost is under some threshold or the iterations reach to a predetermined number. 
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3.3 Hierarchical Bag-of-Words Representation 

Assuming that we have learned the current layer, we can now produce BoW represen-
tations for the input image by using the tuned centroids, c(i). We first extract all 
patches with a dimension of w-by-w in a convolutional way by one-pixel spacing. 
After preprocessing, we run the network to compute the hidden layer activations 
which will be used as the input to the next layer. This corresponds to a valid convolu-
tion that extracts local patterns in the receptive fields. Additionally, the nonlinear 
voting scheme of [8] is implemented to the patches of the input image for BoW repre-
sentations as it is simple to implement, and it offers a softer and sparse encoding. 

After extracting global feature maps from patch descriptions for images, we now 
aim to get local features, again in an unsupervised manner. More formally, we coarse-
ly segment the feature maps, the activations of the first hidden layer, spatially into 
quadrants and train another specific network for each quadrant. The intuition is that 
we may extract more abstract feature maps and BoW representations after the first 
layer, plus spatial information by segmentation is achieved. We follow the same pro-
cedure in the second layer. We randomly select patches from the quadrant feature 
maps and use them for the input to the network, respectively. We finally get another 
convolutional feature maps that are specific to quadrants while producing new BoW 
representations. Before going through the third layer, we first join the quadrant fea-
ture maps to get an integral input, and then repeat the same procedure. The intuition 
of the last layer is that we may correlate the spatial information that is extracted from 
each quadrant individually. Besides, we may get better performance in a holistic  
representation. Also note that we only whiten the input of the 2nd and 3rd layer as  
a preprocessing step. The proposed network architecture for hierarchical BoW  
representations is depicted in Fig. 2. 

 

Fig. 2. The proposed three-hidden layer network for hierarchical BoW representations 
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We can now use the BoW feature vectors layer by layer, in pairs or concatenated at 
once to represent the instances in a new feature space. This pyramid like structure has 
been first proposed in [12] and proved to increase the performance. Given these  
hierarchical BoW representations extracted from the 3-hidden-layer network, we ap-
ply standard discriminant algorithms to the labeled training data. In our experiments, 
we use L2 Support Vector Machines (SVM) classification method. Cross-validation is 
implemented to adjust the constant factor (i.e. C) of the SVM. The experimental setup 
and results are explained in the next section. 

4 Performance Evaluation 

In the experiments, we use a very popular dataset in the literature for object classifica-
tion, CIFAR-10. The detailed information about this dataset can be found at [22]. It 
consists of 32-by-32 50,000 training RBG images which are divided by 5 equal batches, 
all of them in one of 10 object categories. The test set is already separated and it consists 
of 10,000 unseen images, and the task is to classify each to its category. 

We construct a 3-hidden-layer network for unsupervised feature learning. Code 
words are found at each layer while optimizing the network parameters. We use the 
code words for hierarchical BoW representations, and the learned layers to transform 
the input into feature maps for the next layer. In detail, we use 7-by-7 patches for the 
first layer, 2-by-2 patches for the second and the third layers as input, with a standard 
stride of 1 pixel. We feed huge amount of randomly selected patches (i.e. about 
500,000) at each layer to optimize the parameters. Notice that we decrease the patch 
size after the first layer and we have two reasons for doing so. First, the feature maps 
where each point is h-dimensional (i.e. the number of neurons at the previous hidden 
layer) are fed as the input after the first layer. Increasing the size means increasing the 
complexity of the network. Second, we need to have sufficiently enough sample 
patches to create a stable BoW representation, which is to decrease the patch size. But 
this would also decrease the complexity. So we offset the complexity by adding the 
mean values of each activation channel within the patch window, like in [17].  
Besides, we use hyperbolic tangent function at the hidden layer and no function  
(i.e. linear) at the output neurons. 

Another detail is that we use BoW representations in the classification step while 
the others [8, 9, 10, 18, 19] use the hidden layer activations directly to produce a new 
feature vector for the instances. So they usually need an over-complete structure 
which leads to an extra computational cost. With regards to our approach, the dimen-
sionality of the feature vector depends on the number of code words, not related to the 
network structure. This is an advantage over the other works. For comparative results, 
we set the number of centroids sequentially to 100, 200, 400, 800, 1200, 1600 as in 
[8]; and the test accuracies are displayed in Fig. 3. In the experiments, we use 30 neu-
rons in each layer which are determined by cross-validation and it is much smaller 
than the input. Finally, it is worth to note that we implement contrast normalization to 
the first layer’s input, and whitening to all layers’ inputs as the preprocessing steps. 

We first analyze classification results of the BoW representations in pyramid form 
at Table 1. The experiments are repeated 30 times and the average results are noted. It 
shows the performance rates at single and multiple layers of the pyramid similar to 
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format in [12]. The pyramid form refers to the BoW vectors of the previous and the 
current layers. It is obvious that we get better performances in deeper layers. The best 
single layer performance is achieved at layer two with 72.16%. We conclude that the 
spatial information improves the performance when we divide an image into finer 
sub-regions. Besides, more discriminative representations are produced as we use 
BoW representations together. The hierarchical BoW representations provide up to 
11% increments in classification result when the pyramid forms are used. In overall, 
2% increase is achieved when compared to [8] in this particular dataset. 

Next, we compare the performance of our method to the similar unsupervised fea-
ture learning approaches at Table 2. They mainly use the building blocks that we have 
already mentioned in section 2; like AEs, RBMs and CNNs. Although our work is 
much less complex, except k-means [8], we slightly outperform the others at mini-
mum about 1%. This indicates that better performances may be achieved by using the 
features of all layers together in a computationally efficient way. 

Table 1. Classification results of the BoW Representations in pyramid form. 

 Pyramid of BoWs 

W = 1600  

Layer 
Single 

Layer (%) 

Pyramid 

Layers (%) 

1 68.24 ---

2 72.16 77.45

3 70.17 79.72

Table 2. Classification performances of the algorithms on CIFAR-10 test set. 

Algorithms Accy. 

(%) 

3-way Factorized RBM [23] 65.3 

Convolutional RBM [21] 78.9 

Sparse Auto-encoder [8] 73.4 

Sparse RBM [8] 72.4 

Triangle k-means [8] 77.9 

Mean-Covariance RBM [24] 71.0 

Convolutional Neural Network [9] 77.5 

Concolutional Auto-Encoder [9] 78.2 

Proposed 3-layer BoW Encoder 79.7 

 
Later, we compare the performances of some methods by changing the dimensio-

nality of features in Fig. 3. It is determined by the number of centroids for the  
k-means and our approach while it is the number of neurons in the hidden layers  
for AEs and RBMs. As expected, all algorithms get higher rates by learning more 
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features. Our work is always better than single layer AE and RBM. On the other side, 
k-means method outperforms ours by a certain level, 400 features, but we start getting 
better performances from that point. We can say that the hierarchical representations 
improve the performance in simple structures. 

 

Fig. 3. Comperative results with different number of centroids (or bases) 

Finally, we investigate the effect on the overall accuracy of the patches sizes that 
are used to feed the network. While we keep 2-by-2 size fixed for the second and the 
third levels, the patch size is changed as the input to the first layer for further evalua-
tions. Also note that stride is still 1 pixel in all levels, the number of centroids is 1600. 
At Table 3, we see that the patch size does not significantly impact on the overall 
performance which is also acknowledged in [8]. Instead, the number of features (i.e. 
centroids) and the stride size are more effective parameters. The intuition in here is 
that reasonably high dimensionality for the feature vector mostly introduces better 
discrimination and we get more samples for the BoW representations if the stride is 
reduced. 

Table 3. The effect of receptive field sizes on the overall accuracy. 

Patch Size Accy. (%) 
2 77.4 

3 77.6 

5 78.9 

7 79.7 
9 79.1 

12 78.6 
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5 Conclusion 

In this paper, we analyze the deep network structures in greedy layer-wise unsuper-
vised feature learning. A three-hidden-layer network is learned to produce code words 
by simulating k-means algorithm which leads to hierarchical BoW representations. 
Huge amount of unlabeled patch instances are fed to learn single layer parameters and 
the code words in EM steps. Only after that is done, we start training the next layer 
while keeping the previous layer’s weights fixed, and so on. Note that we do not 
count on the hidden layer activations directly in classification task. 

We gain two basic advantages in this manner. First, the relation between the num-
ber of hidden layer neurons and the dimensionality of the feature vectors is broken. 
Thus one can get more dimensional feature vectors efficiently by using simple net-
works in our approach. Second, the feature vectors are less constrained since we use 
code words to achieve BoW vectors. Additionally, we associate location information 
with the conventional BoW representation. This is accomplished by dividing the input 
into quadrant regions at the second layer and implementing a network for each sub-
region individually. In experiments, we see that the performance is increased as we 
combine the hierarchical BoW representations, leading to outperform more complex 
approaches in the literature. 

For the future work, we plan to embed hierarchical segmentation into this approach 
for more discriminative code words, and to develop a holistic fine-tuning procedure 
for updating the parameters after greedy layer-wise training. 
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