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Abstract. The skeleton of a binary object can be considered as an alter-
native to the object itself; it describes the object in a simple and com-
pact manner that preserves the object topology. In this paper, we intro-
duce a new definition for discrete contour curves, and we propose a new
approach for extracting a well-shaped and connected skeleton of two-
dimensional binary objects using a transformation of the distance map
into contour map, which allows us to disregard the nature of the distance
metric used. Indeed, our algorithm can support various distances such as
the city-block distance, the chessboard distance, the chamfer distance or
the Euclidean distance. To evaluate the proposed technique, experiments
are conducted on shape benchmark dataset.
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1 Introduction

The skeleton is a representation widely used for shape description and shape
interpretation in several applications of image processing. There are several
equivalent definitions in continuous space. For example the skeleton is defined by
the set of centers of maximal disks contained in the object, by the set of ridges
in the distance map, or by analogy with the fire front propagation as intro-
duced early by Blum [9]. The skeleton of an object can also be defined as the
set of centers of the disks that touch the boundary of the object in two or more
locations. Skeletonization algorithms proposed in the literature are grouped into
three categories: 1) approximation of the fire front propagation [7,20], 2) approx-
imation of the continuous skeleton [10,12] or 3) extraction and interconnection
of the centers of maximal disks in the distance map [11,14,19,29]. There are
several algorithms that use the distance map to calculate the skeleton of an
object, in common cases they involve the following steps: generating the dis-
tance map from a binary image, extracting the centers of maximal inscribed
disks from the distance map and linking the centers of maximal disks to produce
a connected skeleton. Algorithms using approximate distance metrics such as d4
and d8 are intensively considered and discussed by researchers and their theory
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is well established. However, these algorithms are not efficient for applications
requiring greater precision. Using the Euclidean distance may be considered as
a solution to this problem; however, it has topological disadvantages that may
directly influence the resulting skeleton. In this paper, we present a new app-
roach to extract the skeleton of binary objects based on the notion of contour
map. In fact, we extended the algorithm proposed in [21] - originally developed
to support only distances d4 and d8 - to be capable of disregarding the nature
of distance metric used. Our work is based on the results of Andres and Jacob
on the discrete analytical hypersphere [3] to propose a new definition of discrete
contour curves, independent of the distance metric used. Based on this definition
we introduce the notion of the contour map, which is a transformation of the
distance map.

The main features of the proposed skeletonization approach are:

– The Contour map is an abstraction layer between the skeletonization algo-
rithm and the distance function used.

– The algorithm is based on a new definition of discrete contour curves which
is valid for several discrete distances.

– The algorithm can be, readily, extended to other distances by adapting the
definition of discrete contour curves to such distances.

The remainder of the paper is organized as follows. Section 2 gives insights
on the notations and some elementary definitions used in this paper. Sections 3
and 4 introduce the definition of Discrete Contour Map and our approach
to skeletonization process. Experimental results are presented in section 5. In
section 6 we present a historical walk through the skeletonization techniques.
Section 7 provides some final conclusions and the impact of the suggested
approach.

2 Preliminaries and Notations

We denote R the set of reel numbers, Z the set of integers and N
∗ the set of

strictly positive integers. A discrete point is an element of Z
n denoted p, an

object X is a set of discrete points. Two discrete points p (xp, yp) and q (xq, yq)
are 4-neighbor (or 4-adjacent) if: |xp − xq| + |yp − yq| = 1. Similarly, they are
8-neighbor (or 8-adjacent) if: max (|xp − xq| , |yp − yq|) = 1. A binary image I
is a function Z

2 → {0, 1}: each element of I can have the following values: 1 for
object points and 0 for non-object points. Functions d4, d8, d〈a,b,···〉 and dE refer
respectively to the city-block distance, chessboard distance, chamfer distance
and the Euclidean distance. The distance of a point p∈X to the border, denoted
d

(
p,X

)
, is the minimal distance of p to the complementary of X. The distance

map of an object X relative to the distance metric d, denoted DM d is the set
of points labeled with their minimal distance to the boundary of X. A point
p∈DM d is a local maximum in a 8-neighborhood if all its neighbors are at a
distance from the boundary lower or equal to d

(
p,X

)
.



144 H. Id Ben Idder and N. Laachfoubi

3 Discrete Contour Map

In a topographic map, the contour curves are lines that connect points of equal
elevation. Similarly, we consider the contour curves in a distance map d4 or d8
as the set of points having the same distance to the border. This definition is
meaningless if we are interested in the chamfer distance or Euclidean distance.
To give a general definition that characterizes the contour curves, we consider,
in the continuous space, circular curves around a point (denoted C (xc, yc) ∈R2)
centered in the image. In this case a contour curve corresponds to a circle with
center C and radius r∈R. The set of points belonging to this circle is defined by:{

P (x, y) ∈R2 : (x − xc)
2 + (y − yc)

2 = r2
}

. In the discrete space several formu-
lations have been proposed for the circle depending on the discretization scheme.
In [3] for example, authors proposed a generalized definition in arbitrary dimen-
sion, which combines the continuous analytical definition and the properties
specific to the discrete space.

Definition 1 (Discrete Analytical Hypersphere [3]). A discrete analyti-
cal Hypersphere Hn (C, r, ω) in dimension n, of center C∈Rn, radius r∈R and
thickness ω∈R, is the set of discrete points P (x1, · · ·, xn) ∈Hn such that:

Hn (C, r, ω) =

{

P∈Zn :
(
r − ω

2

)2

≤
n∑

i=1

(Ci − Pi)
2

<
(
r +

ω

2

)2
}

(1)

This formula defines the points that constitute the discrete circle in an open
interval [−ω

2 , ω
2 [. For what concerns us - defining circles in dimension 2 with

thickness 1 and centered on the origin point (0, 0) - the above inequality is
reduced to:

H (r) =

{

P (x, y) ∈Z2 :
(

r − 1
2

)2

≤x2 + y2 <

(
r +

1
2

)2
}

(2)

The authors showed that for thicknesses ω≥1, the circle is at least 8-
connected and the union of circles is a tiling of the discrete space. In other
words, each lattice point in Z

2 belongs to one and only one of the concentric cir-
cles. Those properties make this definition well-suited for characterizing contour
curves in a distance map computed using an arbitrary distance metric. In fact,
it solves the topological issues related to the Euclidean distance in discrete space
(non-connectedness of curves and the presence of gaps between two successive
curves). Thus, we define the contour curve of level k as the set of points that are
at a distance d from the object boundary, such that: d∈[k − 1

2 , k + 1
2 [

Definition 2 (Discrete contour curves). Given an object X, the contour
curve of level k∈N∗ relative to a distance metric d is the set of points p∈X
which satisfy the double inequality:

C (k) =
{

p∈Z2 : (m (2k − 1))2 ≤4d2
(
p,X

)
< (m (2k + 1))2

}
(3)
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Where m∈N∗ is the smallest distance to the object boundary, its value is
equal to 1 for distances d4, d8 and dE and equal to a for chamfer distances
d〈a,b,···〉.

This definition is directly applicable in the discrete space and uses only inte-
ger operations and has the advantage of being valid for all distance metrics
mentioned in this article (d4, d8, d〈a,b,···〉 and dE).

Definition 3 (Contour map). Given an object X, its contour map, relative to
a distance metric d, denoted CM d is an image where each point p∈X is labeled
with the level k of the contour curve to which it belongs.

Note that for discrete distances d4 and d8 we have CM d = DM d, because
to each distance value corresponds a separate contour curve. Furthermore, each
point at a distance d, which belongs to the contour curve of level k, is always
surrounded by points belonging to a contour curve k′∈ {k − 1, k, k + 1}. This
will allow us to limit the check of the inequality 3 in the interval [k − 1, k + 1].
Figure 1 represent respectively the contour map for distances d8, d〈3,4〉 and dE .
The set of local maxima points coincides with the skeleton of the object.

(a) CM8 (b) CM〈3,4〉 (c) CME

Fig. 1. Contour map for distances d8, d〈3,4〉 and dE

4 Skeletonization Algorithm

The set of local maxima points extracted from contour map of an object is not
connected in most cases. Therefore, the skeleton defined only by set of local max-
ima of contour map is not useful for shape analysis applications. To overcome
this problem, we need to interconnect all groups of local maxima points and
produce a connected skeleton. The skeletonization algorithm proposed in [21]
is applicable only for distances d4 and d8, it is based on the notion of multiple
points introduced by Pavlidis [25]. Multiple points are identified in the distance
map using local configurations in a 3×3 neighborhood. These points correspond
to either a folding of a contour curve on itself near local maxima, or to a shrink-
age center in the object. A recursive procedure is applied to perform a steepest
ascent from each multiple point until another skeleton point is met. The algo-
rithm produces a correct skeleton with a convenient computational complexity.



146 H. Id Ben Idder and N. Laachfoubi

We propose a variant of this algorithm, which gives rise to a new skeletonization
approach. In fact, we have extended this algorithm to support chamfer distance
and the Euclidean distance by replacing the distance map by the contour map
introduced in this article. The new algorithm performs the following operations:

1. Generating the distance map from a binary image.
2. Generating the contour map from the distance map.
3. Extracting local maxima points from the contour map.
4. Extracting multiple points from contour map using local configurations.
5. Interconnecting groups of local maxima points by performing a steepest

ascent from each multiple point until another skeleton point is met.

The local configurations used in the original algorithm to detect multiple
points, do not allow the proposed algorithm to interconnect all groups of local
maxima points, it is therefore necessary to introduce other configurations to
insure this interconnection. Figure 2 shows the set of additional configurations
that we introduced to detect multiple points, the 8 neighbors pi=0,···,7 of point
p are numbered with respect to the counterclockwise ordering.

Fig. 2. Additional configurations used to detect multiple points from contour map, the
central point p is a multiple point.

5 Experimental Results

In this section we evaluate the shape topology preservation of the proposed
algorithm by conducting experiments on random images from Kimia’s shape
dataset [28]. We compare results obtained using distances d8 and d<3,4> with
those obtained using the distance dE . (See table 1). To generate the euclidean
distance map we used the Shih’s algorithm [30] that achieves the euclidean dis-
tance transform in two scans using a 3×3 neighborhood, the algorithm produce
a correct distance map in a linear time without iterations.

In real applications, binary images are obtained from cluttered scenes, there-
fore the boundaries of generated binary shapes contains a lot of noise which
affects substantially the resulting skeleton. As an image preprocessing, we apply
an edge blurring algorithm to smooth the shape boundary before computing dis-
tance map. In fact, rough edges produce local maxima points in the boundary
of the shape, these local maxima become endpoints of unwanted branches in the
final skeleton.

Most of skeletonization algorithms based on distance map are developed to
support only one distance function, their extension to another distance function
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is not a trivial task. The Contour map defined in this work allow our algorithm
to overcome this problem. In fact, extending the algorithm to another distance
function involves only extending the definition of the discrete contour curve.
As shown in table 1, the skeletons obtained using distances d8, d〈3,4〉 and dE

are well-connected, centered in the object and contain all significant branches
of the shape. Except for distance d8, where some irrelevant branches appear in
the skeleton, no pruning process is required to remove redundant branches. The
results obtained using distances d〈3,4〉 and dE are similar, one can use either d〈3,4〉
or dE without impacting the performance of the algorithm. For both distances,
efficient algorithms exist for computing the distance map with linear run-time
complexity.

Table 1. Binary shapes from Kimia’s dataset [28] and their skeletons using contour
maps CM8, CM<3,4> and CME

Shape

Skeleton
CM8

CM<3,4>

CME

6 Related Work

In this section we present the most common ideas and techniques proposed in
the literature to extract skeleton of 2D shapes. Skeletonization algorithms first
appeared in the sixties. Blum [9] presented the process of skeletonization as a
transformation of the image - called Medial Axis Transformation - to extract a
new shape descriptor. Hilditch [15,16] proposed a sequential algorithm based on
the notion of the crossing number. When the neighbors of a pixel are traversed
in sequence, the crossing number is the number of times one crosses over from a
white pixel to a black pixel. Pixels are traversed and marked for deletion under
conditions that maintain skeleton connectivity and preserve two-pixel thickness.
Rosenfeld [27] established the necessary and sufficient conditions for preserv-
ing topology while deleting border points in parallel process of skeletonization.
Arcelli proposed a parallel algorithm [5] that deletes pixels using two 3×3 masks
together with their 90◦ rotations. Dyer and Rosenfeld [13] worked out an algo-
rithm for extracting skeleton from gray-scale images. It uses a generalized defini-
tion of pixel connectivity: two pixels are connected if there is a path joining them
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with no pixel lighter than either of them. Pavlidis [23–26] introduced the defini-
tion of multiple pixels, pixels that are traversed more than once during contour
tracing, points with no neighbors in the interior and points on two-pixel-wide
lines. Multiples pixels as well as the neighbors of skeletal pixels from a previ-
ous iteration are retained to maintain the connectivity of the skeleton. Arcelli
[6] proposed another sequential skeletonization algorithm. It performs a contour
tracing to detect the pixels for deletion. Arcelli and di Baja [8] presented a nec-
essary definition to satisfactorily detect multiple pixels introduced by Pavlidis.
Later [4] they developed a sequential algorithm that uses a 4-distance transform
to find a set of skeletal pixels using one scan of the image, followed by a second
scan to remove unwanted pixels. Parker et al. [22] introduced the force-based
approach for skeletonization. The authors define a skeletal pixel as being as far
from the object boundary as possible while maintaining connectivity properties.
The skeleton is interpreted as a global property of a binary object, and the
boundary is used to locate the skeleton pixels. Andreadis et al. [2] presented an
algorithm to extract a skeleton using morphological operators on image defined
in the HSV color space. Huang et al. [17] proposed another parallel thinning algo-
rithm. Pixel elimination rules are based on 3 × 3 windows considering all kinds
of relations formed by 8 neighbors of the object pixel. Ji and Feng [18] proposed
a method that interprets the image as a 2D thermal conductor that consists of
pixels, where pixel intensity represents the temperature. The skeletonization is
considered as an inverse process of heat conduction. Tang et al. [32] proposed a
skeletonization algorithm based on a wavelet transform. The algorithm extracts
an initial skeleton in a regular region followed by second stage to connect the
initial skeletons in the singular region. Wan et al. [31] presented an algorithm
that extract a skeleton in 3 stages. In the first stage, the Euclidean distance map
of the image is generated. In the second stage, the local maximal disc centers
are marked as skeleton points. In the last stage, a connected skeleton is gener-
ated by linking isolated skeleton points. Recently, Abu-Ain et al. [1] proposed
an algorithm for optical character recognition (OCR) consisting of three main
stages; conditional contour selection stage, pixel removing stage, and one pixel
width stage.

7 Conclusion

This study presents a new skeletonization approach, which is to use the contour
map as an alternative to the distance map. Using this approach, we proposed an
algorithm capable of disregarding the nature of distance metric used. Indeed, we
were able to generalize an existing algorithm to support more distance metrics
such as the chamfer distance or Euclidean distance. The skeleton obtained by
this method has the essential characteristics required by applications dealing
with shapes description and interpretation in image processing.
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