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Abstract. Anticipating the oncoming integration of depth sensing into
mobile devices, we experimentally compare different compact features
for representing RGB-D images in mobile visual search. Experiments on
3 state-of-the-art datasets, addressing both category and instance recog-
nition, show how Deep Features provided by Convolutional Neural Net-
works better represent appearance information, whereas shape is more
effectively encoded through Kernel Descriptors. Moreover, our evalua-
tion suggests that learning to weight the relative contribution of depth
and appearance is key to deploy effectively depth sensing in forthcoming
mobile visual search scenarios.
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1 Introduction

Nowadays almost any mobile device is equipped with an high-resolution camera
and constantly connected to the Internet. This fosters development and increas-
ing diffusion of a variety of mobile visual search tools, such as Google Goggles,
Amazon Flow, CamFind, Vuforia, and WeChat Image Platform. A mobile visual
search engine allows the user to easily gather information about the objects seen
in the camera field of view. Purposely, she/he would just snap a picture to
have the mobile device computing a representation of the image which is sent
to a remote server and matched into a database to recognize image content and
report back relevant information. Such scenario has been made real by the fertile
research on mobile visual search [6,9,12] as well as by sensor miniaturization,
which enables inexpensive integration of cameras into smartphones and tables.
Alongside these progresses, the advances on 3D sensing have lead to the availabil-
ity of affordable and effective RGB-D cameras, such as the Microsoft Kinect or
Creative Senz3D, and, predictably, will enable depth sensing on mobile devices in
the near future. Indeed, a number of solutions aimed at enhancing mobile devices
with depth sensing capabilities do already exist. Occipital has recently released
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Fig. 1. Visual search architecture deployed to investigate on RGB-D features.
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the Structure Sensor!, a structured light depth camera that can be clipped onto
a tablet. In [22], Pelican Imaging® introduced a camera array that captures
light fields and synthesizes a range image, the camera being small enough to be
embedded into next generation smartphones. The HT'C' One (M8) smartphone,
released by HTC' in 2014, integrates a 2-megapixel depth sensor and provides
the Dual Lens SDK to foster the development of 3D applications on Android.
Google has given green light to Project Tango®, that is shipping to researchers
and programmers a prototype tablet equipped with 3D sensing capabilities and
up-to-date APIs. The foreseeable advent of depth sensing on mobile devices at a
significant scale may pave the way to a new generation of mobile applications. In
particular, we are interested in investigating on whether and how mobile visual
search architectures may benefit of depth sensing capabilities.

A fundamental requirement of any mobile visual search architecture deals
with compactness of the description sent to the server, so as to guarantee a
satisfying user experience even in case of limited bandwidth or congestion of
the network. Moreover, research on binary codes is not limited to mobile visual
search but pertains the entire field of content-based image retrieval. As a matter
of fact, compact and binary descriptors are key to efficient storage and matching
in databases comprising millions of images. Thus, several approaches to either
conceive compact image descriptors or compress existing ones have been pro-
posed in literature [4,5,7,13]. However, research on compact representation has
addressed only RGB images thus far. To the best of our knowledge, the only
works that address compact description of depth information are [18], which is
focused on 3D point clouds, and [19], which, instead, deals with RGB-D images.
Both papers, though, propose local descriptors without addressing the issue of
obtaining a compact global representation of the image.

To fill this lack, in this paper we consider next generation mobile visual search
scenarios and propose an investigation on how to encode both appearance and
depth information to obtain compact binary codes that properly describe RGB-
D images. More precisely, within a visual search pipeline that allows to exploit
both color and depth data, we analyze different image description approaches
and carry out an experimental comparison aimed at evaluating their relative
merits and limits.

! http://structure.io
2 http://www.pelicanimaging.com
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2 Visual Search Architecture

Fig. 1 depicts the architecture we deployed to evaluate different image description
approaches for the task of mobile RGB-D visual search. Given an RGB-D image
acquired by a mobile device, the pipeline independently process the appearance
and shape channels at client side, so to produce compact binary codes that are
concatenated and sent to the server. Each binary code is obtained by a two step
process that computes first a global encoding of the whole image and then creates
the binary description through a similarity-preserving hashing stage. At server
side, the received binary code is matched against a database of descriptions in
order to find the most similar image.

2.1 Image Description

For global encoding of the RGB and depth images we considered the established
paradigm dealing with aggregation of local features. Accordingly, local features
are first extracted and described, then they are globally encoded through the
Fisher Kernel [20] algorithm. Moreover, we considered an approach based on
deep neural networks so as to address both hand-crafted and learned features.

SIFT: As a baseline local description approach we use SIFT* [16], which detects
keypoints through DoG and produces descriptions of length D = 128. We apply
SIFT on intensity images without any preprocessing, whereas depth images are
rescaled in the range [1, 255] reserving the 0 value for denoting invalid depths. As
to isolate depths belonging to the searched object, we modeled the distribution of
depths of database images as a gaussian, then we linearly rescaled depths falling
on less than 2 x ¢ from the gaussian mean and saturated all the others. Then,
the Fisher Kernel® method is deployed to aggregate SIFT features into a global
representation of the entire image. Fisher kernels has been introduced to combine
the power of discriminative classifiers with the ability of generative models to han-
dle representations comprising a variable number of measurement samples. The
encoding vector is the gradient of the sample log-likelihood with respect to the
parameters of the generative model, which, intuitively, can be seen as the con-
tribution of the parameters to the generation of the samples. Perronnin et al. in
[20] applied Fisher kernels to image classification by modeling visual vocabularies
by Gaussian mizture models (GMM). In our setup, the parameters are the mean
and covariance (assumed diagonal) of each of the Ng components of the mixture.
Thus, global encodings have length 2 x D x Ng. According to our experiments,
best results are obtained with a number of components as small as Ng = 3.

Dense SIFT: To investigate on whether uniform sampling of features may turn
out more beneficial than keypoint detection to visual search applications, we
compute SIFT descriptors on 16x 16 patches sampled across a regular grid. Then,
densely computed descriptors are aggregated via Fisher Kernel. As Ng = 1 turns

4 SIFT features are computed by the OpenCV implementation.
® We use the Fisher Kernel implementation available in the VLFeat libray.
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out here the best choice for the number of components, global encodings of RGB
and depth images both have length 2 x D.

Kernel Descriptors: Given the excellent results reported on a variety of RGB-
D recognition tasks, we have considered the RGB-D Kernel Descriptors intro-
duced in [1,2]. Kernel descriptors are a generalization of descriptors based on
orientation histograms, such as SIF'T and HOG, which may suffer from quantiza-
tion errors due to binning. Kernel descriptors overcome this issue by defining the
similarity between two patches through kernel functions, referred to as Match
Kernels, that average out across the continuous similarities between pairs of pixel
attributes within the two patches. Local description is performed on patches
sampled across a regular grid, with each patch represented by a 200-dimensional
feature vector. Finally, local features are condensed into a global description by
Fisher Kernel (Ng = 2). The authors propose 8 types of kernel descriptors by
defining match kernels for different patch attributes such as intensity and depth
gradient, local binary patterns and object size. In our experiments we used the
C++ implementation made available online by the authors, which permits to
apply 4 types of Kernel Descriptors. In particular, appearance information is
described by kernels dealing with Intensity Gradients and Color, while shape
information is captured by kernels based on Depth Gradients and Spin Images.

Deep Features: In [10], Gupta et al. address the problem of globally encoding
an RGB-D image through a Convolutional Neural Network (CNN) architecture.
Purposely, they exploit the so called “AlexNet” proposed in [14], that processes
a 256x256 RGB image and can produce a 4096-dimensional feature vector as
output of the last hidden layer. Besides describing the RGB image, the authors of
[10] deploy the HHA representation to map the depth image into three channels:
Horizontal disparity, Height above ground and Angle between local surface nor-
mal and inferred gravity direction. Accordingly, AlexNet is also fed with the HHA
representation as if it were an RGB image. The authors ground this approach
on the hypothesis that RGB and depth images share common structures due to,
for example, disparity edges corresponding to object boundaries in RGB images.
Moreover, the authors perform fine tuning of AlexNet based on HHA data. Our
experiments indicate that slightly better results can be achieved by feeding the
hashing stages with the 100 Principal Components of the 4096-dimensional vec-
tors computed by both the RGB and HHA networks.

2.2 Binary Hashing

Among the several hashing approaches proposed in the last years, we considered
the state-of-the-art Spherical Hashing (SH) method [11], which has been reported
to result peculiarly effective on large datasets. Let N, be the number of bits
comprising the binary description. At training time, SH represents the data
with a set of N, hyperspheres and choose the value of the i — th bit depending
on whether the feature vector falls inside or outside the i — th hypersphere. To
determine the centers and radii of the hyperspheres, an iterative optimization
process is performed so to achieve balanced partitioning of descriptions for each
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hashing function as well as independence between any two of them. We applied
the iterative process on 1% of the training samples, such percentage turning
out adequate to train SH. Furthermore, we do not exploit the Spherical hashing
distance proposed in [11], as our experiments did not show any improvement
with respect to the standard Hamming distance.

2.3 Matching

As illustrated in Fig. 1, the appearance and shape binary codes are juxtaposed
to form the final binary code. This is sent to the server to be matched against
a database of stored binary codes using the Hamming distance together with
the weighted £-NN search approach introduced in [8]. To speed-up the search
for the k-NNs, the server side database is efficiently indexed by the multi-probe
LSH scheme proposed in [17].

3 Experimental Evaluation

This section reports the results of the experimental analysis we performed to
determine the merits and limits of the considered features. For each dataset, we
split the images so as to reserve a portion as the training set used to estimate the
GMM required by Fisher Kernel, to find the principal components of the Deep
Features extracted by the CNNs and to train SH. After that, we describe each
image of the training set with the trained pipeline and build the index used in
the server-side matching stage. Finally, we describe all the test images and cal-
culate the rate of them correctly recognized in the training set. This procedure
is repeated 10 times splitting differently the training and test sets and, eventu-
ally, the attained recognition rates are averaged. To compare the different types
of features, we execute the pipeline by considering either the appearance infor-
mation extracted from the RGB image only or the shape information extracted
from the depth image only or we fuse the two kinds of information concatenating
their binary codes (see again Fig. 1). For each configuration, we run the pipeline
while varying the length of the final binary code from 32 to 1024 bits and plot
the attained mean recognition rates as a function of the code length. In the case
of kernel descriptors, both for appearance and shape description, we compute
the two available kernel descriptors, perform the hashing separately and then
juxtapose the resulting binary codes.

3.1 Datasets

The evaluation concerns 3 state-of-the-art datasets of household objects: the
RGB-D Object Dataset, CIN 2D+3D and BigBIRD. The former two datasets
share a two-level category/instance structure that allows us to evaluate our
framework on both category and instance recognition tasks, whereas BigBIRD
consists of object instances not partitioned into categories.
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The RGB-D Object Dataset [15] is nowadays the de-facto standard for
evaluating and comparing visual recognition systems relying on RGB-D sensing.
For each of the 300 household objects composing the dataset, a set of acquisitions
from different vantage points has been collected and segmented from the back-
ground so as to gather a total of 41,877 RGB-D images. Each object belongs to
one of 51 categories based on the WordNet hierarchy. As for instance recognition,
we chose the Alternating Contiguous Frames methodology [15].

The CIN 2D+3D dataset [3] consists of 18 categories, which in turn include
about 10 instances each. The objects, placed on a turntable, have been acquired
from 36 vantage points by rotating the turntable by 10°upon each acquisition.
In [3], the authors propose a procedure aimed at evaluating simultaneously the
ability to recognize both instances and categories. However, similarly to standard
methodology defined with the RGB-D Object Dataset, we test the performance
for the two tasks of category and instance recognition separately. Thus, for cat-
egory recognition, we select a tenth of the instances for each category as test set
and train the pipeline on the remaining ones. Likewise, for instance recognition.
we split a different tenth of the views of each instance and uses it as test set
whereas the remaining acquisitions are used for training. As suggested by the
authors, we discard the “Perforator” and “Phone” categories from the evalua-
tion as they do not include a sufficient number of instances. Instead, we do not
aggregate “Fork”, “Spoon” and “Knife” into the “Silverware” super-category.

The BigBIRD dataset [21] comprises 600 views of 125 object instances,
including mostly supermarket products. The dataset includes quite challenging
instances as most of them are box-shaped products recognizable only by their
package textures, which sometimes are very similar (e.g. as in the case e.g. “pop
secret butter” and “pop secret light butter”) or distinguishable just due to color.
As reliable segmentation masks are not provided for 11 objects (the majority of
them being transparent bottles), we discarded them from the data used in our
experiments. As the authors do not suggest a methodology to evaluate the dataset,
for each of the 10 trials, we randomly select 100 acquisitions and split them so as
to perform testing on a tenth of them and training based on the others.

3.2 Results

The results of our experimental evaluation are reported in Fig 2. Firstly, the
charts reveal that an encoding based on SIFT keypoints (the green curves in
the figure) is not effective within our visual search architecture as it provides
the lowest recognition rates in all but the experiment dealing with appearance-
only description on BigBIRD. Better results are scored by methods leveraging
on densely computed local descriptors. Indeed, if SIFT is applied to patches
extracted across a regular grid, the recognition rate raises substantially (red
plots), especially in category recognition experiments (first 2 rows of the figure).
Overall, the best performance are provided by representations based on Kernel
Descriptors and Deep Features. Accordingly, in the remainder of the discus-
sion we will mostly focus on these two approaches. We start by commenting the
behavior of representations based on appearance information only (first column
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Fig. 2. The charts are organized as a table, the rows dealing with the different datasets
and recognition tasks (first 2 rows: category recognition, last 3 rows: instance recogni-
tion) and the 3 columns reporting, respectively, the results obtained with appearance-
based descriptions only, shape-based descriptions only and fusion of appearance and
shape. Each chart reports the recognition rate as a function of the length in bits of
the binary code. The different curves are identified by the legend underneath columns.
Kernel Descriptors (KD) based on Intensity gradients, Color, Depth gradients and Spin
Images are labeled as I, C, D and S respectively.

of Fig 2) and address the impact of the two types of Kernel Descriptors first. The
charts report the recognition rates yielded by Kernel Descriptors based on either
intensity gradients or color as orange and cyan curves respectively, whereas purple
curves deal with the performance attained assigning half of the binary code to the
former and half to the latter. In category recognition experiments, both Kernel
Descriptors contribute significantly to the recognition ability of the pipeline, so
that their synergistic deployment ends up in improving the recognition rate, as
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Fig. 3. Examples of BigBIRD objects distinguishable by colour and texture only.

perceivable more clearly in the case of the RGB-D Object dataset. On the other
hand, in case of instance recognition experiments, color seems the main cue that
allows for telling apart objects in the considered datasets. This is particularly
noticeable in the BigBIRD dataset, as deploying half of the binary code to rep-
resent intensity gradients turns out even detrimental with respect to spending all
bits to encode color. This can be ascribed to the nature of the dataset that, as
already pointed out, consists mainly of boxes and bottles distinguishable by color
features only (a few examples are shown in Fig. 3). The comparison between Ker-
nel Descriptors and Deep Features (the blue plots in the charts) highlights how,
with the exception of category recognition on the CIN 2D+3D dataset, the latter
approach provides quite consistently higher recognition rates.

As for the experiments addressing representation of shape information only
(second column of Fig 2), it is unclear which Kernel Descriptor allows for encod-
ing more effectively the depth channel between that relying on Depth Gradients
and on Spin Image, which represented by the orange and cyan curves respec-
tively. Nonetheless, it is clear that fusing the two contributions by splitting the
code bits evenly (purple curve) does increase the recognition rates insomuch as to
outperform Deep Features in 4 out of the 5 experiments. This vouches as the two
types of kernel descriptors are complementary and thus the recognition ability
of the pipeline can benefit significantly of their synergistic deployment. Looking
now at the first two columns, it seems quite evident how shape is more relevant
than appearance in category recognition experiments, the opposite being the
case of instance recognition, appearance being definitely the primary cue to tell
apart the different objects comprising the considered datasets.

The third column of charts in Fig 2 reports the recognition rates attained
by exploiting jointly the appearance and shape information provided by RGB-
D images. In the task of category recognition (first 2 rows), Kernel Descriptors
(purple curve) provide the best performance whereas Deep Features (blue curve)
turn out more effective in distinguishing object instances (last 3 rows). This can
be explained by observing that Kernel Descriptors seem more effective to encode
shape information that, in turn, is more relevant to the task of category recog-
nition, whereas Deep Features better capture the appearance information that
is key to effective instance recognition. In Table 1 we summarize the results
shown in Fig 2 by highlighting the approaches providing the best performance
when deploying either appearance or shape information only (first 2 columns).
Furthermore, the last column of the table reports the configuration yielding the
highest recognition rate when both kinds of information are available. In the
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Table 1. Summary of the results reported in Fig 2. For each dataset and both types of
experiment, the first two columns highlight the method providing the best recognition
rate in case either only appearance or only shape information is deployed for image
representation. Then, the last column highlights the approach yielding the highest
possible recognition rate assuming that both kinds of information are available.

[ Appearance | shape | Best _____|

Deep G 0 (o cos
oic Deep HiiA K cos
Deep G 03 Deep G
Deep RGB k0s Deep R

case of category recognition, exploiting both appearance and shape information
is beneficial as the best configuration involves the combined use of all Kernel
Descriptors. Conversely, for the task of instance recognition, our evaluation sug-
gests to simply discard the shape contribution for the available code bits would
be best spent to encode the RGB image only by Deep Features. Puzzled by the
above finding, we devised an additional type of instance recognition experiment,
whereby the bits of the binary codes are no longer split evenly between appear-
ance and shape but, instead, according to a varying ratio. We run the experi-
ments setting the description length to 1024 bits (i.e. the lengthiest considered
in Fig 2) while deploying Deep Features to encode the RGB image and Kernel
Descriptors (Depth Gradient and Spin Image) to encode the depth image, i.e.
the best approaches to represent appearance and shape respectively. In Fig 4 we
report the obtained recognition rates: as expected, peak performance are reached
with a high ratio of code bits deployed to represent appearance. Interestingly,
though, the best performance are never achieved by allocating the totality of the
binary code to appearance information, but, rather, by splitting properly code
bits between appearance and shape. In particular, with CIN 2D+3D the best
recognition rate is reached by allocating 1/4 of the binary code to shape, while

RGB-D Object Dataset - Instance CIN 2D+3D - Instance BigBIRD
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Fig. 4. Instance recognition experiments with a varying relative contribution of appear-
ance (Deep Features) and shape (Kernel Descriptors). The horizontal axis indicates the
ratio of bits of the binary code deployed to encode appearance. Accordingly, the per-
formance of the best methods in Table 1 are denoted by blue dots (all bits encode
appearance by Deep Features). The best recognition rates attainable by splitting code
bits unevenly between appearance and shape are highlighted by red dots.
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the optimal ratio is 1/8 for both the RGB-D Object dataset as well as BigBIRD.
Indeed, a shape-to-appearance ratio of about 1/8 would provide better perfor-
mance than disregarding shape with all the considered datasets. Hence, proper
deployment of the depth channel associated with RGB-D images may contribute
to improve instance recognition performance even in scenarios where texture and
color provide the primary cues to tell objects apart.

4 Conclusion and Future Work

Our analysis on image features for RGB-D mobile visual search reveals that an
approach based on Kernel Descriptors or Deep Features followed by Spherical
Hashing can provide an effective and very compact image encoding. In particu-
lar, Deep Features computed through Convolutional Neural Networks seem the
best choice to represent appearance, whereas shape information is better cap-
tured by Kernel Descriptors. In category recognition scenarios, both RGB and
depth information contribute notably to ascertain the class to which a query
object does belong. Instead, in instance recognition tasks, our experiments high-
light how appearance features, like texture and colour, are key to tell apart the
specific object instances stored into the database, whereas depth furnishes a lim-
ited, though still informative, contribution. Indeed, an approach based on simply
juxtaposing the two representations does not take into account the different dis-
criminative power that the two cues may convey in diverse scenarios. Hence, devis-
ing suitable strategies to learn and deploy the relative prominence of appearance
and depth in diverse settings is among the key research issues to be addressed in
order to leverage on depth sensing in forthcoming mobile visual search scenarios.
We are currently investigating on a learning-to-rank approach aimed at deploying
the weights provided by two separate k-NN classifiers associated with appearance
and depth in order to better judge candidates according to the specific distinctive-
ness of the two cues for any query. The architecture has been ported on a Samsung
Galazy Tab Pro 10.1 equipped with a Structure Sensor for the acquisition of the
depth image. The pipeline, deploying the four types of Kernel Descriptors and
trained on the RGB-D Object Dataset, spends, on average, 550 ms for producing
the binary code and 2 ms to perform the matching.
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