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Abstract. In this paper, we present an automatic system for the screen-
ing of urinary tract infections. It is estimated that about 150 million
infections of this kind occur world wide yearly, giving rise to roughly
five billion health–care expenditures. Currently, Petri plates seeded with
infected samples are analyzed by human experts, an error prone and
lengthy process. Nevertheless, based on image processing techniques and
machine learning tools, the recognition of the bacterium type and the
colony count can be automatically carried out. The proposed system
captures a digital image of the plate and, after a preprocessing stage
to isolate the colonies from the culture ground, accurately identifies the
infection type and severity. Moreover, it contributes to the standard-
ization of the analysis process, also avoiding the continuous transition
between sterile and external environments, which is typical in the clas-
sical laboratory procedure.

Keywords: Advanced image processing · Support vector machines ·
Urinoculture screening

1 Introduction

Recent technological advances in biomedical engineering and biomedicine allow
the development of automated vision systems that use digital image process-
ing techniques along with machine learning methodologies to give reliable and
automatic analysis of specimens in different application fields. This is the case
of urinoculture, a screening test typically done on hospitalized patients and
pregnant women. In fact, the urinary tract infections, together with those of
the respiratory tract, are of great clinical relevance for the high frequency with
which they are found in common medical practice and because of the compli-
cations arising therefrom. They are mainly caused by Gram–negative microor-
ganisms, with a high prevalence of Escherichia coli (E.Coli, 70%), even if clin-
ical cases frequently occur where complicated infections are caused by Gram–
positive or multi–resistant germs, on which the common antimicrobial agents are
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inevitably ineffective, leading to therapeutic failures. Actually, manual methods
for urinoculture screening are work and time intensive, requiring visual inspec-
tion by a biomedical scientist for semi–quantitative scoring of each sample. This
impacts on laboratory throughput and induces a poor use of qualified resources
for what are predominantly negative screens. Actually, in the standard protocol,
the urine sample is seeded on a Petri plate that holds a culture substrate, used
to artificially recreate the environment required for the bacterial growth, and
incubated at 37◦ C overnight. After the incubation, each plate is examined by a
human expert.

Even if some interesting research has been carried out in recent years, obtain-
ing an overview of the state–of–the–art in image processing solutions to the auto-
matic analysis of Petri plates is difficult, since results are published in various
domains — from food and beverage safety to environmental control and specific
clinical analyses [1–3] —, based on different data sets, and often related to subtle
variations of the core problem (like, f.i., in [4], where the colony classification
problem is addressed with promising results, but with respect to a very small
number of images and based only on the determination of isolated colonies).

The tool we propose, is able of handling the whole examination cycle starting
from the automatic acquisition of the plate with a color camera and ending
with the identification of the type of infection(s) and with the assessment of its
severity through Support Vector Machines (SVMs). The system has been tested
and evaluated on real samples provided by DIESSE Ricerche Srl, Siena, and
acquired in real operative conditions.

The paper is organized as follows. Section 2 introduces the problem and
describes the preprocessing procedure, from the image acquisition phase to the
background removal. Section 3 presents the classification methods and shows
experimental results, whereas Section 4 defines the procedure used to detect
each single colony. Finally, conclusions are given in Section 5.

2 Automatic Image Analysis of Petri Plates

In order to correctly recognize the infection type and to precisely estimate the
bacterial load, it is fundamental to grab a good quality image of the Petri plate.
To avoid imperfections due to manual plate handling, the images are captured
by an automatic camera setup (Fig. 1). After the acquisition, a suitable prepro-
cessing step is applied to locate the region of interest (the Petri plate), and to
grant that it is in an appropriate position inside the field of view. At this point,
the image is saved along with auxiliary information. The automatic acquisition
is performed as follows: a simple and fast algorithm, based on change detection
[5] and morphological filtering [6], is applied and the image is acquired only when
the plate is correctly positioned, the scene is well illuminated, and no movements
are observed. Before saving the image, the Petri dish is isolated from the rest
of the scene using a Random Hough circle transform [7] to detect the circular
Region of Interest (RoI).
The acquisition setup has been used in a real application scenario at DIESSE
Ricerche premises, to collect a dataset of 253 images, subsequently divided into
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Fig. 1. The automatic acquisition set.

a training, a validation, and a test set, containing 154, 64, and 35 images, respec-
tively. As a requirement, eight different classes of infection were detected, namely:
E.Coli, KES (Klebsiella, Enterobacter, Serratia), Enterococcus Faecalis, Strepto-
coccus Agalactiae, Pseudomonas, Proteus, Staphylococcus Aureus, and Candida.

2.1 Selection of the Chromatic Space

Since a chromogenic medium (Uriselect 4) is used as ground seed, the color of the
pixels is the most important feature for classifying the different colonies. During
preliminary studies, the background color distribution has been analyzed in four
different color spaces (i.e., RGB, HSV, CIE–Lab, and YCrCb). The chromatic
data relative to the background in each chromatic space have been accumulated
and the Dunn’s Index has been used to give a quantitative ranking (based on
the Centroid Linkage distance and the Centroid Diameter dispersion [8]):
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where �c is the chromatic vector (a,b) of each pixel, while the other variables have
an obvious meaning. Experiments have shown that CIE–Lab has a higher ranking
and also gives increased separation between the color of the eight infections and
the background. CIE–Lab [9] has been selected for the chromatic description. It
is known that the use of (a,b) chromaticity coordinates only, makes the histogram
more stable with respect to differences in illumination and local variations caused
by shadows [10]. Moreover, if only the (a,b) chromaticity components are used,
the background colors concentrate in a very compact and stable region (Fig. 2).

2.2 Background Removal

The classification of infections is performed in a hierarchic way. As a preliminary
step, the colonies are segregated from the background by a background–removal
process based on chromatic information about the specific chromogenic medium
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Fig. 2. Background (a,b) color distribution (marked in red) compared to the distribu-
tion of the eight infections.

used in the culture (Uriselect 4, in this study). To this end a suitable chromatic
background model has been defined.

Background Modeling – To obtain a chromatic description of the back-
ground, a supervised training technique is adopted, during which a human expert
selects about 40 different regions belonging to the background of different images
coming from the training set. The chromatic components (a,b) of the pixels
belonging to such regions are accumulated to represent the typical background
chromatic values. The samples have been preliminarily filtered by a fast vector
median filter [11] to reduce the effect of noisy samples. The color histogram
distribution is estimated by a Parzen–window with a Gaussian shape [12].

Foreground Modeling – A similar approach has been used to model the fore-
ground (infected) regions. Again a supervisor selects about 40 regions belonging
to each different infection classes coming from the images of the training set.
Again a Parzen–window approach is used to estimate the probability of the
(a,b) chromatic components for each infection class. So, finally, we are left with
eight estimates of the conditional probability density function relative to the
eight possible infections considered. These functions are then compared with the
background probability density function to define the chromatic regions that
can give rise to classification uncertainty. The uncertainty region is obtained
as a union of the intersections of some binary masks obtained by imposing a
threshold on the probability level of the background and of the infected regions.
In formulae:
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8⋃

i=1
Ci

Ck=
⋂

(Bτ ,Iτ,k); k∈[1,8]

Bτ=

⎧⎨
⎩

1 if �cback∈background && p (�cback) ≥τ
0 otherwise

Iτ,j=

⎧⎨
⎩

1 if �cj∈j−region && p (�cj) ≥τ
0 otherwise



Image Classification of Urinary Infections 639
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where τ is a constant threshold imposed to be sure that a percentage of at
least α (say α = 90%) of the background pixels belong to each set, �cj is the
chromatic vector of a pixel belonging to the j–th infection type, and �cback is a
pixel belonging to the background.

At this point the mask relative to each infected region (Ck for the k–th
infected region) is intersected with the background mask to give a superposition
binary mask. Finally the union UM of the whole set of superposition masks
is computed. It is easy to see that the final mask comprises all the chromatic
coordinates that belong with a certain degree of probability (actually more than
τ) both to the background and to one of the infected regions. The chromatic
coordinates of the points belonging to the final mask are marked as uncertain
and used during the subsequent classification stage.

Background Segmentation – Even if the background chromatic model is
quite stable and accurate, some minor chromatic variations are still present. To
accommodate for these variations, a Mean–Shift segmentation [13] algorithm is
used to associate each image pixel to the corresponding modal density value in
the (a,b) space (actually, as usual, the chromatic coordinates are mixed with
the positional coordinates of each pixel so the Mean–Shift algorithm runs in a
four–dimensional space). The modal value so obtained, is compared with the
background chromatic model (by using the corresponding likelihood), to estab-
lish if the pixel belongs to the background region or not. In this way a first
approximated background segment is obtained. Unfortunately such an approx-
imation is rarely satisfying because the background slightly changes its colors
according to the type of bacterium grown on the plate. To solve this problem, we
use the previously defined uncertainty chromatic mask UM . In particular, when
some pixels belong to the mask (i.e., they cannot be assigned with reasonable
certainty on the basis of chromatic coordinates), we assign them to a fictitious
class of uncertain points. In the image space such points form a set of uncertainty
regions and specific post–processing steps are applied to each of them.

Uncertainty regions are analyzed taking into account also local spatial prop-
erties like discontinuities (edges), that are typically present between the colonies
and the background. In particular, we have considered the following five classes:

(1) Colonies (E. Coli, KES, E. Faecalis, S. Agalactiae);
(2) Background without edges (blue in Fig. 3);
(3) Background with edges (pink in Fig. 3);
(4) Uncertainty region without edges (red in Fig. 3);
(5) Uncertainty region with edges (green in Fig. 3).
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Images (a) and (d) represent two dishes in which Pseudomonas and KES
colonies are present; images (b) and (e) show the five different regions present on each
Petri dish, and (c) and (f) the results obtained after the application of the described
background segmentation procedure.

The classification procedure is the following: at first the background chromatic
model is used to decide if a segment (obtained by Mean–Shift segmentation)
belongs to a colony, to the background or to an uncertainty region. Thereafter,
a Sobel [14] based edge enhancement is applied to distinguish class (3) and
(5). Then, uncertainty regions (4) and (5) are analyzed to assign them to the
background or to the colonies. During the experiments, it has been noted that
if the HSV space [15] is used to describe uncertainty regions then, if the region
belongs to the background, the H (hue) channel shows a peak that is near to the
one obtained by taking the same histogram but relative to the region of class
(2). To take advantage of this observation, the uncertainty regions of class (4)
and (5) are analyzed separately by applying the same procedure, summarized in
the following.

1. The Otsu method [16] is used to threshold the H values of uncertainty regions
in class (4) and (5) and to segment them;
(a) Based on the computed threshold, the considered uncertainty region is

divided into two sub–regions;
(b) The histograms of the two sub–regions are computed and compared, to

establish if a significant separation exists (i.e. if the peaks of the two
sub–regions are far enough in the histogram of the H channel). If the
peaks are separated, the two sub–regions are identified as (6) and (7),
respectively, and processed separately. If the peaks are not separated,
the two sub–regions are kept together;

2. The peaks of the histogram (H channel) of the region of class (2) and of
the analyzed regions ((6) and (7) separately or together, depending on the
previous step) are compared;
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3. If the peaks of the background and of the current region ((6) and (7) sepa-
rately or together) are distant enough, the current region cannot be assigned
to the background and is passed to the final classification step to assign it
to the appropriate colony;

4. Instead, if the peaks are almost coincident, the uncertainty region shows a
H value similar to the background, and it is assigned to it.

In other words, for both regions (4) and (5), we identify different sub–regions
(if any) and, for each ”homogeneous” zone, we establish its membership to the
background or not.

Further problems arise when considering Candida colonies, since their color
is practically the same as the culture ground. To classify this infection, an ad
hoc procedure has been devised, particularly focused on analyzing segments
belonging to region (3).

The performance of the background segmentation method has been evaluated
on the test set comprising 33 images. The results are reported in Table 1.

Table 1. Results of the background extraction preprocessing.

Background extraction

Total Number of background pixels 1091413
Background pixels correctly classified 1068445
Background pixels incorrectly classified 22968
Accuracy 97,9%

3 Classification

After the background removal process has been performed, the residual regions,
not belonging to it, are classified. A multi–stage classification approach is used
for this aim.

The classification of the bacteria grown on a Petri plate is a very difficult
problem and it is usually carried out by a qualified biologist. Human experts can
use their visual skills and a priori knowledge to solve the task. Due to the use of
a chromogenic ground seed, the most important feature for recognizing different
type of bacteria is color. In fact, Uriselect 4 is specifically designed to support
the infections classification through the hue taken by the colonies. This is due
to different bacterial enzymes whose activity produces a peculiar color:

– β–galactosidase and tryptophanase: red–pink, typical for E. Coli infections;
– β–glucosidase: turquoise blue, typical for Enterococcus Faecalis infections;

the simultaneous presence of β–galactosidase turns the color to purplish blue,
typical for the KES group infections;

– tryptophane désaminase: yellow/orange, typical for Proteus–Providencia–
Morganella infections.
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Therefore, the first step in our multi–stage classification algorithm is to rec-
ognize the previous three classes by using chromatic features. This lead to a
pre–classification which can be further used to recognize subclasses among the
main classes. The pre–classification step divides the infections into three main
chromatic groups: red (E. Coli), blue (Enterococcus Faecalis, KES and Strepto-
coccus Agalactiae), and yellow/orange (Pseudomonas, Proteus and Staphylococ-
cus Aureus). Such a division is obtained by an SVM (Support Vector Machine)
classifier with a Gaussian kernel, with γ = 0.1 and C = 7.75 (the parameters
have been chosen via a trial–and–error procedure). SVMs has been implemented
by using the Weka software tools (http://www.cs.waikato.ac.nz/ml/weka/). To
collect the feature vectors for the classifier, we have first executed a Mean–Shift
segmentation algorithm and then, for each segment, the (a,b) color components
in the CIE–Lab space have been extracted. The results of this pre–classification
step are reported in Table 2.

Table 2. Classification results for the three main colors based on an SVM classifier.

(a) Accuracy

SVM classifier for the three main colors

Total Number of Segments 13292 Percentage

Incorrectly Classified Segments 36 0.2708 %

Correctly Classified Segments 13256 99.7292 %

(b) Confusion Matrix

Red Blue Yellow/Orange

4479 0 10

0 8691 12

14 0 86

Only E. Coli produces red colonies among the eight diverse types of infections
considered, so it can be recognized in the first step. Instead, for the other classes,
some more information is needed to recognize each specific kind of infection.

For the blue class (E. Faecalis, KES, St. Agalactiae), the first important issue
is the presence of residual background segments not correctly identified by the
background segmentation module. Even if the module is quite efficient, experi-
mentally, it turned out that even a small amount of background badly affects the
blue class classification performance. The background extractor output and the
pre–tag have been used as an input for a GrabCut algorithm [17], that allows
to remove the majority of the remaining background segments. Thereafter, an
SVM classifier with a Gaussian kernel, with γ = 0.12 and C = 1 (the parameters
have been chosen via a trial–and–error procedure) has been used. Results for the
classification of blue infections are reported in Table 3.

Furthermore we find out unpredictable chromatic variations produced when
different species of bacteria overlap on the same Petri dish. This is the case of the
contemporary presence of E. Coli and E. Faecalis, that produces an overlapping
region which looks like KES. Therefore, we use this a priori information to predict
which colonies are probably present also in the overlapping regions, starting from
the classification of segregated colonies. The colony dimension is a useful feature
to discriminate Enterococcus Faecalis (small colonies, 0, 5 − 1, 5 mm for the
diameter) from KES (2 − 3mm). Taking advantage from the procedure capable
to recognize isolated colonies (Section 4) we then use the dimension of a single
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colony as a feature to improve the classification performance. Based on both
the color component (a,b) and the dimension of the colonies, we train another
SVM classifier with a polynomial kernel, with degree = 3, γ = 0.25, and C = 1.
Results for this classification are reported in Table 4.

A similar procedure was also implemented with respect to the yellow class
(Pseudomonas, Proteus and Staphylococcus Aureus), obtaining very promising
results. Anyway, such results are very preliminary, since they were achieved on
a too small set of images to be actually statistically significant.

Table 3. Classification results for the blue class.

(a) Accuracy

SVM classifier for KES, Faecalis

and Agalactiae

Total Number of Segments 7122 Percentage

Incorrectly Classified Segments 1240 17.4108 %

Correctly Classified Segments 5882 82.5892 %

(b) Confusion Matrix

KES Faecalis Agalactiae

3021 191 12

604 2548 213

17 203 313

Table 4. Classification results for the blue class using both color and colony dimension
as input features.

(a) Accuracy

SVM classifier for KES, Faecalis

and Agalactiae isolated colony

Total Number of Colonies 226 Percentage

Incorrectly Classified Colonies 30 13.2743 %

Correctly Classified Colonies 196 86.7257 %

(b) Confusion Matrix

KES Faecalis Agalactiae

76 0 0

24 91 1

0 5 29

Finally a distinct procedure has been developed to detect the Candida infections.
This is a very difficult task because Candida looks semi–transparent, with a color
which is nearly the same as the culture ground. In fact, biologists, in order to
find out the presence of Candida, usually rotate and move the plate in different
positions, an operation aimed at finding any additional useful feature (reflections,
thickness of the colony, etc.). Since the camera catches just a frontal view of the
Petri dish, a 2D image does not allow such a possibility. Therefore, Candida was
revealed by detecting eventual edges inside the background (caused by the colony
extrusions originating small reflections). Unfortunately, an edge can be also due
to noise; therefore, in order to reduce the number of false positives, we used the
shape of the colony, generally circular, as a fundamental feature to distinguish
colonies from noise. Single non overlapping colonies were then searched on the
edge mask and, based on their number, we were finally able to establish the
presence of Candida or not (see Fig. 4).
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(a) (b) (c)

Fig. 4. In (a), the original image; in (b) the identified edges within the background, in
orange; in (c), Candida colonies found on the Petri dish.

4 Colony Detection and Bacterial Count

In order to perform the bacterial count, a multistage algorithm has been devel-
oped that, at first, searches only for single, not overlapping colonies, and then
tries to enucleate colonies belonging to slightly overlapping regions. A binary
image is first constructed, in which the background is represented by the ground
seed and the foreground by the colonies. Single colonies show a roughly circu-
lar shape and can be easily identified based on this feature. In particular, for
each connected component in the binary image, we calculate the least enclosing
circle and then, if the ratio between the circular area and the area of the given
connected component is under a fixed threshold (chosen via a trial–and–error
procedure), such a component is supposed to be a colony. Obviously, this simple
approach is not effective in massive overlapping regions, where a different proce-
dure has to be used. Therefore the convexity of each colony contour is calculated
and sub–contours with convex shape are found; then, the best ellipse (in the least
square sense), that fits each sub–contour, is selected. A score matrix, that takes
into account both the axes rate and the ellipses’ points belonging (or not) to the
contour, is constructed and used to remove non–relevant ellipses (Fig. 5).

(a) (b) (c)

Fig. 5. In (a) the original image; in (b) contours are evidenced (blue: the concave part;
red: the convex part); in (c) the ellipses, with a high score (red), and a low score (blue).

Using the dimension of the discovered single colonies, combined with the area of
the infected region, our system calculates the infection severity (or the bacterial
load), which is an estimate of the number of microorganisms per milliliter of
urine (UFC/ml), expressed by using a logarithmic evaluation scale. The actual
measurement value is obtained by multiplying the number of bacterial colonies
counted on the dish by the inverse of the seeding dilution rate. Based on this
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procedure, we obtain an accuracy of 92,1% (our estimations agree with those of
the biologists for 233 out of 253 images constituting the dataset).

5 Conclusions

In this paper, an automatic procedure to detect and classify urinary infections
was described, able to obtain a good accuracy on the most common bacteria
present in humans. Preliminary results were presented. It is a future matter
of research to refine the classification procedure related to colonies with very
similar colors and also revealing the presence of Candida. Finally, the tool will
be also extended to treat diverse types of culture grounds, possibly transparent
and based on the action of different enzymes (so producing different chromatic
reactions).
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