
© Springer International Publishing Switzerland 2015
V. Murino and E. Puppo (Eds.): ICIAP 2015, Part II, LNCS 9280, pp. 66–77, 2015.
DOI: 10.1007/978-3-319-23234-8_7

Hierarchical Image Representation Using Deep Network

Emrah Ergul1, Sarp Erturk1, and Nafiz Arica2()

1 Electronics & Communication Engineering Department of Kocaeli University,
Kocaeli, Turkey

{106103002,sertur}@kocaeli.edu.tr
2 Software Engineering Department of Bahcesehir University, Istanbul, Turkey

nafiz.arica@eng.bahcesehir.edu.tr

Abstract. In this paper, we propose a new method for features learning from
unlabeled data. Basically, we simulate k-means algorithm in deep network
architecture to achieve hierarchical Bag-of-Words (BoW) representations. We
first learn visual words in each layer which are used to produce BoW feature
vectors in the current input space. We transform the raw input data into new
feature spaces in a convolutional manner such that more abstract visual words
are extracted at each layer by implementing Expectation-Maximization (EM)
algorithm. The network parameters are optimized as we keep the visual words
fixed in the Expectation step while the visual words are updated with the
current parameters of the network in the Maximization step. Besides, we
embed spatial information into BoW representation by learning different
networks and visual words for each quadrant regions. We compare the proposed
algorithm with the similar approaches in the literature using a challenging
10-class-dataset, CIFAR-10.

Keywords: Deep network architectures · Image classification · Unsupervised
feature extraction · Bag-of-words representation

1 Introduction

The main goal of a learning algorithm is generalization which refers to the ability of
having satisfactory performance on the test samples, based on what it has learned in
the training phase. At this point of view, our hypothesis function should be robust to
bias-variance dilemma [1] which means to construct a learning structure neither too
complex for overfitting, nor too simple for underfitting. To do so, we must give our
attention mainly to representation learning. This can be described as learning trans-
formations, or posterior distributions in the case of probabilistic models, for the un-
derlying factors of the raw data that extract useful information [2]. Furthermore, we
can make the learning algorithm less dependent on the features that are extracted in an
unsupervised manner by using huge amount of unlabeled data. Additionally,
the source domain may not be the same as or similar to the target domain. This is
where Deep Learning Architectures (DLA) proves to be the most successful learning
algorithm on the shelf. Unlike hand-engineered feature extraction methods like Scale

 Hierarchical Image Representation Using Deep Network 67

Invariant Feature Transform (SIFT) [3], Speeded Up Robust Features (SURF) [4],
Pyramid Histogram of Oriented Gradients (PHOG) [5] or GIST [6]; DLA can extract
useful features without explicitly using input data statistics.

DLA can be summarized as the multi-layer neural network structures that are
formed by the composition of multiple nonlinear transformations of the input data.
They aim to have more abstract intermediate features implicitly in deeper layers. By
using a deep network, in the case of visual data, one can learn part-to-whole and low
level-to-semantic decompositions. What makes DLA effective in representation learn-
ing is that they can extract hierarchical features from huge amount of unlabeled data
that would prevent overfitting while they are sufficiently complex which might help
to recover from underfitting.

In this work, we propose an unsupervised feature learning algorithm for image
classification that is based on a deep architecture. Basically, we try to model the fea-
ture extraction hierarchically by using unlabeled data through the deep network. The
studies based on this basic principle such as [7, 8, 9, 10] use hidden layer activations
(i.e. the last layer’s activations or the activations of all hidden layers in a concatenated
vector) as the new feature vector to be classified. However, we claim that each hidden
layer of a deep network corresponds to a different perspective of the same input in
another feature space. Therefore, the concatenation alone does not improve the per-
formance adequately. In addition, we do not use the complementary efforts of the
previous layers if we consider only the last layer’s activations at the supervised classi-
fication step. We, on the other hand, implement soft weighted Bag-of-Words (BoW)
representations [8], [11], and [12] in the classification by simulating k-means algo-
rithm iteratively for finding visual words at each layer of the deep network. Addition-
ally, we associate spatial layout information by dividing each image into quadrant
regions and implementing the model for each region individually. Finally, the image
is represented by a pyramid of BoWs.

2 Related Work

The era of the deep networks starts in the 1940’s as ‘neural networks’. We can de-
scribe deep networks as the multi-layer neural structures for data modeling that im-
itate the most powerful learning bio-machine, brain. One of the key findings has been
that the neo-cortex, associated with many cognitive abilities, is layered and hierar-
chical. It allows sensory signals (i.e. visual, acoustic) to propagate through a complex
hierarchy [13] of computational elements (i.e. neurons) that learn to represent obser-
vations based on the regularities they expose. The hierarchical nature is that generally
the upper layers represent increasingly discriminative representations and are more
invariant to transformations such as illumination, scale, rotation and translation.
Although it promises to approximate any complex function theoretically, it has not
been used widely because of two main restrictions until 2006 when Hinton et al.
propose a new approach [10], called ‘greedy layer-wise unsupervised pre-training’.

68 E. Ergul et al.

First, traditional gradient based feed forward – back propagation multi-layer net-
works have a supervised learning objective which refers to the need of labeled data.
However, labeled data are often scarce, and the quality of supervision is directly pro-
portional to the experience of human subjects. In short, it is a labor-intensive and
application specific job. Given the high expressive power of deep networks, training
on insufficient labeled data would also result in overfitting. Another thing is that
training a neural network at once involves solving a highly complex and non-convex
optimization problem which leads to bad local optima. Because we use nonlinear
computational elements (e.g. hyperbolic tangent, sigmoid) in sequential layers and
initialize the parameters of the system randomly while trying to minimize them for
regularization. As a result, the weights of the earlier layers change slowly, and fail to
learn much.

To overcome the problems of supervision and bad local optima, greedy layer-wise
unsupervised pre-training is proposed initially in [10] and [14]. The main idea is to
learn a hierarchy of intermediate features layer by layer from unlabeled data. We first
train a network with only one hidden layer, and only after that is achieved, we start
training a network with two hidden layers while keeping the first layer’s weights
fixed, and so on. Finally, the set of learned layers could be combined to initialize the
whole deep network. By using unlabeled data to learn a good initial value for the
weights in all the layers, algorithm is now able to learn and discover patterns from
massive amount of data while avoiding bad local optima. One can refer to Auto-
Encoders (AEs) and Restricted Boltzmann Machines (RBMs) [15] as the primitives or
building blocks of the deep learning architectures.

As mentioned above, the deep architectures consist of multiple hidden layers that
are assumed to extract more abstract features at their activations when we go deeper.
That would be a smart way to ‘stack’ AEs and RBMs to get discriminative features in
the deep architectures. If we stack these two building blocks together, we produce
popular deep networks, Stacked Auto Encoders (SAEs) and Deep Belief Networks
(DBNs), respectively. To use these structures as classifiers combined with feature
learning, we add another layer at the output (i.e. softmax classifier) and may update
the parameters of the system at once. These deep networks are implemented in many
computer vision problems like object recognition [7], face detection [17] and event
detection [18], achieving state-of-art performances.

There is a serious problem with AEs, in that if the hidden layer is similar or greater
in size than the input (i.e. over-complete) then the algorithm could simply learn the
identity function. It means that we may not get discriminative features. On the other
side, we can get higher accuracy in over-complete structures since we make the sys-
tem more complex. One option is to input corrupted signal and train the system in a
way to reconstruct the clean input, which is called De-noising Auto-Encoder (DAE).
DAE is successfully implemented in [9] for digit recognition and object classification
in a stacked and convolutional manner. Another rational way to get robustness into
the system is masking the hidden layer’s activations, instead of masking the input for
corruption. This is called ‘dropout’ [19] in the literature where we make a variable
amount v of the activations 0. The parameter v represents the percentage of masking
to deactivate the outputs of the hidden layer. Finally, we introduce sparsity into the

 Hierarchical Image Representation Using Deep Network 69

architecture. In particular, if we impose a sparsity constraint on the hidden units, then
the AE will still discover interesting structure in the data, even if the number of hid-
den units is large [20].

Finally for comparison to our work, Gong et. al. [25] discusses the benefits of deep
Convolutional Neural Networks (CNN) especially for retrieval and classification
tasks. They argue that Bag-of-Words approach introduces an orderless spectrum
which loses the spatial information while CNN depends on too much globally ordered
spatial information which lacks especially geometric invariance. To overcome the
insufficiencies of the both sides, they combine two approaches at a common platform
which is called Multi-scale Orderless Pooling (MOP-CNN). They handle an image at
3 levels for multi-scale representation each of which divides its upper level into qua-
drants, and the level 1 is the whole image. In this configuration, level 1 is the tradi-
tional CNN activations that already preserves the global spatial layout while they
implement k-means+VLAD (Vectors of Locally Aggregated Descriptors) [26] algo-
rithm at level 2 and 3 for orderless representations of the patches in order to achieve
geometric invariance in a concatenated features vector. For comparison, their start
point is a pre-trained seven-layer CNN at each layer, and there is no transitional con-
nection between CNN levels for data representation. Additionally, they use k-means
to find centroids for VLAD score aggregation and PCA for dimension reduction. On
the other hand, we propose connections between scale levels where the next level uses
the hidden layer activations of the previous level for BoW representations; and the
last layer represents again the whole image with the composite activations of the
quadrants of the previous level.

So far, we have given important details of deep network architectures and their im-
plementations. It is a common practice to use the resulting unsupervised feature repre-
sentations either as input to a classifier directly, or as initialization for a supervised
deep neural network. Alternatively, the outputs of the previous layer may be treated as
extra inputs, with the original signal, for the next layer. Although it seems very rea-
sonable to use the hidden layers’ activations directly as a new representation, we hy-
pothesize that the system might get poor performance because the activation values
are in tight range. Assuming that there is high variance within input data and a limited
number of neurons in the hidden layers, the classifier would not approximate the data
satisfactorily, leading to underfitting. On the other hand, we may just replicate the
data, other than learning useful structures, when we increase the complexity of the
system with more neurons, leading to overfitting. To avoid both situations, we need to
add randomness or sparsity into the system while adjusting the number of neurons
carefully.

Instead of handling aforementioned issues, we introduce a new approach which
learns visual words (i.e. code words) hierarchically while training the deep network.
We use them to construct BoW representations as a new feature space, not the neuron
activations itself. To do so, k-means algorithm is simulated in the deep network. We
additionally use spatial information by implementing pyramid-like representations as
in [12].

70 E. Ergul et al.

3 Unsupervised Feature Extraction

3.1 Deep Network Architecture

We propose a 3-hidden layer neural network that is trained in a greedy layer wise
learning scheme to extract BoW representations at each layer, sequentially. After
learning some features at a lower layer, we go further with these learned features and
start learning the next layer’s weights while keeping the previous ones fixed. Basical-
ly, we repeat the same procedure at each layer which is to update the system parame-
ters for finding the fundamentals of a BoW representation, i.e. code words. Fig. 1
summarizes the proposed deep structure visually.

Given a set of unlabeled training images X={x(1), x(2), x(3), ..., x(i)}, x(i) ϵ Rnxlxd, where
n and l are image sizes and d is the color dimension, we first select a large number of
patches randomly from the whole image set. We use them as the input signal for the
first layer. Each patch has a dimension of w-by-w and has d color channels. So each
patch can be represented as a vector of M (i.e. M equals to w*w*d) pixel intensity
values. But we do not use the intensity values directly as they contain noise and corre-
lation. In our work, we apply contrast normalization that of zero mean-unit standard
deviation, and whitening for uncorrelation with the same variance, operations to the
intensity values in the preprocessing stage. Given a set of z patch examples, we then
define the overall cost function of a typical single-layer network to be:

 +−=

=

2

1

2)()(
, 2

)(
2

1

z

1
 b)J(W, Wyph

z

j

jj
bW

λ

(1)

where hW,b(p)=f(WT*p + b), f : R  R, is the hypothesis function (i.e. the prediction
of the system for a sample patch input pattern, p), W and b are the collection of para-
meters to be minimized, y is the target value and λ is the regularization term. Note that
the hypothesis function is nonlinear and non-convex as the activation functions, f(·),
are nonlinear; and the parameters are initialized randomly, near to zero. To summar-
ize, we try to find the optimum solution by minimizing the average sum-of-squares
error while penalizing the high magnitude of the weights to prevent overfitting. Since
this function is derivable, gradient based algorithms can be used to find the optimum
parameters and back propagation method is run to calculate derivations.

Fig. 1. Overview of the proposed image representation

 Hierarchical Image Representation Using Deep Network 71

As we have mentioned before, the AE neural networks optimize the parameters in
an unsupervised way by setting the target values to be equal to the inputs, i.e. y(j)=p(j).
Our algorithm differs from the auto-encoder method in that we set the target values to
the visual words, c(i). So we try to learn code words rather than identity function by
simulating k-means algorithm in the network which will be detailed in the next part of
this section.

3.2 Simulating K-Means in the Network

We hypothesize that we may achieve representative code words while optimizing the
neural network because k-means resembles of the neural network structure in encod-
ing-decoding and reconstruction aspects. So one can transform the input space into
another space (i.e. more discriminative) by using the hidden layer activations and
continue learning deeper structures while producing BoW representations from visual
words for classification tasks. We first take randomly k patch instances as the initial
centroids, c(i). Thereafter, we find the nearest centroid for each input and set the target
values to the selected centroids, i.e. y(j)=c(i). Now we can run the feed forward – back
propagation algorithm in mini batches to update the system parameters by using (1).
Note that we keep the centroids, c(i), fixed until we complete all training examples in
one epoch. At the end of each epoch, we then update the centroids with the current
parameters in the latent space of the current layer:

 

=

+−=

−
z

t

it
bWbW

i

Wcph
z

bWbW

fixedckeepingwhilebWupdatestepE

1

22)()(
,,2211

)(

2
)(

2

1
minarg},,,{

),(:

λ
 (2)

 ()

()
1 1

() () () ()
1 , 1 1 1 1 , 1 1 1

()

()

() ()

: , (,)

(; ,) ; (; ,)

1 m in
;

0

, 1, 2 , 3 , . .. , ;

i

i

t T t i T i
p c

p c i pt t c
i

t t
i

i i t
t
i

t

M s te p u p d a te c in la te n t s p a c e W b

f p W b W p b f c W b W c b

if f f f f
p P q

o th e r w is e

q p
c i k c

q

−

= + = +

 − = − ∀ ∈ ←  
  

∀ = =



 (3)

The activation values of the hidden layer are recorded for both inputs and centroids
after updating the network parameters, W and b, in an epoch. Finally, we assign the near-
est centroid to each patch in this new domain but we update the centroids in the original
input space as in maximization step of (3). These two steps are followed alternately until
the cost is under some threshold or the iterations reach to a predetermined number.

72 E. Ergul et al.

3.3 Hierarchical Bag-of-Words Representation

Assuming that we have learned the current layer, we can now produce BoW represen-
tations for the input image by using the tuned centroids, c(i). We first extract all
patches with a dimension of w-by-w in a convolutional way by one-pixel spacing.
After preprocessing, we run the network to compute the hidden layer activations
which will be used as the input to the next layer. This corresponds to a valid convolu-
tion that extracts local patterns in the receptive fields. Additionally, the nonlinear
voting scheme of [8] is implemented to the patches of the input image for BoW repre-
sentations as it is simple to implement, and it offers a softer and sparse encoding.

After extracting global feature maps from patch descriptions for images, we now
aim to get local features, again in an unsupervised manner. More formally, we coarse-
ly segment the feature maps, the activations of the first hidden layer, spatially into
quadrants and train another specific network for each quadrant. The intuition is that
we may extract more abstract feature maps and BoW representations after the first
layer, plus spatial information by segmentation is achieved. We follow the same pro-
cedure in the second layer. We randomly select patches from the quadrant feature
maps and use them for the input to the network, respectively. We finally get another
convolutional feature maps that are specific to quadrants while producing new BoW
representations. Before going through the third layer, we first join the quadrant fea-
ture maps to get an integral input, and then repeat the same procedure. The intuition
of the last layer is that we may correlate the spatial information that is extracted from
each quadrant individually. Besides, we may get better performance in a holistic
representation. Also note that we only whiten the input of the 2nd and 3rd layer as
a preprocessing step. The proposed network architecture for hierarchical BoW
representations is depicted in Fig. 2.

Fig. 2. The proposed three-hidden layer network for hierarchical BoW representations

 Hierarchical Image Representation Using Deep Network 73

We can now use the BoW feature vectors layer by layer, in pairs or concatenated at
once to represent the instances in a new feature space. This pyramid like structure has
been first proposed in [12] and proved to increase the performance. Given these
hierarchical BoW representations extracted from the 3-hidden-layer network, we ap-
ply standard discriminant algorithms to the labeled training data. In our experiments,
we use L2 Support Vector Machines (SVM) classification method. Cross-validation is
implemented to adjust the constant factor (i.e. C) of the SVM. The experimental setup
and results are explained in the next section.

4 Performance Evaluation

In the experiments, we use a very popular dataset in the literature for object classifica-
tion, CIFAR-10. The detailed information about this dataset can be found at [22]. It
consists of 32-by-32 50,000 training RBG images which are divided by 5 equal batches,
all of them in one of 10 object categories. The test set is already separated and it consists
of 10,000 unseen images, and the task is to classify each to its category.

We construct a 3-hidden-layer network for unsupervised feature learning. Code
words are found at each layer while optimizing the network parameters. We use the
code words for hierarchical BoW representations, and the learned layers to transform
the input into feature maps for the next layer. In detail, we use 7-by-7 patches for the
first layer, 2-by-2 patches for the second and the third layers as input, with a standard
stride of 1 pixel. We feed huge amount of randomly selected patches (i.e. about
500,000) at each layer to optimize the parameters. Notice that we decrease the patch
size after the first layer and we have two reasons for doing so. First, the feature maps
where each point is h-dimensional (i.e. the number of neurons at the previous hidden
layer) are fed as the input after the first layer. Increasing the size means increasing the
complexity of the network. Second, we need to have sufficiently enough sample
patches to create a stable BoW representation, which is to decrease the patch size. But
this would also decrease the complexity. So we offset the complexity by adding the
mean values of each activation channel within the patch window, like in [17].
Besides, we use hyperbolic tangent function at the hidden layer and no function
(i.e. linear) at the output neurons.

Another detail is that we use BoW representations in the classification step while
the others [8, 9, 10, 18, 19] use the hidden layer activations directly to produce a new
feature vector for the instances. So they usually need an over-complete structure
which leads to an extra computational cost. With regards to our approach, the dimen-
sionality of the feature vector depends on the number of code words, not related to the
network structure. This is an advantage over the other works. For comparative results,
we set the number of centroids sequentially to 100, 200, 400, 800, 1200, 1600 as in
[8]; and the test accuracies are displayed in Fig. 3. In the experiments, we use 30 neu-
rons in each layer which are determined by cross-validation and it is much smaller
than the input. Finally, it is worth to note that we implement contrast normalization to
the first layer’s input, and whitening to all layers’ inputs as the preprocessing steps.

We first analyze classification results of the BoW representations in pyramid form
at Table 1. The experiments are repeated 30 times and the average results are noted. It
shows the performance rates at single and multiple layers of the pyramid similar to

74 E. Ergul et al.

format in [12]. The pyramid form refers to the BoW vectors of the previous and the
current layers. It is obvious that we get better performances in deeper layers. The best
single layer performance is achieved at layer two with 72.16%. We conclude that the
spatial information improves the performance when we divide an image into finer
sub-regions. Besides, more discriminative representations are produced as we use
BoW representations together. The hierarchical BoW representations provide up to
11% increments in classification result when the pyramid forms are used. In overall,
2% increase is achieved when compared to [8] in this particular dataset.

Next, we compare the performance of our method to the similar unsupervised fea-
ture learning approaches at Table 2. They mainly use the building blocks that we have
already mentioned in section 2; like AEs, RBMs and CNNs. Although our work is
much less complex, except k-means [8], we slightly outperform the others at mini-
mum about 1%. This indicates that better performances may be achieved by using the
features of all layers together in a computationally efficient way.

Table 1. Classification results of the BoW Representations in pyramid form.

 Pyramid of BoWs

W = 1600

Layer
Single

Layer (%)

Pyramid

Layers (%)

1 68.24 ---

2 72.16 77.45

3 70.17 79.72

Table 2. Classification performances of the algorithms on CIFAR-10 test set.

Algorithms Accy.

(%)

3-way Factorized RBM [23] 65.3

Convolutional RBM [21] 78.9

Sparse Auto-encoder [8] 73.4

Sparse RBM [8] 72.4

Triangle k-means [8] 77.9

Mean-Covariance RBM [24] 71.0

Convolutional Neural Network [9] 77.5

Concolutional Auto-Encoder [9] 78.2

Proposed 3-layer BoW Encoder 79.7

Later, we compare the performances of some methods by changing the dimensio-

nality of features in Fig. 3. It is determined by the number of centroids for the
k-means and our approach while it is the number of neurons in the hidden layers
for AEs and RBMs. As expected, all algorithms get higher rates by learning more

 Hierarchical Image Representation Using Deep Network 75

features. Our work is always better than single layer AE and RBM. On the other side,
k-means method outperforms ours by a certain level, 400 features, but we start getting
better performances from that point. We can say that the hierarchical representations
improve the performance in simple structures.

Fig. 3. Comperative results with different number of centroids (or bases)

Finally, we investigate the effect on the overall accuracy of the patches sizes that
are used to feed the network. While we keep 2-by-2 size fixed for the second and the
third levels, the patch size is changed as the input to the first layer for further evalua-
tions. Also note that stride is still 1 pixel in all levels, the number of centroids is 1600.
At Table 3, we see that the patch size does not significantly impact on the overall
performance which is also acknowledged in [8]. Instead, the number of features (i.e.
centroids) and the stride size are more effective parameters. The intuition in here is
that reasonably high dimensionality for the feature vector mostly introduces better
discrimination and we get more samples for the BoW representations if the stride is
reduced.

Table 3. The effect of receptive field sizes on the overall accuracy.

Patch Size Accy. (%)
2 77.4

3 77.6

5 78.9

7 79.7
9 79.1

12 78.6

76 E. Ergul et al.

5 Conclusion

In this paper, we analyze the deep network structures in greedy layer-wise unsuper-
vised feature learning. A three-hidden-layer network is learned to produce code words
by simulating k-means algorithm which leads to hierarchical BoW representations.
Huge amount of unlabeled patch instances are fed to learn single layer parameters and
the code words in EM steps. Only after that is done, we start training the next layer
while keeping the previous layer’s weights fixed, and so on. Note that we do not
count on the hidden layer activations directly in classification task.

We gain two basic advantages in this manner. First, the relation between the num-
ber of hidden layer neurons and the dimensionality of the feature vectors is broken.
Thus one can get more dimensional feature vectors efficiently by using simple net-
works in our approach. Second, the feature vectors are less constrained since we use
code words to achieve BoW vectors. Additionally, we associate location information
with the conventional BoW representation. This is accomplished by dividing the input
into quadrant regions at the second layer and implementing a network for each sub-
region individually. In experiments, we see that the performance is increased as we
combine the hierarchical BoW representations, leading to outperform more complex
approaches in the literature.

For the future work, we plan to embed hierarchical segmentation into this approach
for more discriminative code words, and to develop a holistic fine-tuning procedure
for updating the parameters after greedy layer-wise training.

Acknowledgements. This work was supported in part by the Scientific and Technological
Research Council of Turkey - TUBITAK 2214-B.14.2.TBT.0.06.01-214-83.

References

1. Alpaydın, E.: Introduction to Machine Learning. The MIT Press, London (2004)
2. Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and New Pers-

pectives. PAMI 35(8), 1798–1828 (2013)
3. Lowe, D.: Distinctive Image Features From Scale Invariant Keypoints. Int’l J. Computer

Vision 60(2), 91–110 (2004)
4. Bay, H., Ess, A., Tuytelaars, T., Gool, L.C.: SURF: Speeded Up Robust Features. Com-

puter Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)
5. Bosch, A., Zisserman A., Munoz, X.: Representing shape with a spatial pyramid kernel. In:

ACM International Conference on Image and Video Retrieval (2007)
6. Oliva, A., Torralba, A.: Modeling the Shape of the Scene: a Holistic Representation of the

Spatial Envelope. Int’l J. Computer Vision 42(3), 145–175 (2001)
7. Krizhevsky, A., Hinton, G.E.: Using very deep auto-encoders for content-based image

retrieval. In: ESANN (2011)
8. Coates, A., Lee, H., Andrew, Y.N.: An analysis of single-layer networks in unsupervised

feature learning. In: International Conference on Artificial Intelligence and Statistics
(AISTATS) (2011)

 Hierarchical Image Representation Using Deep Network 77

9. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders
for hierarchical feature extraction. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol.
6791, pp. 52–59. Springer, Heidelberg (2011)

10. Hinton, G.E., Osindero, S., Teh, Y.W.: A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation 18(7), 1527–1554 (2006)

11. Ergul, E., Arica, N.: Scene classification using spatial pyramid of latent topics. In: ICPR,
pp. 3603–3606 (2010)

12. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories. In: Proc. IEEE CVPR, vol. 2, pp. 2169–2178 (2006)

13. Arel I., Rose D.C., Karnowski T.P.: Deep Machine Learning: A New Frontier in Artificial
Intelligence Research. IEEE Computational Intelligence Magazine 5 (2010)

14. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Geedy Layer-wise Training of Deep
Networks. NIPS (2007)

15. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in Machine
Learning 2(1), 1–127 (2009)

16. Hinton, G.E.: A Practical Guide to Training Restricted Boltzmann Machine. University of
Toronto (2010)

17. Quoc, L., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., Andrew,
N.: Building high-level features using large scale unsupervised learning. In: International
Conference in Machine Learning (2012)

18. Yang, Y., Shah, M.: Complex events detection using data-driven concepts. In: ECCV,
pp. 722–735 (2012)

19. Srivastava, N.: Improving Neural Networks with Dropout. Master of Science Thesis,
University of Toronto (2013)

20. Raina, R., Battle, A., Honglak, L., Packer, B., Andrew Y.N.: Self-taught learning: transfer
learning from unlabeled data. In: Proceedings of the 24th Int’l Conf. on Machine Learning
(ICML) (2007)

21. Krizhevsky, A.: Convolutional Deep Belief Networks on CIFAR-10. Technical Report
(2010)

22. The CIFAR-10 dataset. http://www.cs.toronto.edu/~kriz/cifar.html
23. Ranzato, M., Krizhevsky, A., Hinton, G.E.: Factored 3-way restricted boltzmann machines

for modeling natural images. In: ASTATS 13 (2010)
24. Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-

order boltzmann machines. In: CVPR (2010)
25. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolu-

tional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014, Part VII. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014)

26. Bergamo, A., Sinha, S.N., Torresani, L.: Leveraging structure from motion to learn discri-
minative codebooks for scalable landmark classication. In: CVPR (2013)

	Hierarchical Image Representation Using Deep Network
	1 Introduction
	2 Related Work
	3 Unsupervised Feature Extraction
	3.1 Deep Network Architecture
	3.2 Simulating K-Means in the Network
	3.3 Hierarchical Bag-of-Words Representation

	4 Performance Evaluation
	Patch Size Accy. (%)
	7 79.7

	5 Conclusion
	References

